inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Heptamagnesium bis­­(phosphate) tetra­kis­(hydrogen phosphate) with strong hydrogen bonds: Mg7(PO4)2(HPO4)4

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: abder_assani@yahoo.fr

(Received 5 September 2011; accepted 6 September 2011; online 14 September 2011)

The title compound, Mg7(PO4)2(HPO4)4, was synthesized by the hydro­thermal method. The structure is based on a framework of edge- and corner-sharing MgO6 and MgO4(OH)2 octa­hedra, an MgO5 polyhedron, PO4 and PO3(OH) tetra­hedra. All atoms are in general positions except for one Mg atom, which is located on a crystallographic inversion centre. The OH groups, bridging Mg–(OH)–P, are involved in strong hydrogen bonds. Compounds with the general formula M7(PO4)2(HPO4)4 (M = Mg, Mn, Fe and Co) are all isostructural with their homologue arsenate Mg7(AsO4)2(HAsO4)4.

Related literature

For background to metal phosphates, see: Viter & Nagornyi (2009[Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.]); Clearfield (1988[Clearfield, A. (1988). Chem. Rev. 88, 125-148.]); Trad et al. (2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]). For the hydro­thermal method, see: Assani et al. (2010[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010). Acta Cryst. E66, i86-i87.], 2011a[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i40.],b[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011b). Acta Cryst. E67, i5.]). For isostructural compounds, see: Zhou et al. (2002[Zhou, B.-C., Yao, Y.-W. & Wang, R.-J. (2002). Acta Cryst. C58, i109-i110.]); Riou et al. (1987[Riou, A., Cudennec, Y. & Gerault, Y. (1987). Acta Cryst. C43, 821-823.]); Rojo et al. (2002[Rojo, J. M., Larranaga, A., Mesa, J. L., Urtiaga, M. K., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (2002). J. Solid State Chem. 165, 171-177.]); Lightfoot & Cheetham (1988[Lightfoot, P. & Cheetham, A. K. (1988). Acta Cryst. C44, 1331-1334.]); Kolitsch & Bartu (2004[Kolitsch, U. & Bartu, P. (2004). Acta Cryst. C60, i94-i96.]).

Experimental

Crystal data
  • Mg7(PO4)2(HPO4)4

  • Mr = 744.02

  • Triclinic, [P \overline 1]

  • a = 6.4204 (5) Å

  • b = 7.8489 (4) Å

  • c = 9.4315 (5) Å

  • α = 104.442 (3)°

  • β = 108.505 (5)°

  • γ = 101.189 (8)°

  • V = 416.70 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 296 K

  • 0.16 × 0.10 × 0.07 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.929

  • 9421 measured reflections

  • 1923 independent reflections

  • 1715 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.07

  • 1923 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O7i 0.86 1.61 2.460 (2) 172
O12—H12⋯O10ii 0.86 1.80 2.656 (2) 171
Symmetry codes: (i) x, y-1, z; (ii) -x-1, -y+1, -z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Widespread studies are devoted to the metal phosphate owing to their impressive structural diversity and to their prospective applications in catalysis (Viter & Nagornyi, 2009), ion-exchangers (Clearfield, 1988)) and in batteries performance (Trad et al., (2010)). Mainly, our most attention has been paid to the hydrothermal synthesis of new metal based phosphate. Accordingly, we have recently succeed to obtain new phosphates, such as Ni2Sr(PO4)2 2H2O (Assani et al. (2010)), AgMg3(PO4)(HPO4)2 (Assani et al. (2011b)) and Ag2Ni3(HPO4)(PO4)2 (Assani et al. (2011a)).

Besides, the investigation of the MO—P2O5 systems (M=divalent cations) has allowed to isolate a new member of the metal phosphates, with a general formula M7(PO4)2(HPO4)4. The present paper aims to develop the hydrothermal synthesis and the structural characterization of the Mg7(PO4)2(HPO4)4 which is isostructural with Fe7(PO4)2(HPO4)4 (Zhou et al. (2002)), Mn7(PO4)2(HPO4)4 (Riou et al. (1987) and (Rojo et al. (2002)), Co7(PO4)2(HPO4)4 (Lightfoot & Cheetham, (1988)) and with their homologue arsenate Mg7(AsO4)2(HAsO4)4 (Kolitsch & Bartu, (2004)).

The crystal structure of Mg7(PO4)2(HPO4)4 is built up from MgO6, MgO4(OH)2 octahedra, MgO5 polyhedron, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as shown in Fig.1 and Fig.2. In the asymmetric unit, all atoms are in general positions except for atom Mg2, which is located at a crystallographic inversion centre (0, 0, 0). Each OH group is bonded to an Mg and an P atom. Atom Mg2 is located at the centre of an Mg2O6 octahedron with significant bond-length distortion as shown in Table 1. In contrast, Mg1O6 and Mg3O4(OH)2 represent less distorted octahedra, and atom Mg4 is surrounded by five O ligands, forming a distorted Mg4O5 trigonal bipyramid. In this structure, each Mg1O6 and Mg3O6 octahedron shares an edge with its symmetrical to form a dimer. Both dimers, Mg1O10 and Mg3O10 are bound by Mg4O5 by sharing two edges to form a zigzag chaine. The Mg2O6 octahedron and PO4 tetrahedra are linked to neighboring polyhedra by vertices. The three crystallographically independent P atoms show tetrahedral coordination. The PO4 groups are relatively regular, although the two protonated groups, centred by P1 and P3, show a stronger angular and bond-length distortion in comparison with the unprotonated P2O4 tetrahedron as shown in Table 1. Moreover the OH groups, bridging Mg–(OH)–P, are involved in strong hydrogen bonds (Table 2).

Related literature top

For rmetal phosphates, see: Viter & Nagornyi (2009); Clearfield (1988); Trad et al. (2010). For the hydrothermal method, see: Assani et al. (2010, 2011a,b). For isostructural compounds, see: Zhou et al. (2002); Riou et al. (1987); Rojo et al. (2002); Lightfoot & Cheetham (1988); Kolitsch & Bartu (2004).

Experimental top

The crystals of the title compound is isolated from the hydrothermal treatment of the reaction mixture of magnesium oxide (MgO) and 85%wt phosphoric acid (H3PO4) in the nominal proportion corresponding to the molar ratio Mg: P = 7:6. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogenously pressure at 468 K for two days. After being filtered off, washed with deionized water and air dried, the reaction product consists of a white powder and colourless parallelepipedic crystals corresponding to the title compound.

Refinement top

The H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O).

Structure description top

Widespread studies are devoted to the metal phosphate owing to their impressive structural diversity and to their prospective applications in catalysis (Viter & Nagornyi, 2009), ion-exchangers (Clearfield, 1988)) and in batteries performance (Trad et al., (2010)). Mainly, our most attention has been paid to the hydrothermal synthesis of new metal based phosphate. Accordingly, we have recently succeed to obtain new phosphates, such as Ni2Sr(PO4)2 2H2O (Assani et al. (2010)), AgMg3(PO4)(HPO4)2 (Assani et al. (2011b)) and Ag2Ni3(HPO4)(PO4)2 (Assani et al. (2011a)).

Besides, the investigation of the MO—P2O5 systems (M=divalent cations) has allowed to isolate a new member of the metal phosphates, with a general formula M7(PO4)2(HPO4)4. The present paper aims to develop the hydrothermal synthesis and the structural characterization of the Mg7(PO4)2(HPO4)4 which is isostructural with Fe7(PO4)2(HPO4)4 (Zhou et al. (2002)), Mn7(PO4)2(HPO4)4 (Riou et al. (1987) and (Rojo et al. (2002)), Co7(PO4)2(HPO4)4 (Lightfoot & Cheetham, (1988)) and with their homologue arsenate Mg7(AsO4)2(HAsO4)4 (Kolitsch & Bartu, (2004)).

The crystal structure of Mg7(PO4)2(HPO4)4 is built up from MgO6, MgO4(OH)2 octahedra, MgO5 polyhedron, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as shown in Fig.1 and Fig.2. In the asymmetric unit, all atoms are in general positions except for atom Mg2, which is located at a crystallographic inversion centre (0, 0, 0). Each OH group is bonded to an Mg and an P atom. Atom Mg2 is located at the centre of an Mg2O6 octahedron with significant bond-length distortion as shown in Table 1. In contrast, Mg1O6 and Mg3O4(OH)2 represent less distorted octahedra, and atom Mg4 is surrounded by five O ligands, forming a distorted Mg4O5 trigonal bipyramid. In this structure, each Mg1O6 and Mg3O6 octahedron shares an edge with its symmetrical to form a dimer. Both dimers, Mg1O10 and Mg3O10 are bound by Mg4O5 by sharing two edges to form a zigzag chaine. The Mg2O6 octahedron and PO4 tetrahedra are linked to neighboring polyhedra by vertices. The three crystallographically independent P atoms show tetrahedral coordination. The PO4 groups are relatively regular, although the two protonated groups, centred by P1 and P3, show a stronger angular and bond-length distortion in comparison with the unprotonated P2O4 tetrahedron as shown in Table 1. Moreover the OH groups, bridging Mg–(OH)–P, are involved in strong hydrogen bonds (Table 2).

For rmetal phosphates, see: Viter & Nagornyi (2009); Clearfield (1988); Trad et al. (2010). For the hydrothermal method, see: Assani et al. (2010, 2011a,b). For isostructural compounds, see: Zhou et al. (2002); Riou et al. (1987); Rojo et al. (2002); Lightfoot & Cheetham (1988); Kolitsch & Bartu (2004).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of Mg7(PO4)2(HPO4)4 crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x - 1, -y + 1, -z - 1; (ii) -x, -y + 1, -z; (iii) x - 1, y, z; (iv) x, y - 1, z; (v) -x, -y, -z; (vi) -x - 1, -y, -z - 1; (vii) x + 1, y, z + 1; (viii) -x, -y, -z - 1; (ix) -x, -y + 1, -z - 1; (x) x + 1, y, z; (xi) x, y + 1, z; (xii) x - 1, y, z - 1.
[Figure 2] Fig. 2. A three-dimensional polyhedral view of the crystal structure of the Mg7(PO4)2(HPO4)4 showing polyhedra linkage.
Heptamagnesium bis(phosphate) tetrakis(hydrogen phosphate) top
Crystal data top
Mg7(PO4)2(HPO4)4Z = 1
Mr = 744.02F(000) = 370
Triclinic, P1Dx = 2.965 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4204 (5) ÅCell parameters from 1923 reflections
b = 7.8489 (4) Åθ = 2.4–27.6°
c = 9.4315 (5) ŵ = 1.06 mm1
α = 104.442 (3)°T = 296 K
β = 108.505 (5)°Parallelepipedic, colourless
γ = 101.189 (8)°0.16 × 0.10 × 0.07 mm
V = 416.70 (4) Å3
Data collection top
Bruker X8 APEX Diffractometer1923 independent reflections
Radiation source: fine-focus sealed tube1715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.881, Tmax = 0.929k = 1010
9421 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.6237P]
where P = (Fo2 + 2Fc2)/3
1923 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
Mg7(PO4)2(HPO4)4γ = 101.189 (8)°
Mr = 744.02V = 416.70 (4) Å3
Triclinic, P1Z = 1
a = 6.4204 (5) ÅMo Kα radiation
b = 7.8489 (4) ŵ = 1.06 mm1
c = 9.4315 (5) ÅT = 296 K
α = 104.442 (3)°0.16 × 0.10 × 0.07 mm
β = 108.505 (5)°
Data collection top
Bruker X8 APEX Diffractometer1923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1715 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.929Rint = 0.036
9421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
1923 reflectionsΔρmin = 0.42 e Å3
169 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.38348 (12)0.54390 (10)0.10950 (8)0.00639 (17)
Mg20.00000.00000.00000.0094 (2)
Mg30.05324 (13)0.28758 (10)0.51536 (9)0.00821 (17)
Mg40.27778 (13)0.19081 (11)0.28530 (9)0.00902 (17)
P10.22691 (9)0.14512 (8)0.22413 (6)0.00561 (13)
P20.08899 (9)0.58025 (7)0.17255 (6)0.00465 (13)
P30.59090 (9)0.23141 (8)0.62865 (7)0.00658 (14)
O10.0189 (3)0.1762 (2)0.33779 (18)0.0081 (3)
O20.2208 (3)0.1877 (2)0.05694 (18)0.0074 (3)
O30.4517 (3)0.2446 (2)0.22968 (18)0.0077 (3)
O40.2013 (3)0.0667 (2)0.27972 (18)0.0091 (3)
H40.18280.11480.21040.011*
O50.3069 (3)0.5385 (2)0.08555 (18)0.0068 (3)
O60.0589 (3)0.5452 (2)0.34643 (18)0.0073 (3)
O70.1098 (3)0.7857 (2)0.09645 (19)0.0094 (3)
O80.1240 (3)0.4602 (2)0.16487 (18)0.0070 (3)
O90.3803 (3)0.2112 (2)0.50853 (19)0.0104 (3)
O100.5267 (3)0.3827 (2)0.69363 (19)0.0106 (3)
O110.7360 (3)0.0488 (2)0.76029 (19)0.0097 (3)
O120.7344 (3)0.2950 (2)0.52719 (19)0.0111 (3)
H120.64950.39350.44850.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0064 (4)0.0077 (4)0.0058 (4)0.0022 (3)0.0028 (3)0.0028 (3)
Mg20.0120 (5)0.0086 (5)0.0095 (5)0.0035 (4)0.0061 (4)0.0034 (4)
Mg30.0091 (4)0.0083 (4)0.0076 (4)0.0021 (3)0.0037 (3)0.0029 (3)
Mg40.0093 (4)0.0082 (4)0.0104 (4)0.0027 (3)0.0047 (3)0.0031 (3)
P10.0055 (3)0.0055 (3)0.0056 (3)0.0011 (2)0.0024 (2)0.0016 (2)
P20.0045 (3)0.0052 (3)0.0047 (3)0.0017 (2)0.0019 (2)0.0020 (2)
P30.0058 (3)0.0073 (3)0.0067 (3)0.0019 (2)0.0023 (2)0.0025 (2)
O10.0056 (7)0.0103 (8)0.0084 (8)0.0024 (6)0.0019 (6)0.0041 (6)
O20.0086 (7)0.0070 (7)0.0056 (7)0.0010 (6)0.0031 (6)0.0008 (6)
O30.0056 (7)0.0078 (7)0.0088 (7)0.0002 (6)0.0037 (6)0.0019 (6)
O40.0133 (8)0.0067 (7)0.0085 (8)0.0025 (6)0.0057 (6)0.0030 (6)
O50.0053 (7)0.0094 (7)0.0068 (7)0.0034 (6)0.0024 (6)0.0034 (6)
O60.0097 (7)0.0081 (7)0.0053 (7)0.0036 (6)0.0035 (6)0.0030 (6)
O70.0119 (8)0.0060 (7)0.0109 (8)0.0038 (6)0.0050 (6)0.0021 (6)
O80.0049 (7)0.0071 (7)0.0091 (7)0.0010 (6)0.0037 (6)0.0020 (6)
O90.0085 (8)0.0157 (8)0.0086 (8)0.0059 (6)0.0030 (6)0.0052 (6)
O100.0117 (8)0.0093 (8)0.0087 (8)0.0002 (6)0.0018 (6)0.0048 (6)
O110.0098 (7)0.0073 (7)0.0102 (8)0.0014 (6)0.0025 (6)0.0025 (6)
O120.0084 (8)0.0137 (8)0.0099 (8)0.0037 (6)0.0042 (6)0.0010 (6)
Geometric parameters (Å, º) top
Mg1—O10i2.0235 (17)P1—O21.5431 (16)
Mg1—O5ii2.0462 (17)P1—O41.5718 (16)
Mg1—O5iii2.0643 (17)P2—O51.5237 (16)
Mg1—O82.0698 (17)P2—O61.5350 (16)
Mg1—O2ii2.1093 (17)P2—O81.5362 (16)
Mg1—O3iii2.2065 (17)P2—O71.5533 (16)
Mg2—O7iv2.0630 (16)P3—O101.5131 (16)
Mg2—O7ii2.0630 (16)P3—O111.5245 (17)
Mg2—O22.1296 (15)P3—O91.5287 (16)
Mg2—O2v2.1296 (15)P3—O121.5853 (17)
Mg2—O11vi2.2395 (16)O2—Mg1ii2.1093 (17)
Mg2—O11vii2.2395 (16)O3—Mg4x2.0549 (17)
Mg3—O4viii2.0415 (17)O3—Mg1x2.2065 (17)
Mg3—O12.0443 (17)O4—Mg3viii2.0415 (17)
Mg3—O62.0606 (17)O4—H40.8601
Mg3—O6ix2.0649 (17)O5—Mg1ii2.0462 (17)
Mg3—O12x2.0759 (17)O5—Mg1x2.0643 (17)
Mg3—O92.0954 (17)O6—Mg3ix2.0649 (17)
Mg4—O82.0041 (17)O7—Mg2xi2.0630 (16)
Mg4—O11vi2.0426 (18)O10—Mg1i2.0235 (17)
Mg4—O92.0544 (17)O11—Mg4vi2.0426 (18)
Mg4—O3iii2.0549 (17)O11—Mg2xii2.2395 (16)
Mg4—O12.1312 (17)O12—Mg3iii2.0759 (17)
P1—O31.5252 (16)O12—H120.8600
P1—O11.5297 (16)
O10i—Mg1—O5ii177.45 (7)O1—Mg3—O12x90.91 (7)
O10i—Mg1—O5iii93.60 (7)O6—Mg3—O12x95.01 (7)
O5ii—Mg1—O5iii84.54 (7)O6ix—Mg3—O12x82.93 (7)
O10i—Mg1—O889.62 (7)O4viii—Mg3—O982.41 (7)
O5ii—Mg1—O891.62 (7)O1—Mg3—O980.21 (7)
O5iii—Mg1—O8161.77 (7)O6—Mg3—O996.14 (7)
O10i—Mg1—O2ii97.16 (7)O6ix—Mg3—O9108.15 (7)
O5ii—Mg1—O2ii84.67 (7)O12x—Mg3—O9165.63 (8)
O5iii—Mg1—O2ii92.32 (7)O8—Mg4—O11vi135.86 (7)
O8—Mg1—O2ii105.09 (7)O8—Mg4—O997.00 (7)
O10i—Mg1—O3iii96.93 (7)O11vi—Mg4—O9124.27 (7)
O5ii—Mg1—O3iii81.15 (6)O8—Mg4—O3iii83.43 (7)
O5iii—Mg1—O3iii83.53 (6)O11vi—Mg4—O3iii102.94 (7)
O8—Mg1—O3iii78.27 (6)O9—Mg4—O3iii98.66 (7)
O2ii—Mg1—O3iii165.53 (7)O8—Mg4—O188.96 (7)
O7iv—Mg2—O7ii180.00 (7)O11vi—Mg4—O184.69 (7)
O7iv—Mg2—O291.18 (6)O9—Mg4—O179.14 (7)
O7ii—Mg2—O288.82 (6)O3iii—Mg4—O1171.78 (7)
O7iv—Mg2—O2v88.82 (6)O3—P1—O1111.79 (9)
O7ii—Mg2—O2v91.18 (6)O3—P1—O2114.92 (9)
O2—Mg2—O2v180.00 (7)O1—P1—O2110.31 (9)
O7iv—Mg2—O11vi90.17 (6)O3—P1—O4106.96 (9)
O7ii—Mg2—O11vi89.83 (6)O1—P1—O4107.87 (9)
O2—Mg2—O11vi85.85 (6)O2—P1—O4104.43 (9)
O2v—Mg2—O11vi94.15 (6)O5—P2—O6109.03 (9)
O7iv—Mg2—O11vii89.83 (6)O5—P2—O8111.40 (9)
O7ii—Mg2—O11vii90.17 (6)O6—P2—O8109.62 (9)
O2—Mg2—O11vii94.15 (6)O5—P2—O7109.95 (9)
O2v—Mg2—O11vii85.85 (6)O6—P2—O7108.49 (9)
O11vi—Mg2—O11vii180.00 (8)O8—P2—O7108.30 (9)
O4viii—Mg3—O1104.92 (7)O10—P3—O11112.06 (9)
O4viii—Mg3—O6165.27 (8)O10—P3—O9112.08 (9)
O1—Mg3—O689.19 (7)O11—P3—O9111.85 (9)
O4viii—Mg3—O6ix87.80 (7)O10—P3—O12107.28 (9)
O1—Mg3—O6ix165.83 (8)O11—P3—O12109.21 (9)
O6—Mg3—O6ix78.70 (7)O9—P3—O12103.90 (9)
O4viii—Mg3—O12x89.06 (7)
Symmetry codes: (i) x1, y+1, z1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x, y, z; (vi) x1, y, z1; (vii) x+1, y, z+1; (viii) x, y, z1; (ix) x, y+1, z1; (x) x+1, y, z; (xi) x, y+1, z; (xii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7iv0.861.612.460 (2)172
O12—H12···O10i0.861.802.656 (2)171
Symmetry codes: (i) x1, y+1, z1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaMg7(PO4)2(HPO4)4
Mr744.02
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.4204 (5), 7.8489 (4), 9.4315 (5)
α, β, γ (°)104.442 (3), 108.505 (5), 101.189 (8)
V3)416.70 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.16 × 0.10 × 0.07
Data collection
DiffractometerBruker X8 APEX Diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.881, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
9421, 1923, 1715
Rint0.036
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.07
No. of reflections1923
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.861.612.460 (2)171.8
O12—H12···O10ii0.861.802.656 (2)171.1
Symmetry codes: (i) x, y1, z; (ii) x1, y+1, z1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010). Acta Cryst. E66, i86–i87.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011b). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClearfield, A. (1988). Chem. Rev. 88, 125–148.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKolitsch, U. & Bartu, P. (2004). Acta Cryst. C60, i94–i96.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLightfoot, P. & Cheetham, A. K. (1988). Acta Cryst. C44, 1331–1334.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRiou, A., Cudennec, Y. & Gerault, Y. (1987). Acta Cryst. C43, 821–823.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRojo, J. M., Larranaga, A., Mesa, J. L., Urtiaga, M. K., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (2002). J. Solid State Chem. 165, 171–177.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.  Web of Science CrossRef CAS Google Scholar
First citationZhou, B.-C., Yao, Y.-W. & Wang, R.-J. (2002). Acta Cryst. C58, i109–i110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds