organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-3-(3-methyl­phen­yl)-1,2,4-triazolo[4,3-b]pyridazine

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 29 August 2011; accepted 29 August 2011; online 3 September 2011)

The title compound, C12H9ClN4, was prepared from dichloro­pyridazine and tolyl­tetra­zole in a nucleophilic biaryl coupling followed by thermal ring transformation. The mol­ecule is essentially planar (r.m.s. deviation for all non-H atoms = 0.036 Å) and an intra­molecular C—H⋯N hydrogen bond occurs. In the crystal, the mol­ecules form dimers connected via ππ inter­actions [centroid–centroid distance = 3.699 (2) Å], which are further connected to neighbouring mol­ecules via C—H—N bonds. The bond lengths in the pyridazine ring system indicate a strong localization of the double bonds and there is a weak C—Cl bond [1.732 (3) Å].

Related literature

The acyl­ation of tetra­zoles with chloro­azines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen et al. (1961[Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555-1562.]); Glang et al. (2008[Glang, S., Schmitt, V. & Detert, H. (2008). Proc. 36th Ger. Top. Meet. Liq. Cryst. pp. 125-128.]). For two benzo-annulated triazolopyridazines, see: Boulanger et al. (1991[Boulanger, T., Evrard, C., Vercauteren, D. P., Evrard, G. & Durant, F. (1991). J. Crystallogr. Spectrosc. Res. 21, 287-295.]). For a highly phenyl­ated triazolopyrazine, see: Kozhevnikov et al. (2005[Kozhevnikov, D. N., Kataeva, N. N. & Rusinov, V. L. (2005). Mendeleev. Commun. p. 31.])·For the synthesis of higher conjugated and annulated heterocyclic π-systems see: Detert & Schollmeyer (1999[Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999-1004.]); Sugiono & Detert (2001[Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893-896.]). For the synthesis of 1,3,4-oxadiazo­les and triazoles, see: Huisgen, Sauer & Seidel (1960[Huisgen, R., Sauer, J. & Seidel, M. (1960). Chem. Ber. 93, 2885-2891.]); Huisgen, Sturm & Markgraf (1960[Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106-2124.]) and of triazolo-annulated azines, see: Preis et al. (2011[Preis, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o987.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9ClN4

  • Mr = 244.68

  • Monoclinic, P 21 /c

  • a = 7.1001 (18) Å

  • b = 11.431 (3) Å

  • c = 13.783 (3) Å

  • β = 93.403 (6)°

  • V = 1116.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.60 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 14031 measured reflections

  • 2664 independent reflections

  • 1226 reflections with I > 2σ(I)

  • Rint = 0.130

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.132

  • S = 0.84

  • 2664 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N9i 0.95 2.55 3.344 (4) 141
C11—H11⋯N2 0.95 2.34 3.006 (4) 127
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was synthesized as part of a larger project focusing on the synthesis of higher conjugated and annulated heterocyclic π-systems (Detert & Schollmeyer, 1999; Sugiono & Detert, 2001). The acylation of tetrazoles followed by thermal ring transformation is a highly efficient route for the synthesis of 1,3,4-oxadiazoles and triazoles (Huisgen, Sauer & Seidel, 1960; Huisgen, Sturm & Markgraf, 1960) and can also be applied to 2-chloroazines to yield triazolo-annulated azines (Preis et al., 2011). In the crystal the title compound adopts an essentially planar structure with a dihedral angle of 2.21° between the mean planes of the phenyl ring and the bicyclic system and deviations of less than 0.01 Å from the least square plane. All torsion angles in the C—N-framework are below 2°; the torsion angle of -176.5 (3)° (C16—C12—C13—C14) results from methyl substitution. With 1.372 (3)Å (N2—N3) and 1.381 (3)Å (N8 - N9), the N—N bonds in the bicyclic framework are significantly longer than the C—N bonds C1—N2 (1.290 (4) Å), C4 - N9 (1.317 (4) Å), and C7 - N8 (1.324 (4) Å). This, the longer bonds N3—C4 (1.383 (4) Å) and N3 - C7 (1.378 (4) Å) and the alternating C—C bond lengths in the pyridazine (C4 - C5: 1.416 (4) Å; C5 - C6: 1.3435 (4) Å; C1 - C6: 1.426 (4) Å) indicate a strong localization of the double bonds. Contrary to the short bond C1 - N2 (1.290 (4) Å), the C1 - Cl1 bond (1.732 (3) Å) is long. This correlates with the reactivity of the C1—Cl1 bond, similar to an imidoyl chloride. Two molecules are connected via a center of inversion (symmetry operator: 1-x, 1-y, 1-z), by π-π-interactions and hydrogen bridging stabilize the lattice. The distances of the centroids of pyridazine and tolyl rings are only 3.70 Å and C—H—N bonds between C6—H6—N9 (H6—N9: 2.55 Å) connect the molecules.

Related literature top

The acylation of tetrazoles with chloroazines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen et al. (1961); Glang et al. (2008). For two benzo-annulated [compounds?], see: Boulanger et al. (1991). For a highly phenylated triazolopyrazine, see: Kozhevnikov et al. (2005).For the synthesis of higher conjugated and annulated heterocyclic π-systems see: Detert & Schollmeyer (1999); Sugiono & Detert (2001). For the synthesis of 1,3,4-oxadiazoles and triazoles, see: Huisgen, Sauer & Seidel (1960); Huisgen, Sturm & Markgraf (1960) and of triazolo-annulated azines, see: Preis et al. (2011).

Experimental top

The title compound was prepared by adding pyridine (0.89 g, 10 mmol) to a solution of 3,6-dichloropyridazine (0.45 g, 3 mmol) and 5-(3-methyl- phenyl)tetrazole (0.96 g, 9 mmol) in toluene (15 ml). The mixture was heated to relflux for 5 h, cooled, filtered, and concentrated. The residue was purified by chromatography (SiO2 /toluene/ethyl acetate = 1/1, Rf = 0,23). The title compound was isolated as an off-white powder with m.p. = 422 - 425 K. Crystals were obtained by slow evaporation of a solution of the title compound in chloroform/hexanes.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

The title compound was synthesized as part of a larger project focusing on the synthesis of higher conjugated and annulated heterocyclic π-systems (Detert & Schollmeyer, 1999; Sugiono & Detert, 2001). The acylation of tetrazoles followed by thermal ring transformation is a highly efficient route for the synthesis of 1,3,4-oxadiazoles and triazoles (Huisgen, Sauer & Seidel, 1960; Huisgen, Sturm & Markgraf, 1960) and can also be applied to 2-chloroazines to yield triazolo-annulated azines (Preis et al., 2011). In the crystal the title compound adopts an essentially planar structure with a dihedral angle of 2.21° between the mean planes of the phenyl ring and the bicyclic system and deviations of less than 0.01 Å from the least square plane. All torsion angles in the C—N-framework are below 2°; the torsion angle of -176.5 (3)° (C16—C12—C13—C14) results from methyl substitution. With 1.372 (3)Å (N2—N3) and 1.381 (3)Å (N8 - N9), the N—N bonds in the bicyclic framework are significantly longer than the C—N bonds C1—N2 (1.290 (4) Å), C4 - N9 (1.317 (4) Å), and C7 - N8 (1.324 (4) Å). This, the longer bonds N3—C4 (1.383 (4) Å) and N3 - C7 (1.378 (4) Å) and the alternating C—C bond lengths in the pyridazine (C4 - C5: 1.416 (4) Å; C5 - C6: 1.3435 (4) Å; C1 - C6: 1.426 (4) Å) indicate a strong localization of the double bonds. Contrary to the short bond C1 - N2 (1.290 (4) Å), the C1 - Cl1 bond (1.732 (3) Å) is long. This correlates with the reactivity of the C1—Cl1 bond, similar to an imidoyl chloride. Two molecules are connected via a center of inversion (symmetry operator: 1-x, 1-y, 1-z), by π-π-interactions and hydrogen bridging stabilize the lattice. The distances of the centroids of pyridazine and tolyl rings are only 3.70 Å and C—H—N bonds between C6—H6—N9 (H6—N9: 2.55 Å) connect the molecules.

The acylation of tetrazoles with chloroazines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen et al. (1961); Glang et al. (2008). For two benzo-annulated [compounds?], see: Boulanger et al. (1991). For a highly phenylated triazolopyrazine, see: Kozhevnikov et al. (2005).For the synthesis of higher conjugated and annulated heterocyclic π-systems see: Detert & Schollmeyer (1999); Sugiono & Detert (2001). For the synthesis of 1,3,4-oxadiazoles and triazoles, see: Huisgen, Sauer & Seidel (1960); Huisgen, Sturm & Markgraf (1960) and of triazolo-annulated azines, see: Preis et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
6-Chloro-3-(3-methylphenyl)-1,2,4-triazolo[4,3-b]pyridazine top
Crystal data top
C12H9ClN4F(000) = 504
Mr = 244.68Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 1195 reflections
a = 7.1001 (18) Åθ = 2.3–20.2°
b = 11.431 (3) ŵ = 0.32 mm1
c = 13.783 (3) ÅT = 173 K
β = 93.403 (6)°Needle, colourless
V = 1116.6 (5) Å30.60 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1226 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.130
Graphite monochromatorθmax = 27.9°, θmin = 2.3°
CCD scanh = 99
14031 measured reflectionsk = 1514
2664 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
2664 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H9ClN4V = 1116.6 (5) Å3
Mr = 244.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1001 (18) ŵ = 0.32 mm1
b = 11.431 (3) ÅT = 173 K
c = 13.783 (3) Å0.60 × 0.05 × 0.05 mm
β = 93.403 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
1226 reflections with I > 2σ(I)
14031 measured reflectionsRint = 0.130
2664 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.84Δρmax = 0.48 e Å3
2664 reflectionsΔρmin = 0.26 e Å3
155 parameters
Special details top

Experimental. 1H-NMR (300 MHz,CDCl3): 8.23 (m, 2 H, 2-H, 6-H, ph), 8.16 (d, 1 H, J = 9.6 Hz, 5-H pyr), 7.41 (t, 1 H, 5-H, ph), 7.32 (d, J = 8.2 Hz, 1 H. 4-H, ph), 7.13 (d, 1 H, J = 9.6 Hz, 4-H pyr), 2.52 (s, 3 H, CH3). 13C-NMR (75 MHz,CDCl3): 149.1 (Cq), 148.2 (Cq), 143.5 (Cq), 139.0 (Cq), 136.6 (Cq), 131.6 (CH), 128.7 (CH), 128.3 (CH), 126.6 (CH), 124.7 (CH), 122.0 (CH), 21.5 (CH3). FD-MS: 244.3 (M++, 100%, Cl-pattern).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14497 (13)0.12426 (7)0.55906 (6)0.0543 (3)
C10.1347 (4)0.2284 (3)0.4676 (2)0.0351 (7)
N20.1881 (3)0.3314 (2)0.49595 (17)0.0319 (6)
N30.1769 (3)0.41168 (19)0.42183 (16)0.0300 (6)
C40.1166 (4)0.3900 (3)0.3262 (2)0.0346 (7)
C50.0608 (4)0.2744 (3)0.3013 (2)0.0374 (7)
H50.01890.25480.23660.045*
C60.0691 (4)0.1934 (3)0.3722 (2)0.0373 (7)
H60.03210.11480.35900.045*
C70.2199 (4)0.5292 (2)0.4268 (2)0.0349 (7)
N80.1856 (4)0.5739 (2)0.3389 (2)0.0432 (7)
N90.1210 (4)0.4874 (2)0.27542 (18)0.0432 (7)
C100.2901 (4)0.5958 (2)0.5118 (2)0.0377 (7)
C110.3162 (4)0.5480 (3)0.6046 (2)0.0416 (8)
H110.28900.46760.61430.050*
C120.3820 (4)0.6163 (3)0.6838 (3)0.0462 (8)
C130.4225 (4)0.7318 (3)0.6691 (3)0.0534 (10)
H130.46940.77820.72240.064*
C140.3961 (5)0.7824 (3)0.5778 (3)0.0576 (11)
H140.42270.86300.56900.069*
C150.3300 (4)0.7138 (3)0.4989 (3)0.0493 (9)
H150.31230.74790.43620.059*
C160.4006 (6)0.5656 (3)0.7827 (3)0.0736 (12)
H16A0.46180.48890.78020.110*
H16B0.27520.55660.80790.110*
H16C0.47710.61760.82560.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0708 (6)0.0485 (5)0.0425 (5)0.0143 (4)0.0053 (4)0.0108 (4)
C10.0308 (16)0.0411 (18)0.0331 (19)0.0015 (13)0.0003 (14)0.0048 (13)
N20.0285 (13)0.0389 (14)0.0279 (14)0.0026 (11)0.0009 (11)0.0018 (10)
N30.0262 (13)0.0361 (14)0.0274 (14)0.0001 (10)0.0003 (10)0.0025 (10)
C40.0278 (15)0.0449 (18)0.0308 (17)0.0044 (13)0.0007 (13)0.0017 (14)
C50.0328 (17)0.0533 (19)0.0254 (17)0.0003 (14)0.0048 (14)0.0088 (14)
C60.0326 (17)0.0400 (18)0.039 (2)0.0066 (13)0.0005 (14)0.0060 (14)
C70.0285 (16)0.0368 (17)0.0395 (19)0.0028 (13)0.0039 (14)0.0014 (13)
N80.0455 (16)0.0393 (15)0.0446 (17)0.0024 (12)0.0010 (13)0.0038 (13)
N90.0479 (16)0.0456 (16)0.0356 (16)0.0028 (13)0.0004 (13)0.0048 (12)
C100.0263 (16)0.0366 (18)0.051 (2)0.0002 (13)0.0081 (14)0.0097 (14)
C110.0310 (17)0.0449 (19)0.049 (2)0.0027 (14)0.0000 (15)0.0131 (15)
C120.0322 (17)0.056 (2)0.051 (2)0.0002 (16)0.0019 (15)0.0142 (17)
C130.0346 (19)0.060 (2)0.066 (3)0.0061 (16)0.0072 (18)0.024 (2)
C140.039 (2)0.044 (2)0.090 (3)0.0096 (16)0.013 (2)0.018 (2)
C150.0389 (19)0.045 (2)0.064 (3)0.0013 (15)0.0091 (18)0.0033 (17)
C160.073 (3)0.080 (3)0.065 (3)0.004 (2)0.012 (2)0.018 (2)
Geometric parameters (Å, º) top
Cl1—C11.732 (3)C10—C151.392 (4)
C1—N21.290 (4)C10—C111.393 (4)
C1—C61.426 (4)C11—C121.399 (4)
N2—N31.372 (3)C11—H110.9500
N3—C71.378 (4)C12—C131.369 (5)
N3—C41.383 (4)C12—C161.481 (5)
C4—N91.317 (4)C13—C141.387 (5)
C4—C51.416 (4)C13—H130.9500
C5—C61.345 (4)C14—C151.399 (5)
C5—H50.9500C14—H140.9500
C6—H60.9500C15—H150.9500
C7—N81.324 (4)C16—H16A0.9800
C7—C101.460 (4)C16—H16B0.9800
N8—N91.381 (3)C16—H16C0.9800
N2—C1—C6127.5 (3)C11—C10—C7123.5 (3)
N2—C1—Cl1114.0 (2)C10—C11—C12121.1 (3)
C6—C1—Cl1118.4 (2)C10—C11—H11119.4
C1—N2—N3112.4 (2)C12—C11—H11119.4
N2—N3—C7127.7 (2)C13—C12—C11119.1 (3)
N2—N3—C4126.2 (2)C13—C12—C16120.4 (3)
C7—N3—C4106.1 (2)C11—C12—C16120.5 (3)
N9—C4—N3109.8 (2)C12—C13—C14121.1 (3)
N9—C4—C5132.4 (3)C12—C13—H13119.4
N3—C4—C5117.7 (3)C14—C13—H13119.4
C6—C5—C4117.8 (3)C13—C14—C15119.5 (3)
C6—C5—H5121.1C13—C14—H14120.2
C4—C5—H5121.1C15—C14—H14120.2
C5—C6—C1118.3 (3)C10—C15—C14120.3 (4)
C5—C6—H6120.8C10—C15—H15119.8
C1—C6—H6120.8C14—C15—H15119.8
N8—C7—N3107.6 (3)C12—C16—H16A109.5
N8—C7—C10124.6 (3)C12—C16—H16B109.5
N3—C7—C10127.8 (3)H16A—C16—H16B109.5
C7—N8—N9109.8 (2)C12—C16—H16C109.5
C4—N9—N8106.6 (2)H16A—C16—H16C109.5
C15—C10—C11118.7 (3)H16B—C16—H16C109.5
C15—C10—C7117.7 (3)
C6—C1—N2—N30.1 (4)C10—C7—N8—N9179.9 (3)
Cl1—C1—N2—N3179.59 (18)N3—C4—N9—N80.1 (3)
C1—N2—N3—C7179.0 (3)C5—C4—N9—N8178.9 (3)
C1—N2—N3—C40.1 (4)C7—N8—N9—C40.1 (3)
N2—N3—C4—N9178.9 (2)N8—C7—C10—C152.3 (4)
C7—N3—C4—N90.3 (3)N3—C7—C10—C15177.9 (3)
N2—N3—C4—C50.0 (4)N8—C7—C10—C11176.7 (3)
C7—N3—C4—C5179.3 (2)N3—C7—C10—C113.1 (5)
N9—C4—C5—C6178.4 (3)C15—C10—C11—C120.2 (4)
N3—C4—C5—C60.3 (4)C7—C10—C11—C12179.2 (3)
C4—C5—C6—C10.5 (4)C10—C11—C12—C130.5 (4)
N2—C1—C6—C50.4 (5)C10—C11—C12—C16177.2 (3)
Cl1—C1—C6—C5179.9 (2)C11—C12—C13—C141.2 (5)
N2—N3—C7—N8178.9 (2)C16—C12—C13—C14176.5 (3)
C4—N3—C7—N80.3 (3)C12—C13—C14—C151.1 (5)
N2—N3—C7—C101.0 (4)C11—C10—C15—C140.4 (4)
C4—N3—C7—C10179.9 (3)C7—C10—C15—C14179.4 (3)
N3—C7—N8—N90.3 (3)C13—C14—C15—C100.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N9i0.952.553.344 (4)141
C11—H11···N20.952.343.006 (4)127
C15—H15···N80.952.532.864 (5)101
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9ClN4
Mr244.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.1001 (18), 11.431 (3), 13.783 (3)
β (°) 93.403 (6)
V3)1116.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.60 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14031, 2664, 1226
Rint0.130
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 0.84
No. of reflections2664
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N9i0.952.553.344 (4)141
C11—H11···N20.952.343.006 (4)127
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Heinz Kolshorn for the NMR spectra and invaluable discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoulanger, T., Evrard, C., Vercauteren, D. P., Evrard, G. & Durant, F. (1991). J. Crystallogr. Spectrosc. Res. 21, 287–295.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDetert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999–1004.  CSD CrossRef Google Scholar
First citationGlang, S., Schmitt, V. & Detert, H. (2008). Proc. 36th Ger. Top. Meet. Liq. Cryst. pp. 125–128.  Google Scholar
First citationHuisgen, R., Sauer, J. & Seidel, M. (1960). Chem. Ber. 93, 2885–2891.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106–2124.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.  CrossRef CAS Web of Science Google Scholar
First citationKozhevnikov, D. N., Kataeva, N. N. & Rusinov, V. L. (2005). Mendeleev. Commun. p. 31.  CrossRef Google Scholar
First citationPreis, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds