metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-methyl­pyrazine-2-carboxyl­ato-κ2N1,O2)cadmium

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica `Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 24 August 2011; accepted 26 August 2011; online 14 September 2011)

In the title compound, [Cd(C6H5N2O2)2(H2O)2], the CdII ion is coordinated in a severely distorted octa­hedral geometry. The N atoms are cis to each other, while the water O atoms and ligand O atoms are mutually trans. The crystal structure is stabilized by a network of O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.730 (3) and 3.652 (3) Å] between the 5-methyl­pyrazine-2-carboxyl­ate ligands. The structure is isotypic with the manganese analog.

Related literature

For background to coordination chemistry, see: Blake et al. (1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]); Brito et al. (2011[Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897-901.]). For the isotypic Mn compound see: Chapman et al. (2002[Chapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187-1191.]). For similar compounds of the type [M(C6H5N2O2)2(H2O)2, where M = FeII, CoII, ZnII, NiII] see: Fan et al. (2007a[Fan, G., Chen, S.-P. & Gao, S.-L. (2007a). Acta Cryst. E63, m772-m773.],b[Fan, G., Chen, S.-P. & Gao, S.-L. (2007b). Acta Cryst. E63, m774-m775.], 2009[Fan, G., Sun, J.-J., Zhang, J.-C., Ma, Z.-Y. & Gao, S.-L. (2009). Acta Cryst. E65, m107.]); Shang et al. (2007[Shang, R.-L., Liu, F.-Y., Du, L., Li, X.-B. & Sun, B.-W. (2007). Acta Cryst. E63, m190-m192.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H5N2O2)2(H2O)2]

  • Mr = 422.67

  • Triclinic, [P \overline 1]

  • a = 7.2900 (15) Å

  • b = 7.5320 (15) Å

  • c = 14.090 (3) Å

  • α = 87.31 (3)°

  • β = 81.36 (3)°

  • γ = 80.78 (3)°

  • V = 754.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.22 mm

Data collection
  • Oxford Diffraction CCD area-detector diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.561, Tmax = 0.736

  • 5896 measured reflections

  • 3530 independent reflections

  • 2778 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.159

  • S = 1.06

  • 3530 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.23 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.245 (4)
Cd1—O2 2.269 (4)
Cd1—O4 2.278 (5)
Cd1—O3 2.283 (5)
Cd1—N3 2.361 (5)
Cd1—N1 2.370 (5)
O2—Cd1—O4 154.86 (19)
O1—Cd1—O3 161.4 (2)
O2—Cd1—N3 71.25 (16)
O3—Cd1—N3 89.0 (2)
O1—Cd1—N1 72.18 (16)
N3—Cd1—N1 177.55 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N4i 0.75 (6) 2.12 (6) 2.875 (9) 173 (6)
O3—H3B⋯O5ii 0.73 (10) 2.08 (10) 2.740 (8) 150 (10)
O4—H4A⋯N2iii 0.84 (8) 2.04 (8) 2.852 (8) 164 (8)
O4—H4B⋯O6iv 0.93 (11) 1.99 (10) 2.811 (8) 146 (8)
C4—H4⋯O5ii 0.93 2.29 3.211 (7) 169
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry, (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011). The title compound was isolated during attempts to synthesize a mixed-ligand coordination polymer by a condensation reaction between the title compound and pyrazine. The crystal structure of the title compound, contains discrete mononuclear complex molecules in which Cd II ions, are chelated by two 2-methylpyrazine- 5-carboxylate ligands in a trans-cis mode and bonded by two water molecules. The coordination geometry around the CdII ion is severely distorted octahedral. The ligand chelation proceeds via its N,O-bonding group. The organic ligands are essentially planar [r.m.s. deviation 0.0765 (3) Å mean] and form a dihedral angle of 89.71 (18)°. The molecular structure is shown in Fig. 1 and relevant bond distances and angles for the CdII coordination octahedron are listed in Table 1. All molecular geometry parameters lie within the normal ranges, except the C1—C6 bond distance (1.532 (8) Å) which is longer than Csp2—Csp2 bond distance, possibly due to the coordination effect of the Cd atom. This effect is observed in Mn analog. The coordination geometry and geometric parameters of the title compound match closely those found in the analog compound (Chapman et al., 2002).The crystal structure is stabilized by a network of O—H···O, O—H···N, C—H···O, hydrogen bonds, forming an infinite 3-D network, Fig. 2, Table 2, and π-π stacking interactions between the 5-methylpyrazine-2-carboxylate ligand, Fig. 3, Table 3.

