organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­chloro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 25 August 2011; accepted 1 September 2011; online 14 September 2011)

The imidazolidine ring in the title compound, C17H18Cl2N2O2, adopts a twist conformation. The observed conformation is stabilized by two intra­molecular O—H⋯N hydrogen bonds, with both N atoms acting as hydrogen-bond acceptors. The phenyl substituents are aligned at 70.0 (1) and 76.6 (1)° with respect to the best plane through the five atoms of the imidazolidine ring. Weak inter­molecular C—H⋯O inter­actions stabilize the crystal packing.

Related literature

For the preparation of the title compound, see: Rivera et al. (1993[Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921-2929.]). For synthetic applications of these di-Mannich bases, see: Rivera & Quevedo (2004[Rivera, A. & Quevedo, R. (2004). Tetrahedron Lett. 45, 8335-8338.]); Rivera et al. (2004[Rivera, A., Quevedo, R., Navarro, M. A. & Maldonado, M. (2004). Synth. Commun. 34, 2479-2485.]). For a closely related structure, see: Rivera et al. (2010[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For applications of tetra­hydro­salens and heterocalixarenes in medicine and metal-complex catalysis, see: Balsells & Walsh (2000[Balsells, J. & Walsh, P. J. (2000). J. Am. Chem. Soc. 122, 1802-1803.]); Weber et al. (1996[Weber, E., Trepte, J., Piel, M., Czugler, M., Kravtsov, V. Ch., Somonov, Y. A., Lipkowski, J. & Ganin, E. V. (1996). J. Chem. Soc. Perkin Trans 2, pp. 2359-2366.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18Cl2N2O2

  • Mr = 353.23

  • Monoclinic, P 21 /n

  • a = 10.8640 (2) Å

  • b = 9.6125 (2) Å

  • c = 16.7242 (4) Å

  • β = 106.608 (2)°

  • V = 1673.65 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.58 mm−1

  • T = 120 K

  • 0.42 × 0.37 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.669, Tmax = 0.777

  • 19547 measured reflections

  • 2994 independent reflections

  • 2772 reflections with I > 2σ(I)'

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.04

  • 2994 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.97 1.77 2.6524 (17) 149
O2—H1O2⋯N2 0.96 1.77 2.6515 (17) 150
C4—H4B⋯O2i 0.97 2.52 3.466 (2) 163
C9—H9⋯O2ii 0.93 2.47 3.395 (2) 172
C11—H11B⋯O1iii 0.97 2.58 3.482 (2) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with our synthetic studies on heterocyclic compounds we earlier synthesized a series of di-Mannich bases named 2,2'-(imidazolidine-1,3-diyldimethanediyl)bis(4-substitutedphenol) by reaction of appropriate phenols with 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (Rivera et al., 1993). They are promising synthetic intermediates for the synthesis of tetrahydrosalens (Rivera, Quevedo, Navarro & Maldonado, 2004) and heterocalixarenes (Rivera & Quevedo, 2004), which find wide use in both medicine and metal-complex catalysis (Balsells & Walsh, 2000; Weber et al. 1996). These Mannich bases are convenient models for studying the nature of hydrogen bonding and weak noncovalent interactions, which play a key role in biological processes and design of complex structures.

We report here the structure of the title compound (I) (Fig. 1), which was prepared according to the previously reported procedure (Rivera et al., 1993) but using the intriguing aminal 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane. Recrystallization from methanol by slow evaporation over a period of one week affording crystals suitable for X-ray analysis.

The asymmetric unit of (I), Fig 1, contains one independent 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-chlorophenol) molecule. Distances and angles are similar to those observed before in the closely related structure 4,4'-dichloro-2,2'-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol (Rivera et al., 2010). The imidazolidine ring is in a twist conformation on C1–N2 with Q(2) 0.402 (2) Å and φ 52.7 (2)° (Cremer & Pople, 1975). Its central ring makes an angle of 70.0 (1)° and 76.6 (1)° with the planar phenyl rings (C5—C10) and (C12—C17) respectively. The crystal structure has two intramolecular hydrogen bonds and three C—H···O intermolecular hydrogen bonds (Table 1). The unit cell contains four molecules of the title compound (I), which form pairs of hydrogen bonded dimers (Table 1, Figs. 2). Neighboring pairs of these dimers are orthogonally arranged with respect to each other. Lattice binding is provided principally by C—H···O interactions, shown in Figure 2. The chains, aligned along the c axis, are further linked together via cross-linking weaker C—H···O interactions (Table 1).

Related literature top

For the preparation of the title compound, see: Rivera et al. (1993). For synthetic appilications of these di-Mannich bases, see: Rivera & Quevedo (2004); Rivera et al. (2004). For a closely related structure, see: Rivera et al. (2010). For puckering parameters, see: Cremer & Pople (1975). For applications tetrahydrosalens and heterocalixarenes in medicine and metal-complex catalysis, see: Balsells & Walsh (2000); Weber et al. (1996).

Experimental top

For the originally reported synthesis, see: Rivera et al. (1993)

Refinement top

All H atoms could be located in a difference Fourier synthesis. Nevertheless, H atoms were refined as riding with H bonded to O at the positions where they were found and C–H distances of 0.93 Å for aromatic H and C–H = 0.97Å for methylene groups. All H atoms were refined with displacement coefficients Uiso(H) set to 1.5Ueq(O) for hydroxyl groups and to 1.2Ueq(C) for the CH– and CH2– groups.

Structure description top

In connection with our synthetic studies on heterocyclic compounds we earlier synthesized a series of di-Mannich bases named 2,2'-(imidazolidine-1,3-diyldimethanediyl)bis(4-substitutedphenol) by reaction of appropriate phenols with 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (Rivera et al., 1993). They are promising synthetic intermediates for the synthesis of tetrahydrosalens (Rivera, Quevedo, Navarro & Maldonado, 2004) and heterocalixarenes (Rivera & Quevedo, 2004), which find wide use in both medicine and metal-complex catalysis (Balsells & Walsh, 2000; Weber et al. 1996). These Mannich bases are convenient models for studying the nature of hydrogen bonding and weak noncovalent interactions, which play a key role in biological processes and design of complex structures.

We report here the structure of the title compound (I) (Fig. 1), which was prepared according to the previously reported procedure (Rivera et al., 1993) but using the intriguing aminal 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane. Recrystallization from methanol by slow evaporation over a period of one week affording crystals suitable for X-ray analysis.

The asymmetric unit of (I), Fig 1, contains one independent 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-chlorophenol) molecule. Distances and angles are similar to those observed before in the closely related structure 4,4'-dichloro-2,2'-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol (Rivera et al., 2010). The imidazolidine ring is in a twist conformation on C1–N2 with Q(2) 0.402 (2) Å and φ 52.7 (2)° (Cremer & Pople, 1975). Its central ring makes an angle of 70.0 (1)° and 76.6 (1)° with the planar phenyl rings (C5—C10) and (C12—C17) respectively. The crystal structure has two intramolecular hydrogen bonds and three C—H···O intermolecular hydrogen bonds (Table 1). The unit cell contains four molecules of the title compound (I), which form pairs of hydrogen bonded dimers (Table 1, Figs. 2). Neighboring pairs of these dimers are orthogonally arranged with respect to each other. Lattice binding is provided principally by C—H···O interactions, shown in Figure 2. The chains, aligned along the c axis, are further linked together via cross-linking weaker C—H···O interactions (Table 1).

For the preparation of the title compound, see: Rivera et al. (1993). For synthetic appilications of these di-Mannich bases, see: Rivera & Quevedo (2004); Rivera et al. (2004). For a closely related structure, see: Rivera et al. (2010). For puckering parameters, see: Cremer & Pople (1975). For applications tetrahydrosalens and heterocalixarenes in medicine and metal-complex catalysis, see: Balsells & Walsh (2000); Weber et al. (1996).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b axis.
4,4'-Dichloro-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol top
Crystal data top
C17H18Cl2N2O2F(000) = 736
Mr = 353.23Dx = 1.402 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 9456 reflections
a = 10.8640 (2) Åθ = 4.2–67.1°
b = 9.6125 (2) ŵ = 3.58 mm1
c = 16.7242 (4) ÅT = 120 K
β = 106.608 (2)°Prism, colourless
V = 1673.65 (6) Å30.42 × 0.37 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2994 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2772 reflections with I > 2σ(I)'
Mirror monochromatorRint = 0.040
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 4.4°
Rotation method data acquisition using ω scansh = 1212
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.669, Tmax = 0.777l = 1917
19547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.5161P]
where P = (Fo2 + 2Fc2)/3
2994 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H18Cl2N2O2V = 1673.65 (6) Å3
Mr = 353.23Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.8640 (2) ŵ = 3.58 mm1
b = 9.6125 (2) ÅT = 120 K
c = 16.7242 (4) Å0.42 × 0.37 × 0.25 mm
β = 106.608 (2)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2994 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
2772 reflections with I > 2σ(I)'
Tmin = 0.669, Tmax = 0.777Rint = 0.040
19547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2994 reflectionsΔρmin = 0.30 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. The distance between hydrogen and oxygen atom in hydroxyl group was fixed to the distance 0.87 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21837 (14)0.21659 (16)0.42784 (10)0.0322 (3)
H1A0.17490.12800.42600.039*
H1B0.16080.29050.43370.039*
C20.36940 (16)0.33596 (16)0.38001 (10)0.0368 (4)
H2A0.34370.42800.35760.044*
H2B0.44090.30500.36070.044*
C30.40707 (16)0.33848 (17)0.47479 (10)0.0372 (4)
H3A0.49910.32750.49810.045*
H3B0.38090.42500.49490.045*
C40.29989 (15)0.10433 (15)0.32188 (10)0.0320 (3)
H4A0.23250.03540.31540.038*
H4B0.37660.06920.36210.038*
C50.32658 (14)0.12712 (15)0.23931 (9)0.0303 (3)
C60.42918 (14)0.06128 (15)0.22089 (9)0.0312 (3)
H60.48430.00510.26070.037*
C70.44951 (15)0.07915 (16)0.14360 (10)0.0326 (3)
C80.37107 (16)0.16444 (16)0.08356 (10)0.0354 (4)
H80.38640.17630.03200.043*
C90.26963 (16)0.23171 (16)0.10149 (10)0.0351 (4)
H90.21680.29010.06190.042*
C100.24590 (14)0.21281 (15)0.17805 (10)0.0316 (3)
C110.31970 (15)0.23442 (16)0.58004 (10)0.0330 (3)
H11A0.26050.31030.57930.040*
H11B0.40130.25780.61980.040*
C120.26818 (14)0.10368 (16)0.60816 (9)0.0299 (3)
C130.18268 (15)0.11162 (16)0.65594 (9)0.0328 (3)
H130.15160.19760.66670.039*
C140.14386 (17)0.00807 (17)0.68735 (11)0.0358 (4)
C150.18658 (17)0.13748 (17)0.67129 (10)0.0387 (4)
H150.15970.21730.69290.046*
C160.26995 (16)0.14685 (17)0.62260 (10)0.0361 (4)
H160.29850.23360.61090.043*
C170.31142 (15)0.02753 (16)0.59103 (10)0.0311 (3)
N10.25961 (12)0.23659 (13)0.35315 (8)0.0322 (3)
N20.33788 (12)0.21975 (13)0.49679 (8)0.0300 (3)
O10.14312 (10)0.27831 (11)0.19253 (7)0.0364 (3)
H1O10.15920.28020.25280.044*
O20.39647 (10)0.04067 (12)0.54511 (7)0.0348 (3)
H1O20.40040.04940.52080.042*
Cl10.57874 (4)0.00643 (4)0.12223 (3)0.03906 (15)
Cl20.04238 (5)0.00586 (5)0.75129 (3)0.04919 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (7)0.0310 (8)0.0365 (8)0.0010 (6)0.0086 (6)0.0027 (6)
C20.0402 (9)0.0281 (8)0.0418 (9)0.0043 (6)0.0116 (7)0.0039 (6)
C30.0384 (8)0.0313 (8)0.0417 (9)0.0080 (6)0.0111 (7)0.0005 (6)
C40.0335 (8)0.0265 (7)0.0346 (8)0.0011 (6)0.0073 (6)0.0047 (6)
C50.0323 (7)0.0237 (7)0.0317 (8)0.0034 (6)0.0039 (6)0.0025 (6)
C60.0316 (7)0.0245 (7)0.0332 (8)0.0015 (6)0.0025 (6)0.0014 (6)
C70.0343 (8)0.0257 (7)0.0368 (8)0.0026 (6)0.0083 (6)0.0026 (6)
C80.0437 (9)0.0294 (8)0.0321 (8)0.0033 (6)0.0090 (7)0.0008 (6)
C90.0404 (9)0.0273 (8)0.0328 (8)0.0009 (6)0.0025 (7)0.0046 (6)
C100.0312 (7)0.0240 (7)0.0360 (8)0.0020 (6)0.0043 (6)0.0008 (6)
C110.0367 (8)0.0263 (7)0.0355 (8)0.0008 (6)0.0094 (7)0.0034 (6)
C120.0289 (7)0.0286 (8)0.0290 (7)0.0006 (6)0.0029 (6)0.0009 (6)
C130.0337 (8)0.0322 (8)0.0301 (8)0.0025 (6)0.0052 (6)0.0002 (6)
C140.0339 (8)0.0402 (9)0.0307 (8)0.0035 (6)0.0053 (7)0.0011 (6)
C150.0442 (9)0.0320 (8)0.0350 (8)0.0078 (7)0.0036 (7)0.0040 (7)
C160.0415 (9)0.0266 (7)0.0351 (8)0.0008 (6)0.0026 (7)0.0015 (6)
C170.0299 (7)0.0296 (7)0.0291 (8)0.0007 (6)0.0008 (6)0.0018 (6)
N10.0327 (6)0.0264 (6)0.0368 (7)0.0001 (5)0.0089 (6)0.0035 (5)
N20.0286 (6)0.0279 (6)0.0330 (7)0.0015 (5)0.0081 (5)0.0007 (5)
O10.0341 (6)0.0341 (6)0.0385 (6)0.0057 (4)0.0063 (5)0.0060 (5)
O20.0353 (6)0.0299 (5)0.0395 (6)0.0045 (4)0.0109 (5)0.0021 (5)
Cl10.0404 (3)0.0345 (2)0.0437 (3)0.00186 (14)0.01431 (19)0.00169 (15)
Cl20.0477 (3)0.0585 (3)0.0470 (3)0.00269 (18)0.0226 (2)0.00619 (18)
Geometric parameters (Å, º) top
C1—N11.455 (2)C8—H80.9300
C1—N21.470 (2)C9—C101.388 (2)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—O11.3625 (19)
C2—N11.494 (2)C11—N21.468 (2)
C2—C31.520 (2)C11—C121.505 (2)
C2—H2A0.9700C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C3—N21.470 (2)C12—C131.390 (2)
C3—H3A0.9700C12—C171.404 (2)
C3—H3B0.9700C13—C141.380 (2)
C4—N11.4873 (19)C13—H130.9300
C4—C51.506 (2)C14—C151.381 (2)
C4—H4A0.9700C14—Cl21.7466 (18)
C4—H4B0.9700C15—C161.383 (3)
C5—C61.391 (2)C15—H150.9300
C5—C101.408 (2)C16—C171.390 (2)
C6—C71.383 (2)C16—H160.9300
C6—H60.9300C17—O21.366 (2)
C7—C81.385 (2)O1—H1O10.9725
C7—Cl11.7500 (16)O2—H1O20.9623
C8—C91.383 (2)
N1—C1—N2104.54 (12)C8—C9—H9119.7
N1—C1—H1A110.8C10—C9—H9119.7
N2—C1—H1A110.8O1—C10—C9118.76 (14)
N1—C1—H1B110.8O1—C10—C5120.82 (14)
N2—C1—H1B110.8C9—C10—C5120.42 (14)
H1A—C1—H1B108.9N2—C11—C12112.28 (12)
N1—C2—C3106.13 (12)N2—C11—H11A109.1
N1—C2—H2A110.5C12—C11—H11A109.1
C3—C2—H2A110.5N2—C11—H11B109.1
N1—C2—H2B110.5C12—C11—H11B109.1
C3—C2—H2B110.5H11A—C11—H11B107.9
H2A—C2—H2B108.7C13—C12—C17118.97 (14)
N2—C3—C2104.13 (12)C13—C12—C11120.21 (14)
N2—C3—H3A110.9C17—C12—C11120.70 (14)
C2—C3—H3A110.9C14—C13—C12120.02 (15)
N2—C3—H3B110.9C14—C13—H13120.0
C2—C3—H3B110.9C12—C13—H13120.0
H3A—C3—H3B108.9C13—C14—C15121.39 (16)
N1—C4—C5110.56 (12)C13—C14—Cl2118.96 (13)
N1—C4—H4A109.5C15—C14—Cl2119.62 (13)
C5—C4—H4A109.5C14—C15—C16119.09 (15)
N1—C4—H4B109.5C14—C15—H15120.5
C5—C4—H4B109.5C16—C15—H15120.5
H4A—C4—H4B108.1C15—C16—C17120.51 (15)
C6—C5—C10118.47 (14)C15—C16—H16119.7
C6—C5—C4120.89 (13)C17—C16—H16119.7
C10—C5—C4120.61 (14)O2—C17—C16118.82 (14)
C7—C6—C5120.18 (14)O2—C17—C12121.17 (14)
C7—C6—H6119.9C16—C17—C12120.00 (15)
C5—C6—H6119.9C1—N1—C4112.49 (12)
C6—C7—C8121.45 (14)C1—N1—C2103.98 (12)
C6—C7—Cl1118.97 (12)C4—N1—C2111.25 (12)
C8—C7—Cl1119.57 (12)C11—N2—C1114.70 (12)
C9—C8—C7118.89 (15)C11—N2—C3112.33 (12)
C9—C8—H8120.6C1—N2—C3102.70 (12)
C7—C8—H8120.6C10—O1—H1O1106.2
C8—C9—C10120.56 (14)C17—O2—H1O2105.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.971.772.6524 (17)149
O2—H1O2···N20.961.772.6515 (17)150
C4—H4B···O2i0.972.523.466 (2)163
C9—H9···O2ii0.932.473.395 (2)172
C11—H11B···O1iii0.972.583.482 (2)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18Cl2N2O2
Mr353.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.8640 (2), 9.6125 (2), 16.7242 (4)
β (°) 106.608 (2)
V3)1673.65 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.58
Crystal size (mm)0.42 × 0.37 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.669, 0.777
No. of measured, independent and
observed [I > 2σ(I)'] reflections
19547, 2994, 2772
Rint0.040
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.04
No. of reflections2994
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.971.772.6524 (17)149
O2—H1O2···N20.961.772.6515 (17)150
C4—H4B···O2i0.972.523.466 (2)163
C9—H9···O2ii0.932.473.395 (2)172
C11—H11B···O1iii0.972.583.482 (2)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic. JSB acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationBalsells, J. & Walsh, P. J. (2000). J. Am. Chem. Soc. 122, 1802–1803.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A. & Quevedo, R. (2004). Tetrahedron Lett. 45, 8335–8338.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Quevedo, R., Navarro, M. A. & Maldonado, M. (2004). Synth. Commun. 34, 2479–2485.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, E., Trepte, J., Piel, M., Czugler, M., Kravtsov, V. Ch., Somonov, Y. A., Lipkowski, J. & Ganin, E. V. (1996). J. Chem. Soc. Perkin Trans 2, pp. 2359–2366.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds