organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(4-chloro­phen­yl)-2-{2-[(E)-(hy­dr­oxy­imino)­meth­yl]phen­­oxy­meth­yl}acrylate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 2 September 2011; accepted 19 September 2011; online 30 September 2011)

In the title compound, C18H16ClNO4, the dihedral angle between the mean planes through the aromatic rings is 83.8 (8)°. The hy­droxy­ethanimine group is essentially coplanar with the ring to which it is attached [O—N—C—C torsion angle = −177.96 (13)°]. The mol­ecules are linked into centrosymmetric R22(6) dimers via O—H⋯N hydrogen bonds. The crystal packing is further stabilized by C—H⋯O inter­actions.

Related literature

For the biological activity of caffeic acids, see: Hwang et al. (2001[Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429-1437.]); Altug et al. (2008[Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135-142.]); Ates et al. (2006[Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283-289.]); Atik et al. (2006[Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293-297.]); Padinchare et al. (2001[Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215-217.]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]). For related structures, see: Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); Govindan et al. (2011[Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClNO4

  • Mr = 345.77

  • Triclinic, [P \overline 1]

  • a = 8.8860 (4) Å

  • b = 9.3428 (5) Å

  • c = 12.1494 (6) Å

  • α = 72.289 (3)°

  • β = 74.319 (2)°

  • γ = 63.429 (2)°

  • V = 848.63 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 22640 measured reflections

  • 6056 independent reflections

  • 4013 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.161

  • S = 1.04

  • 6056 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.12 2.8309 (16) 145
C15—H15⋯O3ii 0.93 2.38 3.186 (2) 145
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (Wang et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 83.8 (8)°, it shows that both the rings are almost perpendicular to each other. The methoxybutene group connects the two phenyl rings, results in twisting the rings and placed those rings in perpendicular direction. The oxime group having the CN forming an E configuration. The atom Cl1 is deviated by 0.060 (1)Å from the least squares plane of the C13—C18 ring. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.014 (1)Å for the C1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C9—C10—O4—C11 [179.3 (1) °] and C12—C9—C10—O4 [-168.9 (1) °]. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6). In addition to van der Waals interaction, the crystal packing is stabilized by C–H..O and O–H···N interactions.

Related literature top

For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For related structures, see: Wang et al. (2011); Govindan et al. (2011).

Experimental top

To a stirred solution of (E)-methyl 2-((2-formylphenoxy) methyl)-3-(4-chlorophenyl)acrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-methyl3- (4-chlorophenyl)-2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)acrylate as a colourless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (Wang et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 83.8 (8)°, it shows that both the rings are almost perpendicular to each other. The methoxybutene group connects the two phenyl rings, results in twisting the rings and placed those rings in perpendicular direction. The oxime group having the CN forming an E configuration. The atom Cl1 is deviated by 0.060 (1)Å from the least squares plane of the C13—C18 ring. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.014 (1)Å for the C1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C9—C10—O4—C11 [179.3 (1) °] and C12—C9—C10—O4 [-168.9 (1) °]. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6). In addition to van der Waals interaction, the crystal packing is stabilized by C–H..O and O–H···N interactions.

For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For related structures, see: Wang et al. (2011); Govindan et al. (2011).

Computing details top

Data collection: APEXII (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (2 - x, -y, 1 - z). The dashed lines indicate the hydrogen bonds.
(E)-Methyl 3-(4-chlorophenyl)-2-{2-[(E)-(hydroxyimino)methyl] phenoxymethyl}acrylate top
Crystal data top
C18H16ClNO4Z = 2
Mr = 345.77F(000) = 360
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8860 (4) ÅCell parameters from 6056 reflections
b = 9.3428 (5) Åθ = 2.5–32.5°
c = 12.1494 (6) ŵ = 0.25 mm1
α = 72.289 (3)°T = 293 K
β = 74.319 (2)°Block, white crystalline
γ = 63.429 (2)°0.25 × 0.22 × 0.19 mm
V = 848.63 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6056 independent reflections
Radiation source: fine-focus sealed tube4013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.978, Tmax = 0.983k = 1314
22640 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.1584P]
where P = (Fo2 + 2Fc2)/3
6056 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C18H16ClNO4γ = 63.429 (2)°
Mr = 345.77V = 848.63 (7) Å3
Triclinic, P1Z = 2
a = 8.8860 (4) ÅMo Kα radiation
b = 9.3428 (5) ŵ = 0.25 mm1
c = 12.1494 (6) ÅT = 293 K
α = 72.289 (3)°0.25 × 0.22 × 0.19 mm
β = 74.319 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4013 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.023
22640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
6056 reflectionsΔρmin = 0.51 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.76040 (18)0.46783 (19)0.49605 (13)0.0517 (3)
H30.83990.41140.44010.062*
C40.7342 (2)0.6270 (2)0.48827 (14)0.0592 (4)
H40.79650.67720.42810.071*
C50.6153 (2)0.71133 (19)0.57003 (15)0.0567 (4)
H50.59720.81910.56460.068*
C60.52179 (19)0.63806 (17)0.66070 (13)0.0487 (3)
H60.44150.69630.71550.058*
C70.54922 (15)0.47730 (15)0.66875 (11)0.0384 (3)
C20.67024 (15)0.38967 (16)0.58609 (11)0.0396 (3)
C10.69450 (17)0.22183 (17)0.59516 (12)0.0457 (3)
H10.60760.18720.63590.055*
C90.25890 (16)0.35977 (17)0.91804 (11)0.0423 (3)
C120.31776 (17)0.23354 (17)1.00615 (12)0.0456 (3)
H120.24660.17811.04210.055*
C130.47403 (17)0.16776 (16)1.05564 (12)0.0441 (3)
C140.62373 (18)0.18941 (19)0.99839 (13)0.0521 (3)
H140.62920.24850.92150.062*
C150.7634 (2)0.1246 (2)1.05398 (15)0.0576 (4)
H150.86180.14141.01520.069*
C160.7569 (2)0.03523 (19)1.16672 (14)0.0548 (3)
C170.6130 (2)0.0072 (2)1.22484 (15)0.0609 (4)
H170.61020.05551.30070.073*
C180.4742 (2)0.07297 (19)1.16918 (14)0.0548 (4)
H180.37720.05391.20830.066*
C110.1064 (2)0.5320 (3)0.76182 (19)0.0834 (6)
H11A0.09750.44080.73580.125*
H11B0.13390.62790.69990.125*
H11C0.19450.55100.82850.125*
C100.09091 (18)0.38980 (19)0.89357 (13)0.0497 (3)
N10.83143 (16)0.12225 (15)0.54872 (12)0.0522 (3)
O10.82593 (17)0.03007 (15)0.56443 (13)0.0761 (4)
H1A0.91600.09120.53280.114*
O20.46629 (12)0.39236 (12)0.75426 (8)0.0464 (2)
O30.00369 (16)0.32873 (18)0.95683 (13)0.0781 (4)
O40.05387 (15)0.49645 (18)0.79367 (11)0.0693 (3)
Cl10.93049 (7)0.04275 (8)1.23850 (5)0.0881 (2)
C80.34517 (17)0.47105 (16)0.84520 (12)0.0437 (3)
H8A0.26210.57540.81140.052*
H8B0.40270.49060.89300.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0464 (7)0.0539 (8)0.0416 (7)0.0187 (6)0.0038 (5)0.0038 (6)
C40.0572 (8)0.0555 (9)0.0522 (8)0.0278 (7)0.0007 (6)0.0071 (7)
C50.0596 (9)0.0437 (7)0.0613 (9)0.0233 (7)0.0090 (7)0.0001 (7)
C60.0489 (7)0.0441 (7)0.0495 (7)0.0176 (6)0.0034 (6)0.0102 (6)
C70.0359 (5)0.0420 (6)0.0344 (6)0.0160 (5)0.0038 (4)0.0048 (5)
C20.0347 (5)0.0439 (6)0.0351 (6)0.0142 (5)0.0031 (4)0.0055 (5)
C10.0420 (6)0.0501 (7)0.0413 (7)0.0204 (6)0.0056 (5)0.0121 (5)
C90.0374 (6)0.0465 (7)0.0415 (6)0.0168 (5)0.0063 (5)0.0182 (5)
C120.0432 (6)0.0468 (7)0.0458 (7)0.0213 (6)0.0054 (5)0.0140 (6)
C130.0448 (6)0.0402 (6)0.0443 (7)0.0177 (5)0.0023 (5)0.0116 (5)
C140.0469 (7)0.0557 (8)0.0457 (7)0.0224 (6)0.0011 (6)0.0046 (6)
C150.0478 (8)0.0616 (9)0.0604 (9)0.0251 (7)0.0023 (6)0.0090 (7)
C160.0557 (8)0.0506 (8)0.0561 (9)0.0166 (7)0.0114 (6)0.0133 (7)
C170.0661 (10)0.0559 (9)0.0491 (8)0.0220 (8)0.0062 (7)0.0015 (7)
C180.0549 (8)0.0492 (8)0.0524 (8)0.0245 (7)0.0010 (6)0.0026 (6)
C110.0504 (9)0.1214 (18)0.0703 (12)0.0190 (10)0.0147 (8)0.0288 (12)
C100.0424 (7)0.0541 (8)0.0506 (8)0.0168 (6)0.0015 (5)0.0199 (6)
N10.0478 (6)0.0478 (6)0.0575 (7)0.0212 (5)0.0089 (5)0.0180 (5)
O10.0708 (8)0.0564 (7)0.0973 (10)0.0341 (6)0.0298 (7)0.0353 (7)
O20.0487 (5)0.0448 (5)0.0412 (5)0.0218 (4)0.0115 (4)0.0145 (4)
O30.0571 (7)0.0865 (9)0.0933 (10)0.0428 (7)0.0108 (6)0.0013 (7)
O40.0495 (6)0.1007 (10)0.0502 (6)0.0280 (6)0.0061 (5)0.0105 (6)
Cl10.0749 (3)0.1059 (4)0.0811 (4)0.0278 (3)0.0320 (3)0.0120 (3)
C80.0416 (6)0.0430 (6)0.0425 (7)0.0160 (5)0.0050 (5)0.0154 (5)
Geometric parameters (Å, º) top
C3—C41.375 (2)C14—C151.377 (2)
C3—C21.3911 (18)C14—H140.9300
C3—H30.9300C15—C161.372 (2)
C4—C51.374 (2)C15—H150.9300
C4—H40.9300C16—C171.379 (2)
C5—C61.389 (2)C16—Cl11.7336 (17)
C5—H50.9300C17—C181.370 (2)
C6—C71.3859 (19)C17—H170.9300
C6—H60.9300C18—H180.9300
C7—O21.3637 (14)C11—O41.444 (2)
C7—C21.4015 (17)C11—H11A0.9600
C2—C11.4570 (19)C11—H11B0.9600
C1—N11.2649 (17)C11—H11C0.9600
C1—H10.9300C10—O31.1982 (19)
C9—C121.339 (2)C10—O41.327 (2)
C9—C101.487 (2)N1—O11.3985 (16)
C9—C81.4961 (18)O1—H1A0.8200
C12—C131.460 (2)O2—C81.4364 (14)
C12—H120.9300C8—H8A0.9700
C13—C181.394 (2)C8—H8B0.9700
C13—C141.3960 (19)
C4—C3—C2121.24 (13)C13—C14—H14119.5
C4—C3—H3119.4C16—C15—C14119.71 (14)
C2—C3—H3119.4C16—C15—H15120.1
C5—C4—C3119.48 (13)C14—C15—H15120.1
C5—C4—H4120.3C15—C16—C17120.90 (15)
C3—C4—H4120.3C15—C16—Cl1120.00 (13)
C4—C5—C6121.02 (14)C17—C16—Cl1119.11 (13)
C4—C5—H5119.5C18—C17—C16119.01 (15)
C6—C5—H5119.5C18—C17—H17120.5
C7—C6—C5119.37 (13)C16—C17—H17120.5
C7—C6—H6120.3C17—C18—C13121.93 (14)
C5—C6—H6120.3C17—C18—H18119.0
O2—C7—C6124.59 (12)C13—C18—H18119.0
O2—C7—C2115.15 (11)O4—C11—H11A109.5
C6—C7—C2120.25 (12)O4—C11—H11B109.5
C3—C2—C7118.63 (12)H11A—C11—H11B109.5
C3—C2—C1122.13 (12)O4—C11—H11C109.5
C7—C2—C1119.22 (11)H11A—C11—H11C109.5
N1—C1—C2121.29 (12)H11B—C11—H11C109.5
N1—C1—H1119.4O3—C10—O4122.92 (15)
C2—C1—H1119.4O3—C10—C9124.79 (15)
C12—C9—C10115.36 (12)O4—C10—C9112.26 (13)
C12—C9—C8126.12 (13)C1—N1—O1112.01 (12)
C10—C9—C8118.52 (13)N1—O1—H1A109.5
C9—C12—C13131.27 (12)C7—O2—C8118.70 (10)
C9—C12—H12114.4C10—O4—C11116.24 (15)
C13—C12—H12114.4O2—C8—C9107.58 (10)
C18—C13—C14117.39 (14)O2—C8—H8A110.2
C18—C13—C12116.98 (12)C9—C8—H8A110.2
C14—C13—C12125.62 (13)O2—C8—H8B110.2
C15—C14—C13121.01 (14)C9—C8—H8B110.2
C15—C14—H14119.5H8A—C8—H8B108.5
C2—C3—C4—C50.8 (3)C14—C15—C16—C171.0 (3)
C3—C4—C5—C60.3 (3)C14—C15—C16—Cl1178.50 (13)
C4—C5—C6—C70.1 (2)C15—C16—C17—C181.4 (3)
C5—C6—C7—O2179.42 (13)Cl1—C16—C17—C18178.09 (13)
C5—C6—C7—C20.0 (2)C16—C17—C18—C130.2 (3)
C4—C3—C2—C70.9 (2)C14—C13—C18—C172.0 (2)
C4—C3—C2—C1179.24 (14)C12—C13—C18—C17179.02 (14)
O2—C7—C2—C3179.96 (12)C12—C9—C10—O312.6 (2)
C6—C7—C2—C30.48 (19)C8—C9—C10—O3166.71 (15)
O2—C7—C2—C11.66 (17)C12—C9—C10—O4168.91 (13)
C6—C7—C2—C1178.86 (13)C8—C9—C10—O411.76 (17)
C3—C2—C1—N123.8 (2)C2—C1—N1—O1177.96 (13)
C7—C2—C1—N1157.87 (14)C6—C7—O2—C81.97 (19)
C10—C9—C12—C13179.66 (13)C2—C7—O2—C8177.48 (11)
C8—C9—C12—C130.4 (2)O3—C10—O4—C112.2 (2)
C9—C12—C13—C18158.99 (15)C9—C10—O4—C11179.32 (14)
C9—C12—C13—C1422.1 (2)C7—O2—C8—C9173.33 (11)
C18—C13—C14—C152.4 (2)C12—C9—C8—O283.72 (16)
C12—C13—C14—C15178.71 (14)C10—C9—C8—O297.03 (13)
C13—C14—C15—C161.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.122.8309 (16)145
C15—H15···O3ii0.932.383.186 (2)145
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H16ClNO4
Mr345.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8860 (4), 9.3428 (5), 12.1494 (6)
α, β, γ (°)72.289 (3), 74.319 (2), 63.429 (2)
V3)848.63 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22640, 6056, 4013
Rint0.023
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.161, 1.04
No. of reflections6056
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.51

Computer programs: APEXII (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.122.8309 (16)145.0
C15—H15···O3ii0.932.383.186 (2)145.2
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

EG and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAltug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142.  Web of Science PubMed CAS Google Scholar
First citationAtes, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationGovindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds