metal-organic compounds
Diaquabis(5-methylpyrazine-2-carboxylato-κ2N1,O2)cadmium
aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica `Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com
In the title compound, [Cd(C6H5N2O2)2(H2O)2], the CdII ion is coordinated in a severely distorted octahedral geometry. The N atoms are cis to each other, while the water O atoms and ligand O atoms are mutually trans. The is stabilized by a network of O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid distances = 3.730 (3) and 3.652 (3) Å] between the 5-methylpyrazine-2-carboxylate ligands. The structure is isotypic with the manganese analog.
Related literature
For background to coordination chemistry, see: Blake et al. (1999); Brito et al. (2011). For the isotypic Mn compound see: Chapman et al. (2002). For similar compounds of the type [M(C6H5N2O2)2(H2O)2, where M = FeII, CoII, ZnII, NiII] see: Fan et al. (2007a,b, 2009); Shang et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811035045/bt5630sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811035045/bt5630Isup2.hkl
5-methylpyrazine-2-carboxylic acid (1113 mg, 8.0 mmol) was added to 20 ml solution of NaOH (322 mg, 8.0 mmol) in water. The mixture was stirred for 30 minutes at room temperature. CdCl2 (739 mg, 4.0 mmol) was added slowly to the above solution and upon heating, a yellow precipitate was formed. After filtration the yellow material was washed several times with water and dried in air. The title compound was obtained by hydrothermal synthesis of a mixture of the yellow precipitate (105.6 mg, 0.25 mmol) and pyrazine (40.0 mg, 0.5 mmol) in 6 ml H2O, in an acid digestion bomb, heated at 130 °C for 72 h. Suitable single crystals grew upon cooling of the solution to room temperature. C12H14CdN4O6; IR (KBr, cm-1): ν = 3427 s, 1631 s,1580 s, 1520 m, 1483 m, 1449 s, 1395 s, 1322 s, 1290 m, 1171 m, 1042 s, 871 s, 413 s.
Hydrogen atoms were located in a difference Fourier map but they were included in calculated positions [C—H = 0.93 - 0.96 Å and refined as riding [Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms]. Water H atoms (H3A, H3B, H4A and H4B) were refined isotropically. The single-crystal used was curved and weakly diffracting, with only 82% of the reflections considered to be observed. However, this fact did not adversely affect the solution and
processes. The highest electron-density peak and the deepest hole are located 0.99 and 1.06 Å from atom Cd in the final difference Fourier.The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry, (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011). The title compound was isolated during attempts to synthesize a mixed-ligand coordination polymer by a condensation reaction between the title compound and pyrazine. The π-π stacking interactions between the 5-methylpyrazine-2-carboxylate ligand, Fig. 3, Table 3.
of the title compound, contains discrete mononuclear complex molecules in which Cd II ions, are chelated by two 2-methylpyrazine- 5-carboxylate ligands in a trans-cis mode and bonded by two water molecules. The coordination geometry around the CdII ion is severely distorted octahedral. The ligand proceeds via its N,O-bonding group. The organic ligands are essentially planar [r.m.s. deviation 0.0765 (3) Å mean] and form a dihedral angle of 89.71 (18)°. The molecular structure is shown in Fig. 1 and relevant bond distances and angles for the CdII coordination octahedron are listed in Table 1. All molecular geometry parameters lie within the normal ranges, except the C1—C6 bond distance (1.532 (8) Å) which is longer than Csp2—Csp2 bond distance, possibly due to the coordination effect of the Cd atom. This effect is observed in Mn analog. The coordination geometry and geometric parameters of the title compound match closely those found in the analog compound (Chapman et al., 2002).The is stabilized by a network of O—H···O, O—H···N, C—H···O, hydrogen bonds, forming an infinite 3-D network, Fig. 2, Table 2, andFor background to coordination chemistry, see: Blake et al. (1999); Brito et al. (2011). For the isotypic Mn compound see: Chapman et al. (2002). For similar compounds of the type [M(C6H5N2O2)2(H2O)2, wher M = FeII, CoII, ZnII, NiII] see: Fan et al. (2007a,b, 2009); Shang et al. (2007).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radius. | |
Fig. 2. A view of title compound showing the hydrogen bonds and are indicated by dashed lines. [Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) x, y + 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x + 1, y, z]. | |
Fig. 3. A partial packing diagram (I), showing molecules stacked view along ab plane. Ring centroids (Cg1 and Cg2 for the 2-methylpyrazine rings) involved in the π-π interactions are joined by dashed lines. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2] |
[Cd(C6H5N2O2)2(H2O)2] | Z = 2 |
Mr = 422.67 | F(000) = 420 |
Triclinic, P1 | Dx = 1.860 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2900 (15) Å | Cell parameters from 5011 reflections |
b = 7.5320 (15) Å | θ = 3.4–29.7° |
c = 14.090 (3) Å | µ = 1.48 mm−1 |
α = 87.31 (3)° | T = 293 K |
β = 81.36 (3)° | Block, yellow |
γ = 80.78 (3)° | 0.44 × 0.40 × 0.22 mm |
V = 754.8 (3) Å3 |
Oxford Diffraction CCD area-detector diffractometer | 3530 independent reflections |
Radiation source: fine-focus sealed tube | 2778 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 29.7°, θmin = 3.4° |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | h = −8→9 |
Tmin = 0.561, Tmax = 0.736 | k = −9→5 |
5896 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0751P)2] where P = (Fo2 + 2Fc2)/3 |
3530 reflections | (Δ/σ)max = 0.002 |
226 parameters | Δρmax = 2.23 e Å−3 |
0 restraints | Δρmin = −1.11 e Å−3 |
[Cd(C6H5N2O2)2(H2O)2] | γ = 80.78 (3)° |
Mr = 422.67 | V = 754.8 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2900 (15) Å | Mo Kα radiation |
b = 7.5320 (15) Å | µ = 1.48 mm−1 |
c = 14.090 (3) Å | T = 293 K |
α = 87.31 (3)° | 0.44 × 0.40 × 0.22 mm |
β = 81.36 (3)° |
Oxford Diffraction CCD area-detector diffractometer | 3530 independent reflections |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | 2778 reflections with I > 2σ(I) |
Tmin = 0.561, Tmax = 0.736 | Rint = 0.061 |
5896 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.159 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 2.23 e Å−3 |
3530 reflections | Δρmin = −1.11 e Å−3 |
226 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.61134 (5) | 0.67712 (5) | 0.73978 (3) | 0.03763 (19) | |
O1 | 0.6127 (6) | 0.3946 (6) | 0.6951 (3) | 0.0472 (11) | |
O2 | 0.2944 (6) | 0.7316 (6) | 0.7793 (3) | 0.0475 (10) | |
O3 | 0.6360 (9) | 0.9759 (7) | 0.7328 (5) | 0.0593 (14) | |
H3A | 0.625 (7) | 1.019 (8) | 0.781 (4) | 0.020 (15)* | |
H3B | 0.607 (14) | 1.024 (13) | 0.690 (7) | 0.09 (4)* | |
O4 | 0.9122 (7) | 0.6009 (8) | 0.7706 (4) | 0.0581 (13) | |
H4A | 0.995 (10) | 0.560 (10) | 0.726 (6) | 0.06 (2)* | |
H4B | 0.943 (13) | 0.705 (14) | 0.793 (7) | 0.10 (3)* | |
O5 | 0.6558 (8) | 0.2045 (6) | 0.5758 (3) | 0.0561 (12) | |
O6 | 0.0540 (6) | 0.8123 (8) | 0.8930 (4) | 0.0607 (13) | |
N1 | 0.6959 (7) | 0.6675 (6) | 0.5708 (3) | 0.0354 (10) | |
N2 | 0.8477 (7) | 0.5928 (7) | 0.3815 (4) | 0.0421 (12) | |
N3 | 0.5370 (6) | 0.6945 (6) | 0.9084 (3) | 0.0346 (10) | |
N4 | 0.4226 (7) | 0.8321 (7) | 1.0909 (4) | 0.0411 (12) | |
C1 | 0.7138 (7) | 0.5011 (7) | 0.5376 (4) | 0.0344 (12) | |
C2 | 0.7863 (8) | 0.4661 (8) | 0.4434 (4) | 0.0398 (13) | |
H2 | 0.7933 | 0.3503 | 0.4215 | 0.048* | |
C3 | 0.8288 (8) | 0.7586 (8) | 0.4138 (4) | 0.0418 (13) | |
C4 | 0.7530 (9) | 0.7945 (8) | 0.5084 (4) | 0.0417 (13) | |
H4 | 0.7412 | 0.9115 | 0.5295 | 0.050* | |
C5 | 0.8947 (11) | 0.9043 (10) | 0.3470 (5) | 0.0591 (18) | |
H5A | 0.9502 | 0.9833 | 0.3817 | 0.089* | |
H5B | 0.7898 | 0.9714 | 0.3207 | 0.089* | |
H5C | 0.9862 | 0.8512 | 0.2958 | 0.089* | |
C6 | 0.6543 (8) | 0.3540 (8) | 0.6091 (5) | 0.0400 (13) | |
C7 | 0.6558 (8) | 0.6841 (8) | 0.9727 (4) | 0.0405 (13) | |
H7 | 0.7798 | 0.6306 | 0.9555 | 0.049* | |
C8 | 0.6001 (8) | 0.7502 (8) | 1.0637 (4) | 0.0392 (13) | |
C9 | 0.3029 (8) | 0.8382 (8) | 1.0262 (4) | 0.0425 (14) | |
H9 | 0.1785 | 0.8906 | 1.0433 | 0.051* | |
C10 | 0.3579 (7) | 0.7703 (8) | 0.9364 (4) | 0.0365 (12) | |
C11 | 0.2241 (8) | 0.7717 (8) | 0.8637 (5) | 0.0424 (14) | |
C12 | 0.7340 (10) | 0.7352 (10) | 1.1345 (5) | 0.0532 (17) | |
H12A | 0.7154 | 0.8453 | 1.1688 | 0.080* | |
H12B | 0.8603 | 0.7131 | 1.1015 | 0.080* | |
H12C | 0.7127 | 0.6375 | 1.1789 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0420 (3) | 0.0324 (3) | 0.0377 (3) | −0.00852 (18) | 0.00199 (18) | −0.00820 (19) |
O1 | 0.069 (3) | 0.033 (2) | 0.041 (2) | −0.019 (2) | 0.003 (2) | −0.0051 (19) |
O2 | 0.042 (2) | 0.058 (3) | 0.042 (2) | −0.005 (2) | −0.0048 (18) | −0.010 (2) |
O3 | 0.102 (4) | 0.035 (3) | 0.041 (3) | −0.021 (3) | −0.001 (3) | −0.011 (3) |
O4 | 0.037 (3) | 0.070 (4) | 0.066 (3) | −0.003 (2) | −0.001 (2) | −0.032 (3) |
O5 | 0.092 (4) | 0.027 (2) | 0.050 (3) | −0.017 (2) | −0.003 (2) | −0.008 (2) |
O6 | 0.031 (2) | 0.086 (4) | 0.066 (3) | −0.009 (2) | −0.002 (2) | −0.015 (3) |
N1 | 0.048 (3) | 0.023 (2) | 0.036 (3) | −0.0080 (19) | −0.004 (2) | −0.005 (2) |
N2 | 0.048 (3) | 0.035 (3) | 0.042 (3) | −0.003 (2) | −0.002 (2) | −0.007 (2) |
N3 | 0.034 (2) | 0.033 (3) | 0.036 (3) | −0.0069 (19) | 0.0004 (19) | −0.005 (2) |
N4 | 0.049 (3) | 0.036 (3) | 0.038 (3) | −0.008 (2) | −0.002 (2) | −0.004 (2) |
C1 | 0.037 (3) | 0.023 (3) | 0.043 (3) | −0.003 (2) | −0.005 (2) | −0.008 (2) |
C2 | 0.042 (3) | 0.030 (3) | 0.047 (4) | −0.004 (2) | −0.004 (2) | −0.011 (3) |
C3 | 0.049 (3) | 0.036 (3) | 0.040 (3) | −0.007 (3) | −0.008 (3) | 0.000 (3) |
C4 | 0.057 (4) | 0.023 (3) | 0.044 (3) | −0.005 (2) | 0.000 (3) | −0.007 (2) |
C5 | 0.076 (5) | 0.053 (4) | 0.050 (4) | −0.017 (4) | −0.006 (3) | 0.002 (3) |
C6 | 0.043 (3) | 0.030 (3) | 0.047 (4) | −0.006 (2) | −0.006 (3) | −0.006 (3) |
C7 | 0.032 (3) | 0.044 (4) | 0.044 (3) | −0.007 (2) | −0.001 (2) | 0.002 (3) |
C8 | 0.041 (3) | 0.036 (3) | 0.042 (3) | −0.014 (2) | −0.003 (2) | 0.003 (3) |
C9 | 0.036 (3) | 0.041 (3) | 0.047 (4) | −0.005 (2) | 0.005 (2) | −0.012 (3) |
C10 | 0.033 (3) | 0.032 (3) | 0.043 (3) | −0.010 (2) | 0.005 (2) | −0.003 (2) |
C11 | 0.038 (3) | 0.035 (3) | 0.055 (4) | −0.009 (2) | −0.004 (3) | −0.008 (3) |
C12 | 0.060 (4) | 0.055 (4) | 0.050 (4) | −0.017 (3) | −0.016 (3) | −0.004 (3) |
Cd1—O1 | 2.245 (4) | N4—C9 | 1.347 (8) |
Cd1—O2 | 2.269 (4) | N4—C8 | 1.349 (8) |
Cd1—O4 | 2.278 (5) | C1—C2 | 1.374 (8) |
Cd1—O3 | 2.283 (5) | C1—C6 | 1.532 (8) |
Cd1—N3 | 2.361 (5) | C2—H2 | 0.9300 |
Cd1—N1 | 2.370 (5) | C3—C4 | 1.385 (8) |
O1—C6 | 1.244 (7) | C3—C5 | 1.502 (9) |
O2—C11 | 1.253 (8) | C4—H4 | 0.9300 |
O3—H3A | 0.75 (6) | C5—H5A | 0.9600 |
O3—H3B | 0.73 (9) | C5—H5B | 0.9600 |
O4—H4A | 0.83 (8) | C5—H5C | 0.9600 |
O4—H4B | 0.93 (11) | C7—C8 | 1.376 (8) |
O5—C6 | 1.238 (7) | C7—H7 | 0.9300 |
O6—C11 | 1.240 (7) | C8—C12 | 1.486 (8) |
N1—C1 | 1.339 (7) | C9—C10 | 1.366 (8) |
N1—C4 | 1.342 (7) | C9—H9 | 0.9300 |
N2—C3 | 1.329 (8) | C10—C11 | 1.516 (8) |
N2—C2 | 1.346 (8) | C12—H12A | 0.9600 |
N3—C7 | 1.335 (7) | C12—H12B | 0.9600 |
N3—C10 | 1.347 (7) | C12—H12C | 0.9600 |
O1—Cd1—O2 | 93.45 (17) | N2—C3—C4 | 120.1 (6) |
O1—Cd1—O4 | 90.14 (19) | N2—C3—C5 | 119.0 (6) |
O2—Cd1—O4 | 154.86 (19) | C4—C3—C5 | 120.9 (6) |
O1—Cd1—O3 | 161.4 (2) | N1—C4—C3 | 122.7 (5) |
O2—Cd1—O3 | 92.9 (2) | N1—C4—H4 | 118.6 |
O4—Cd1—O3 | 91.5 (2) | C3—C4—H4 | 118.6 |
O1—Cd1—N3 | 109.65 (16) | C3—C5—H5A | 109.5 |
O2—Cd1—N3 | 71.25 (16) | C3—C5—H5B | 109.5 |
O4—Cd1—N3 | 84.11 (18) | H5A—C5—H5B | 109.5 |
O3—Cd1—N3 | 89.0 (2) | C3—C5—H5C | 109.5 |
O1—Cd1—N1 | 72.18 (16) | H5A—C5—H5C | 109.5 |
O2—Cd1—N1 | 110.48 (16) | H5B—C5—H5C | 109.5 |
O4—Cd1—N1 | 94.30 (19) | O5—C6—O1 | 126.1 (6) |
O3—Cd1—N1 | 89.2 (2) | O5—C6—C1 | 116.6 (6) |
N3—Cd1—N1 | 177.55 (14) | O1—C6—C1 | 117.2 (5) |
C6—O1—Cd1 | 120.4 (4) | N3—C7—C8 | 122.0 (5) |
C11—O2—Cd1 | 119.5 (4) | N3—C7—H7 | 119.0 |
Cd1—O3—H3A | 114 (4) | C8—C7—H7 | 119.0 |
Cd1—O3—H3B | 115 (8) | N4—C8—C7 | 120.9 (5) |
H3A—O3—H3B | 124 (10) | N4—C8—C12 | 118.0 (6) |
Cd1—O4—H4A | 119 (5) | C7—C8—C12 | 121.1 (6) |
Cd1—O4—H4B | 105 (6) | N4—C9—C10 | 122.3 (5) |
H4A—O4—H4B | 109 (8) | N4—C9—H9 | 118.8 |
C1—N1—C4 | 116.9 (5) | C10—C9—H9 | 118.8 |
C1—N1—Cd1 | 112.5 (4) | N3—C10—C9 | 120.8 (5) |
C4—N1—Cd1 | 129.8 (4) | N3—C10—C11 | 116.2 (5) |
C3—N2—C2 | 117.3 (5) | C9—C10—C11 | 123.0 (5) |
C7—N3—C10 | 117.3 (5) | O6—C11—O2 | 125.5 (6) |
C7—N3—Cd1 | 127.7 (4) | O6—C11—C10 | 117.1 (6) |
C10—N3—Cd1 | 112.4 (4) | O2—C11—C10 | 117.4 (5) |
C9—N4—C8 | 116.6 (5) | C8—C12—H12A | 109.5 |
N1—C1—C2 | 120.3 (5) | C8—C12—H12B | 109.5 |
N1—C1—C6 | 117.3 (5) | H12A—C12—H12B | 109.5 |
C2—C1—C6 | 122.4 (5) | C8—C12—H12C | 109.5 |
N2—C2—C1 | 122.7 (6) | H12A—C12—H12C | 109.5 |
N2—C2—H2 | 118.7 | H12B—C12—H12C | 109.5 |
C1—C2—H2 | 118.7 | ||
O2—Cd1—O1—C6 | 110.9 (5) | C6—C1—C2—N2 | −176.5 (5) |
O4—Cd1—O1—C6 | −94.0 (5) | C2—N2—C3—C4 | 1.6 (8) |
O3—Cd1—O1—C6 | 1.2 (9) | C2—N2—C3—C5 | −179.7 (5) |
N3—Cd1—O1—C6 | −177.8 (4) | C1—N1—C4—C3 | −0.5 (8) |
N1—Cd1—O1—C6 | 0.5 (4) | Cd1—N1—C4—C3 | 168.3 (4) |
O1—Cd1—O2—C11 | 119.9 (5) | N2—C3—C4—N1 | 0.0 (9) |
O4—Cd1—O2—C11 | 22.2 (7) | C5—C3—C4—N1 | −178.7 (6) |
O3—Cd1—O2—C11 | −77.7 (5) | Cd1—O1—C6—O5 | −178.3 (5) |
N3—Cd1—O2—C11 | 10.3 (5) | Cd1—O1—C6—C1 | 3.2 (7) |
N1—Cd1—O2—C11 | −167.9 (4) | N1—C1—C6—O5 | 173.8 (5) |
O1—Cd1—N1—C1 | −4.4 (3) | C2—C1—C6—O5 | −7.4 (8) |
O2—Cd1—N1—C1 | −91.4 (4) | N1—C1—C6—O1 | −7.5 (8) |
O4—Cd1—N1—C1 | 84.3 (4) | C2—C1—C6—O1 | 171.2 (5) |
O3—Cd1—N1—C1 | 175.8 (4) | C10—N3—C7—C8 | −1.1 (8) |
O1—Cd1—N1—C4 | −173.7 (5) | Cd1—N3—C7—C8 | 159.3 (4) |
O2—Cd1—N1—C4 | 99.3 (5) | C9—N4—C8—C7 | 2.7 (8) |
O4—Cd1—N1—C4 | −84.9 (5) | C9—N4—C8—C12 | −177.8 (5) |
O3—Cd1—N1—C4 | 6.5 (5) | N3—C7—C8—N4 | −1.3 (9) |
O1—Cd1—N3—C7 | 96.2 (5) | N3—C7—C8—C12 | 179.2 (5) |
O2—Cd1—N3—C7 | −176.9 (5) | C8—N4—C9—C10 | −1.8 (9) |
O4—Cd1—N3—C7 | 8.2 (5) | C7—N3—C10—C9 | 1.9 (8) |
O3—Cd1—N3—C7 | −83.5 (5) | Cd1—N3—C10—C9 | −161.4 (5) |
O1—Cd1—N3—C10 | −102.6 (4) | C7—N3—C10—C11 | −177.0 (5) |
O2—Cd1—N3—C10 | −15.7 (4) | Cd1—N3—C10—C11 | 19.7 (6) |
O4—Cd1—N3—C10 | 169.4 (4) | N4—C9—C10—N3 | −0.5 (9) |
O3—Cd1—N3—C10 | 77.7 (4) | N4—C9—C10—C11 | 178.4 (5) |
C4—N1—C1—C2 | −0.5 (8) | Cd1—O2—C11—O6 | 176.5 (5) |
Cd1—N1—C1—C2 | −171.3 (4) | Cd1—O2—C11—C10 | −3.6 (7) |
C4—N1—C1—C6 | 178.3 (5) | N3—C10—C11—O6 | 168.1 (5) |
Cd1—N1—C1—C6 | 7.5 (6) | C9—C10—C11—O6 | −10.8 (9) |
C3—N2—C2—C1 | −2.7 (8) | N3—C10—C11—O2 | −11.8 (8) |
N1—C1—C2—N2 | 2.2 (9) | C9—C10—C11—O2 | 169.3 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···N4i | 0.75 (6) | 2.12 (6) | 2.875 (9) | 173 (6) |
O3—H3B···O5ii | 0.73 (10) | 2.08 (10) | 2.740 (8) | 150 (10) |
O4—H4A···N2iii | 0.84 (8) | 2.04 (8) | 2.852 (8) | 164 (8) |
O4—H4B···O6iv | 0.93 (11) | 1.99 (10) | 2.811 (8) | 146 (8) |
C4—H4···O5ii | 0.93 | 2.29 | 3.211 (7) | 169 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C6H5N2O2)2(H2O)2] |
Mr | 422.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.2900 (15), 7.5320 (15), 14.090 (3) |
α, β, γ (°) | 87.31 (3), 81.36 (3), 80.78 (3) |
V (Å3) | 754.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.48 |
Crystal size (mm) | 0.44 × 0.40 × 0.22 |
Data collection | |
Diffractometer | Oxford Diffraction CCD area-detector |
Absorption correction | Multi-scan (MULABS; Spek, 2009; Blessing, 1995) |
Tmin, Tmax | 0.561, 0.736 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5896, 3530, 2778 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.697 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.159, 1.06 |
No. of reflections | 3530 |
No. of parameters | 226 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.23, −1.11 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Cd1—O1 | 2.245 (4) | Cd1—O3 | 2.283 (5) |
Cd1—O2 | 2.269 (4) | Cd1—N3 | 2.361 (5) |
Cd1—O4 | 2.278 (5) | Cd1—N1 | 2.370 (5) |
O2—Cd1—O4 | 154.86 (19) | O3—Cd1—N3 | 89.0 (2) |
O1—Cd1—O3 | 161.4 (2) | O1—Cd1—N1 | 72.18 (16) |
O2—Cd1—N3 | 71.25 (16) | N3—Cd1—N1 | 177.55 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···N4i | 0.75 (6) | 2.12 (6) | 2.875 (9) | 173 (6) |
O3—H3B···O5ii | 0.73 (10) | 2.08 (10) | 2.740 (8) | 150 (10) |
O4—H4A···N2iii | 0.84 (8) | 2.04 (8) | 2.852 (8) | 164 (8) |
O4—H4B···O6iv | 0.93 (11) | 1.99 (10) | 2.811 (8) | 146 (8) |
C4—H4···O5ii | 0.93 | 2.29 | 3.211 (7) | 169 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z. |
Notes: α is the dihedral angle (°) between the planes of the rings, d is the distance (Å) between the ring centroids and Δ is the displacement (Å) of the centroid of ring 2 relative to the intersection point of the normal to the centroid of ring 1 and the least-squares plane of ring 2. |
Ring 1 | Ring 2 | α | d | Δ |
N1/C1/C2/N2/C3/C4 | (N1/C1/C2/N2/C3/C4)i | 0 | 3.730 (3) | 1.237 |
N3/C7/C8/N4/C9/C10 | (N3/C7/C8/N4/C9/C10)ii | 0 | 3.652 (3) | 1.307 |
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+2. |
Acknowledgements
We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JA thanks the Universidad de Antofagasta for a PhD fellowship.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138. Web of Science CrossRef CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901. Web of Science CSD CrossRef CAS Google Scholar
Chapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187–1191. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fan, G., Chen, S.-P. & Gao, S.-L. (2007a). Acta Cryst. E63, m772–m773. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fan, G., Chen, S.-P. & Gao, S.-L. (2007b). Acta Cryst. E63, m774–m775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fan, G., Sun, J.-J., Zhang, J.-C., Ma, Z.-Y. & Gao, S.-L. (2009). Acta Cryst. E65, m107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Shang, R.-L., Liu, F.-Y., Du, L., Li, X.-B. & Sun, B.-W. (2007). Acta Cryst. E63, m190–m192. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry, (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011). The title compound was isolated during attempts to synthesize a mixed-ligand coordination polymer by a condensation reaction between the title compound and pyrazine. The crystal structure of the title compound, contains discrete mononuclear complex molecules in which Cd II ions, are chelated by two 2-methylpyrazine- 5-carboxylate ligands in a trans-cis mode and bonded by two water molecules. The coordination geometry around the CdII ion is severely distorted octahedral. The ligand chelation proceeds via its N,O-bonding group. The organic ligands are essentially planar [r.m.s. deviation 0.0765 (3) Å mean] and form a dihedral angle of 89.71 (18)°. The molecular structure is shown in Fig. 1 and relevant bond distances and angles for the CdII coordination octahedron are listed in Table 1. All molecular geometry parameters lie within the normal ranges, except the C1—C6 bond distance (1.532 (8) Å) which is longer than Csp2—Csp2 bond distance, possibly due to the coordination effect of the Cd atom. This effect is observed in Mn analog. The coordination geometry and geometric parameters of the title compound match closely those found in the analog compound (Chapman et al., 2002).The crystal structure is stabilized by a network of O—H···O, O—H···N, C—H···O, hydrogen bonds, forming an infinite 3-D network, Fig. 2, Table 2, and π-π stacking interactions between the 5-methylpyrazine-2-carboxylate ligand, Fig. 3, Table 3.