Related literature top

For background to coordination chemistry, see: Blake et al. (1999); Brito et al. (2011). For the isotypic Mn compound see: Chapman et al. (2002). For similar compounds of the type [M(C6H5N2O2)2(H2O)2, wher M = FeII, CoII, ZnII, NiII] see: Fan et al. (2007a,b, 2009); Shang et al. (2007).

Experimental top

5-methylpyrazine-2-carboxylic acid (1113 mg, 8.0 mmol) was added to 20 ml solution of NaOH (322 mg, 8.0 mmol) in water. The mixture was stirred for 30 minutes at room temperature. CdCl2 (739 mg, 4.0 mmol) was added slowly to the above solution and upon heating, a yellow precipitate was formed. After filtration the yellow material was washed several times with water and dried in air. The title compound was obtained by hydrothermal synthesis of a mixture of the yellow precipitate (105.6 mg, 0.25 mmol) and pyrazine (40.0 mg, 0.5 mmol) in 6 ml H2O, in an acid digestion bomb, heated at 130 °C for 72 h. Suitable single crystals grew upon cooling of the solution to room temperature. C12H14CdN4O6; IR (KBr, cm-1): ν = 3427 s, 1631 s,1580 s, 1520 m, 1483 m, 1449 s, 1395 s, 1322 s, 1290 m, 1171 m, 1042 s, 871 s, 413 s.

Refinement top

Hydrogen atoms were located in a difference Fourier map but they were included in calculated positions [C—H = 0.93 - 0.96 Å and refined as riding [Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms]. Water H atoms (H3A, H3B, H4A and H4B) were refined isotropically. The single-crystal used was curved and weakly diffracting, with only 82% of the reflections considered to be observed. However, this fact did not adversely affect the solution and refinement processes. The highest electron-density peak and the deepest hole are located 0.99 and 1.06 Å from atom Cd in the final difference Fourier.

Structure description top

The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry, (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011). The title compound was isolated during attempts to synthesize a mixed-ligand coordination polymer by a condensation reaction between the title compound and pyrazine. The crystal structure of the title compound, contains discrete mononuclear complex molecules in which Cd II ions, are chelated by two 2-methylpyrazine- 5-carboxylate ligands in a trans-cis mode and bonded by two water molecules. The coordination geometry around the CdII ion is severely distorted octahedral. The ligand chelation proceeds via its N,O-bonding group. The organic ligands are essentially planar [r.m.s. deviation 0.0765 (3) Å mean] and form a dihedral angle of 89.71 (18)°. The molecular structure is shown in Fig. 1 and relevant bond distances and angles for the CdII coordination octahedron are listed in Table 1. All molecular geometry parameters lie within the normal ranges, except the C1—C6 bond distance (1.532 (8) Å) which is longer than Csp2—Csp2 bond distance, possibly due to the coordination effect of the Cd atom. This effect is observed in Mn analog. The coordination geometry and geometric parameters of the title compound match closely those found in the analog compound (Chapman et al., 2002).The crystal structure is stabilized by a network of O—H···O, O—H···N, C—H···O, hydrogen bonds, forming an infinite 3-D network, Fig. 2, Table 2, and π-π stacking interactions between the 5-methylpyrazine-2-carboxylate ligand, Fig. 3, Table 3.

For background to coordination chemistry, see: Blake et al. (1999); Brito et al. (2011). For the isotypic Mn compound see: Chapman et al. (2002). For similar compounds of the type [M(C6H5N2O2)2(H2O)2, wher M = FeII, CoII, ZnII, NiII] see: Fan et al. (2007a,b, 2009); Shang et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radius.
[Figure 2] Fig. 2. A view of title compound showing the hydrogen bonds and are indicated by dashed lines. [Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) x, y + 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x + 1, y, z].
[Figure 3] Fig. 3. A partial packing diagram (I), showing molecules stacked view along ab plane. Ring centroids (Cg1 and Cg2 for the 2-methylpyrazine rings) involved in the π-π interactions are joined by dashed lines. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2]
Diaquabis(5-methylpyrazine-2-carboxylato- κ2N1,O2)cadmium top
Crystal data top
[Cd(C6H5N2O2)2(H2O)2]Z = 2
Mr = 422.67F(000) = 420
Triclinic, P1Dx = 1.860 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2900 (15) ÅCell parameters from 5011 reflections
b = 7.5320 (15) Åθ = 3.4–29.7°
c = 14.090 (3) ŵ = 1.48 mm1
α = 87.31 (3)°T = 293 K
β = 81.36 (3)°Block, yellow
γ = 80.78 (3)°0.44 × 0.40 × 0.22 mm
V = 754.8 (3) Å3
Data collection top
Oxford Diffraction CCD area-detector
diffractometer
3530 independent reflections
Radiation source: fine-focus sealed tube2778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 29.7°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 89
Tmin = 0.561, Tmax = 0.736k = 95
5896 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
3530 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 2.23 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Cd(C6H5N2O2)2(H2O)2]γ = 80.78 (3)°
Mr = 422.67V = 754.8 (3) Å3
Triclinic, P1Z = 2
a = 7.2900 (15) ÅMo Kα radiation
b = 7.5320 (15) ŵ = 1.48 mm1
c = 14.090 (3) ÅT = 293 K
α = 87.31 (3)°0.44 × 0.40 × 0.22 mm
β = 81.36 (3)°
Data collection top
Oxford Diffraction CCD area-detector
diffractometer
3530 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2778 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.736Rint = 0.061
5896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 2.23 e Å3
3530 reflectionsΔρmin = 1.11 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.61134 (5)0.67712 (5)0.73978 (3)0.03763 (19)
O10.6127 (6)0.3946 (6)0.6951 (3)0.0472 (11)
O20.2944 (6)0.7316 (6)0.7793 (3)0.0475 (10)
O30.6360 (9)0.9759 (7)0.7328 (5)0.0593 (14)
H3A0.625 (7)1.019 (8)0.781 (4)0.020 (15)*
H3B0.607 (14)1.024 (13)0.690 (7)0.09 (4)*
O40.9122 (7)0.6009 (8)0.7706 (4)0.0581 (13)
H4A0.995 (10)0.560 (10)0.726 (6)0.06 (2)*
H4B0.943 (13)0.705 (14)0.793 (7)0.10 (3)*
O50.6558 (8)0.2045 (6)0.5758 (3)0.0561 (12)
O60.0540 (6)0.8123 (8)0.8930 (4)0.0607 (13)
N10.6959 (7)0.6675 (6)0.5708 (3)0.0354 (10)
N20.8477 (7)0.5928 (7)0.3815 (4)0.0421 (12)
N30.5370 (6)0.6945 (6)0.9084 (3)0.0346 (10)
N40.4226 (7)0.8321 (7)1.0909 (4)0.0411 (12)
C10.7138 (7)0.5011 (7)0.5376 (4)0.0344 (12)
C20.7863 (8)0.4661 (8)0.4434 (4)0.0398 (13)
H20.79330.35030.42150.048*
C30.8288 (8)0.7586 (8)0.4138 (4)0.0418 (13)
C40.7530 (9)0.7945 (8)0.5084 (4)0.0417 (13)
H40.74120.91150.52950.050*
C50.8947 (11)0.9043 (10)0.3470 (5)0.0591 (18)
H5A0.95020.98330.38170.089*
H5B0.78980.97140.32070.089*
H5C0.98620.85120.29580.089*
C60.6543 (8)0.3540 (8)0.6091 (5)0.0400 (13)
C70.6558 (8)0.6841 (8)0.9727 (4)0.0405 (13)
H70.77980.63060.95550.049*
C80.6001 (8)0.7502 (8)1.0637 (4)0.0392 (13)
C90.3029 (8)0.8382 (8)1.0262 (4)0.0425 (14)
H90.17850.89061.04330.051*
C100.3579 (7)0.7703 (8)0.9364 (4)0.0365 (12)
C110.2241 (8)0.7717 (8)0.8637 (5)0.0424 (14)
C120.7340 (10)0.7352 (10)1.1345 (5)0.0532 (17)
H12A0.71540.84531.16880.080*
H12B0.86030.71311.10150.080*
H12C0.71270.63751.17890.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0420 (3)0.0324 (3)0.0377 (3)0.00852 (18)0.00199 (18)0.00820 (19)
O10.069 (3)0.033 (2)0.041 (2)0.019 (2)0.003 (2)0.0051 (19)
O20.042 (2)0.058 (3)0.042 (2)0.005 (2)0.0048 (18)0.010 (2)
O30.102 (4)0.035 (3)0.041 (3)0.021 (3)0.001 (3)0.011 (3)
O40.037 (3)0.070 (4)0.066 (3)0.003 (2)0.001 (2)0.032 (3)
O50.092 (4)0.027 (2)0.050 (3)0.017 (2)0.003 (2)0.008 (2)
O60.031 (2)0.086 (4)0.066 (3)0.009 (2)0.002 (2)0.015 (3)
N10.048 (3)0.023 (2)0.036 (3)0.0080 (19)0.004 (2)0.005 (2)
N20.048 (3)0.035 (3)0.042 (3)0.003 (2)0.002 (2)0.007 (2)
N30.034 (2)0.033 (3)0.036 (3)0.0069 (19)0.0004 (19)0.005 (2)
N40.049 (3)0.036 (3)0.038 (3)0.008 (2)0.002 (2)0.004 (2)
C10.037 (3)0.023 (3)0.043 (3)0.003 (2)0.005 (2)0.008 (2)
C20.042 (3)0.030 (3)0.047 (4)0.004 (2)0.004 (2)0.011 (3)
C30.049 (3)0.036 (3)0.040 (3)0.007 (3)0.008 (3)0.000 (3)
C40.057 (4)0.023 (3)0.044 (3)0.005 (2)0.000 (3)0.007 (2)
C50.076 (5)0.053 (4)0.050 (4)0.017 (4)0.006 (3)0.002 (3)
C60.043 (3)0.030 (3)0.047 (4)0.006 (2)0.006 (3)0.006 (3)
C70.032 (3)0.044 (4)0.044 (3)0.007 (2)0.001 (2)0.002 (3)
C80.041 (3)0.036 (3)0.042 (3)0.014 (2)0.003 (2)0.003 (3)
C90.036 (3)0.041 (3)0.047 (4)0.005 (2)0.005 (2)0.012 (3)
C100.033 (3)0.032 (3)0.043 (3)0.010 (2)0.005 (2)0.003 (2)
C110.038 (3)0.035 (3)0.055 (4)0.009 (2)0.004 (3)0.008 (3)
C120.060 (4)0.055 (4)0.050 (4)0.017 (3)0.016 (3)0.004 (3)
Geometric parameters (Å, º) top
Cd1—O12.245 (4)N4—C91.347 (8)
Cd1—O22.269 (4)N4—C81.349 (8)
Cd1—O42.278 (5)C1—C21.374 (8)
Cd1—O32.283 (5)C1—C61.532 (8)
Cd1—N32.361 (5)C2—H20.9300
Cd1—N12.370 (5)C3—C41.385 (8)
O1—C61.244 (7)C3—C51.502 (9)
O2—C111.253 (8)C4—H40.9300
O3—H3A0.75 (6)C5—H5A0.9600
O3—H3B0.73 (9)C5—H5B0.9600
O4—H4A0.83 (8)C5—H5C0.9600
O4—H4B0.93 (11)C7—C81.376 (8)
O5—C61.238 (7)C7—H70.9300
O6—C111.240 (7)C8—C121.486 (8)
N1—C11.339 (7)C9—C101.366 (8)
N1—C41.342 (7)C9—H90.9300
N2—C31.329 (8)C10—C111.516 (8)
N2—C21.346 (8)C12—H12A0.9600
N3—C71.335 (7)C12—H12B0.9600
N3—C101.347 (7)C12—H12C0.9600
O1—Cd1—O293.45 (17)N2—C3—C4120.1 (6)
O1—Cd1—O490.14 (19)N2—C3—C5119.0 (6)
O2—Cd1—O4154.86 (19)C4—C3—C5120.9 (6)
O1—Cd1—O3161.4 (2)N1—C4—C3122.7 (5)
O2—Cd1—O392.9 (2)N1—C4—H4118.6
O4—Cd1—O391.5 (2)C3—C4—H4118.6
O1—Cd1—N3109.65 (16)C3—C5—H5A109.5
O2—Cd1—N371.25 (16)C3—C5—H5B109.5
O4—Cd1—N384.11 (18)H5A—C5—H5B109.5
O3—Cd1—N389.0 (2)C3—C5—H5C109.5
O1—Cd1—N172.18 (16)H5A—C5—H5C109.5
O2—Cd1—N1110.48 (16)H5B—C5—H5C109.5
O4—Cd1—N194.30 (19)O5—C6—O1126.1 (6)
O3—Cd1—N189.2 (2)O5—C6—C1116.6 (6)
N3—Cd1—N1177.55 (14)O1—C6—C1117.2 (5)
C6—O1—Cd1120.4 (4)N3—C7—C8122.0 (5)
C11—O2—Cd1119.5 (4)N3—C7—H7119.0
Cd1—O3—H3A114 (4)C8—C7—H7119.0
Cd1—O3—H3B115 (8)N4—C8—C7120.9 (5)
H3A—O3—H3B124 (10)N4—C8—C12118.0 (6)
Cd1—O4—H4A119 (5)C7—C8—C12121.1 (6)
Cd1—O4—H4B105 (6)N4—C9—C10122.3 (5)
H4A—O4—H4B109 (8)N4—C9—H9118.8
C1—N1—C4116.9 (5)C10—C9—H9118.8
C1—N1—Cd1112.5 (4)N3—C10—C9120.8 (5)
C4—N1—Cd1129.8 (4)N3—C10—C11116.2 (5)
C3—N2—C2117.3 (5)C9—C10—C11123.0 (5)
C7—N3—C10117.3 (5)O6—C11—O2125.5 (6)
C7—N3—Cd1127.7 (4)O6—C11—C10117.1 (6)
C10—N3—Cd1112.4 (4)O2—C11—C10117.4 (5)
C9—N4—C8116.6 (5)C8—C12—H12A109.5
N1—C1—C2120.3 (5)C8—C12—H12B109.5
N1—C1—C6117.3 (5)H12A—C12—H12B109.5
C2—C1—C6122.4 (5)C8—C12—H12C109.5
N2—C2—C1122.7 (6)H12A—C12—H12C109.5
N2—C2—H2118.7H12B—C12—H12C109.5
C1—C2—H2118.7
O2—Cd1—O1—C6110.9 (5)C6—C1—C2—N2176.5 (5)
O4—Cd1—O1—C694.0 (5)C2—N2—C3—C41.6 (8)
O3—Cd1—O1—C61.2 (9)C2—N2—C3—C5179.7 (5)
N3—Cd1—O1—C6177.8 (4)C1—N1—C4—C30.5 (8)
N1—Cd1—O1—C60.5 (4)Cd1—N1—C4—C3168.3 (4)
O1—Cd1—O2—C11119.9 (5)N2—C3—C4—N10.0 (9)
O4—Cd1—O2—C1122.2 (7)C5—C3—C4—N1178.7 (6)
O3—Cd1—O2—C1177.7 (5)Cd1—O1—C6—O5178.3 (5)
N3—Cd1—O2—C1110.3 (5)Cd1—O1—C6—C13.2 (7)
N1—Cd1—O2—C11167.9 (4)N1—C1—C6—O5173.8 (5)
O1—Cd1—N1—C14.4 (3)C2—C1—C6—O57.4 (8)
O2—Cd1—N1—C191.4 (4)N1—C1—C6—O17.5 (8)
O4—Cd1—N1—C184.3 (4)C2—C1—C6—O1171.2 (5)
O3—Cd1—N1—C1175.8 (4)C10—N3—C7—C81.1 (8)
O1—Cd1—N1—C4173.7 (5)Cd1—N3—C7—C8159.3 (4)
O2—Cd1—N1—C499.3 (5)C9—N4—C8—C72.7 (8)
O4—Cd1—N1—C484.9 (5)C9—N4—C8—C12177.8 (5)
O3—Cd1—N1—C46.5 (5)N3—C7—C8—N41.3 (9)
O1—Cd1—N3—C796.2 (5)N3—C7—C8—C12179.2 (5)
O2—Cd1—N3—C7176.9 (5)C8—N4—C9—C101.8 (9)
O4—Cd1—N3—C78.2 (5)C7—N3—C10—C91.9 (8)
O3—Cd1—N3—C783.5 (5)Cd1—N3—C10—C9161.4 (5)
O1—Cd1—N3—C10102.6 (4)C7—N3—C10—C11177.0 (5)
O2—Cd1—N3—C1015.7 (4)Cd1—N3—C10—C1119.7 (6)
O4—Cd1—N3—C10169.4 (4)N4—C9—C10—N30.5 (9)
O3—Cd1—N3—C1077.7 (4)N4—C9—C10—C11178.4 (5)
C4—N1—C1—C20.5 (8)Cd1—O2—C11—O6176.5 (5)
Cd1—N1—C1—C2171.3 (4)Cd1—O2—C11—C103.6 (7)
C4—N1—C1—C6178.3 (5)N3—C10—C11—O6168.1 (5)
Cd1—N1—C1—C67.5 (6)C9—C10—C11—O610.8 (9)
C3—N2—C2—C12.7 (8)N3—C10—C11—O211.8 (8)
N1—C1—C2—N22.2 (9)C9—C10—C11—O2169.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N4i0.75 (6)2.12 (6)2.875 (9)173 (6)
O3—H3B···O5ii0.73 (10)2.08 (10)2.740 (8)150 (10)
O4—H4A···N2iii0.84 (8)2.04 (8)2.852 (8)164 (8)
O4—H4B···O6iv0.93 (11)1.99 (10)2.811 (8)146 (8)
C4—H4···O5ii0.932.293.211 (7)169
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H5N2O2)2(H2O)2]
Mr422.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2900 (15), 7.5320 (15), 14.090 (3)
α, β, γ (°)87.31 (3), 81.36 (3), 80.78 (3)
V3)754.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.44 × 0.40 × 0.22
Data collection
DiffractometerOxford Diffraction CCD area-detector
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.561, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
5896, 3530, 2778
Rint0.061
(sin θ/λ)max1)0.697
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.159, 1.06
No. of reflections3530
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.23, 1.11

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—O12.245 (4)Cd1—O32.283 (5)
Cd1—O22.269 (4)Cd1—N32.361 (5)
Cd1—O42.278 (5)Cd1—N12.370 (5)
O2—Cd1—O4154.86 (19)O3—Cd1—N389.0 (2)
O1—Cd1—O3161.4 (2)O1—Cd1—N172.18 (16)
O2—Cd1—N371.25 (16)N3—Cd1—N1177.55 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N4i0.75 (6)2.12 (6)2.875 (9)173 (6)
O3—H3B···O5ii0.73 (10)2.08 (10)2.740 (8)150 (10)
O4—H4A···N2iii0.84 (8)2.04 (8)2.852 (8)164 (8)
O4—H4B···O6iv0.93 (11)1.99 (10)2.811 (8)146 (8)
C4—H4···O5ii0.932.293.211 (7)169
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z.
ππ stacking interactions (Å) in the title compound top
Notes: α is the dihedral angle (°) between the planes of the rings, d is the distance (Å) between the ring centroids and Δ is the displacement (Å) of the centroid of ring 2 relative to the intersection point of the normal to the centroid of ring 1 and the least-squares plane of ring 2.
Ring 1Ring 2αdΔ
N1/C1/C2/N2/C3/C4(N1/C1/C2/N2/C3/C4)i03.730 (3)1.237
N3/C7/C8/N4/C9/C10(N3/C7/C8/N4/C9/C10)ii03.652 (3)1.307
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+2.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JA thanks the Universidad de Antofagasta for a PhD fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationChapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187–1191.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFan, G., Chen, S.-P. & Gao, S.-L. (2007a). Acta Cryst. E63, m772–m773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, G., Chen, S.-P. & Gao, S.-L. (2007b). Acta Cryst. E63, m774–m775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, G., Sun, J.-J., Zhang, J.-C., Ma, Z.-Y. & Gao, S.-L. (2009). Acta Cryst. E65, m107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShang, R.-L., Liu, F.-Y., Du, L., Li, X.-B. & Sun, B.-W. (2007). Acta Cryst. E63, m190–m192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds