organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Methyl 2-[(4-bromo-2-formyl­phen­­oxy)meth­yl]-3-o-tolyl­acrylate

aDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, bDepartment of Physics, Ranipettai Engineering College, Thenkadapathangal, Walaja 632 513, India, cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and dDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 11 September 2011; accepted 15 September 2011; online 20 September 2011)

In the title compound, C19H17BrO4, the dihedral angle between the two benzene rings is 82.1 (1)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond which generates an S(7) ring motif. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions. Inter­molecular C—H⋯O inter­actions are involved in the formation of centrosymmetric R22(16) dimers, which are connected into supra­molecular tapes running along the [100] direction.

Related literature

For background to the applications of acrylates, see: de Fraine et al. (1991[Fraine, P. J. de & Martin, A. (1991). US Patent 5 055 471.]); Zhang & Ji (1992[Zhang, L. P. & Ji, Z. Z. (1992). Acta Pharmacol. Sin. 27, 817-823.]). For related structures, see: Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); Hou (2008[Hou, J. (2008). Acta Cryst. E64, o2293.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17BrO4

  • Mr = 389.24

  • Triclinic, [P \overline 1]

  • a = 8.0114 (2) Å

  • b = 8.6138 (2) Å

  • c = 13.4827 (4) Å

  • α = 96.466 (1)°

  • β = 97.185 (1)°

  • γ = 106.546 (2)°

  • V = 874.08 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.547, Tmax = 0.653

  • 21788 measured reflections

  • 5440 independent reflections

  • 2870 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.02

  • 5440 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 0.93 2.59 3.377 (3) 143
C19—H19B⋯O1i 0.96 2.53 3.436 (3) 157
C5—H5⋯O4ii 0.93 2.44 3.273 (3) 149
C19—H19CCgiii 0.96 2.74 3.580 (3) 147
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992).

Fig. 1. shows a displacement ellipsoid plot of the title compound with the atom numbering scheme. The dihedral angle between the two aromatic rings is 82.1 (1)°. The methyl acrylate (O1/O2/C7-C10) plane forms dihedral angles of 84.9 (1)° and 41.5 (1)°, respectively, with the bromo formyl phenyl and methyl phenyl rings. The geometric parameters of the title molecule agrees well with those reported for similar structures (Wang et al., 2011; Hou, 2008).

The molecular structure is stabilized by intramolecular C14—H14···O3 hydrogen bond which generates an S(7) ring motif. The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The molecules at x, y, z and 1-x, -y, -z are linked by C19—H19B···O1 hydrogen bonds into cyclic centrosymmetric R22(16) dimers. The dimers are linked by the C5—H5···O4 hydrogen bond forming supramolecular tapes running along the [100] directions (Fig. 2). The crystal packing is further stabilized by C—H···π interactions between a methyl H19C atom and a neighbouring benzene ring (C13-C18), with a C19—H19C···Cgiii separation of 2.74 Å ( Fig. 3 and Table 1; Cg is the centroid of the C13-C18 benzene ring, Symmetry code as in Fig. 3).

Related literature top

For background to the applications of acrylates, see: de Fraine et al. (1991); Zhang & Ji (1992). For related structures, see: Wang et al. (2011); Hou (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of salicylaldehyde (3.7 mmol, 0.74g) and potassium carbonate (5.59 mmol, 0.77g) in acetonitrile as solvent (10ml) was stirred for 15 minutes at room temperature. To this solution, (Z-methyl 2-(bromomethyl)-3-o-tolylacrylate (3.7 mmol, 1g) was added dropwise. After the completion of the reaction as indicated by TLC, acetonitrile was evaporated. Ethylacetate (15ml) and water (15ml) were added to the crude mass and extracted. The organic layer was dried over anhydrous sodium sulfate. Removal of the solvent led to the crude product which was purified through pad of silica gel (100-200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (1.32g, 91%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement top

All H atoms were positioned geometrically, with C-H = 0.93 - 0.96 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl and hydroxyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992).

Fig. 1. shows a displacement ellipsoid plot of the title compound with the atom numbering scheme. The dihedral angle between the two aromatic rings is 82.1 (1)°. The methyl acrylate (O1/O2/C7-C10) plane forms dihedral angles of 84.9 (1)° and 41.5 (1)°, respectively, with the bromo formyl phenyl and methyl phenyl rings. The geometric parameters of the title molecule agrees well with those reported for similar structures (Wang et al., 2011; Hou, 2008).

The molecular structure is stabilized by intramolecular C14—H14···O3 hydrogen bond which generates an S(7) ring motif. The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The molecules at x, y, z and 1-x, -y, -z are linked by C19—H19B···O1 hydrogen bonds into cyclic centrosymmetric R22(16) dimers. The dimers are linked by the C5—H5···O4 hydrogen bond forming supramolecular tapes running along the [100] directions (Fig. 2). The crystal packing is further stabilized by C—H···π interactions between a methyl H19C atom and a neighbouring benzene ring (C13-C18), with a C19—H19C···Cgiii separation of 2.74 Å ( Fig. 3 and Table 1; Cg is the centroid of the C13-C18 benzene ring, Symmetry code as in Fig. 3).

For background to the applications of acrylates, see: de Fraine et al. (1991); Zhang & Ji (1992). For related structures, see: Wang et al. (2011); Hou (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Supramolecular tape formation in the crystal packing of the title compound whereby centrosymmetrc R22(16) dimeric aggregates sustained by C—H···O (blue dashed lines) contacts are linked via C—H···O contacts (magenta dashed lines) along [1 0 0].
[Figure 3] Fig. 3. A view of the C-H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes centroid of the C13-C18 benzene ring. [Symmetry code: (iii) 2-x, 1-y, -z.]
(Z)-Methyl 2-[(4-bromo-2-formylphenoxy)methyl]-3-o-tolylacrylate top
Crystal data top
C19H17BrO4Z = 2
Mr = 389.24F(000) = 396
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0114 (2) ÅCell parameters from 5491 reflections
b = 8.6138 (2) Åθ = 1.5–30.8°
c = 13.4827 (4) ŵ = 2.37 mm1
α = 96.466 (1)°T = 293 K
β = 97.185 (1)°Block, colourless
γ = 106.546 (2)°0.25 × 0.23 × 0.18 mm
V = 874.08 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5440 independent reflections
Radiation source: fine-focus sealed tube2870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 30.8°, θmin = 2.5°
ω scansh = 118
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 912
Tmin = 0.547, Tmax = 0.653l = 1919
21788 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2207P]
where P = (Fo2 + 2Fc2)/3
5440 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C19H17BrO4γ = 106.546 (2)°
Mr = 389.24V = 874.08 (4) Å3
Triclinic, P1Z = 2
a = 8.0114 (2) ÅMo Kα radiation
b = 8.6138 (2) ŵ = 2.37 mm1
c = 13.4827 (4) ÅT = 293 K
α = 96.466 (1)°0.25 × 0.23 × 0.18 mm
β = 97.185 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5440 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2870 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.653Rint = 0.025
21788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
5440 reflectionsΔρmin = 0.61 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5938 (3)0.6570 (2)0.44131 (14)0.0451 (4)
C20.6433 (3)0.7625 (3)0.53364 (16)0.0582 (6)
H20.55810.79440.56440.070*
C30.8167 (4)0.8193 (3)0.57901 (16)0.0628 (6)
C40.9439 (3)0.7725 (3)0.53421 (17)0.0620 (6)
H41.06140.81240.56540.074*
C50.8989 (3)0.6674 (3)0.44374 (16)0.0522 (5)
H50.98530.63600.41400.063*
C60.7237 (2)0.6087 (2)0.39719 (14)0.0419 (4)
C70.7942 (2)0.4478 (2)0.26070 (15)0.0460 (4)
H7A0.86290.40460.30860.055*
H7B0.87410.53750.23640.055*
C80.6943 (3)0.3164 (2)0.17415 (15)0.0462 (4)
C90.6192 (3)0.1482 (3)0.19567 (16)0.0514 (5)
C100.5959 (4)0.0215 (3)0.3216 (2)0.0829 (8)
H10A0.47030.06460.30090.124*
H10B0.62420.01470.39360.124*
H10C0.65210.09250.28850.124*
C110.4093 (3)0.6015 (3)0.39152 (18)0.0588 (6)
H110.37840.52370.33330.071*
C120.6729 (3)0.3375 (3)0.07702 (15)0.0494 (5)
H120.61700.24310.03040.059*
C130.7263 (2)0.4903 (3)0.03471 (15)0.0490 (5)
C140.7153 (3)0.6369 (3)0.08434 (18)0.0598 (5)
H140.67510.63850.14610.072*
C150.7630 (4)0.7799 (3)0.0434 (2)0.0711 (7)
H150.75540.87700.07750.085*
C160.8218 (4)0.7776 (3)0.0476 (2)0.0743 (7)
H160.85660.87420.07470.089*
C170.8297 (3)0.6337 (3)0.09913 (18)0.0651 (6)
H170.86730.63400.16170.078*
C180.7828 (3)0.4878 (3)0.06005 (15)0.0531 (5)
C190.7942 (3)0.3325 (3)0.11804 (17)0.0655 (6)
H19A0.82740.35320.18240.098*
H19B0.68140.24990.12830.098*
H19C0.88100.29510.08040.098*
O10.5339 (3)0.0321 (2)0.13521 (13)0.0794 (5)
O20.6575 (2)0.13951 (18)0.29434 (12)0.0652 (4)
O30.66638 (17)0.50451 (17)0.30849 (10)0.0497 (3)
O40.2955 (2)0.6501 (3)0.42096 (16)0.0877 (6)
Br10.88459 (5)0.96282 (4)0.70416 (2)0.10598 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0500 (11)0.0487 (11)0.0443 (10)0.0191 (9)0.0157 (9)0.0186 (8)
C20.0751 (16)0.0628 (13)0.0495 (11)0.0316 (12)0.0236 (11)0.0185 (10)
C30.0861 (18)0.0606 (13)0.0405 (10)0.0204 (12)0.0117 (11)0.0069 (9)
C40.0599 (13)0.0636 (14)0.0521 (12)0.0087 (11)0.0021 (10)0.0051 (10)
C50.0449 (11)0.0578 (12)0.0510 (11)0.0123 (10)0.0073 (9)0.0060 (9)
C60.0445 (10)0.0420 (10)0.0391 (9)0.0107 (8)0.0080 (8)0.0116 (8)
C70.0394 (10)0.0467 (10)0.0528 (11)0.0139 (8)0.0105 (8)0.0051 (8)
C80.0423 (10)0.0476 (11)0.0491 (11)0.0139 (9)0.0104 (8)0.0048 (8)
C90.0536 (12)0.0490 (11)0.0504 (11)0.0142 (10)0.0107 (9)0.0035 (9)
C100.106 (2)0.0545 (14)0.0797 (18)0.0085 (14)0.0066 (15)0.0254 (13)
C110.0498 (12)0.0710 (14)0.0669 (14)0.0253 (11)0.0187 (11)0.0282 (12)
C120.0434 (10)0.0529 (12)0.0499 (11)0.0135 (9)0.0078 (9)0.0027 (9)
C130.0396 (10)0.0567 (12)0.0482 (11)0.0134 (9)0.0021 (8)0.0073 (9)
C140.0595 (13)0.0647 (14)0.0619 (13)0.0268 (11)0.0123 (11)0.0137 (11)
C150.0777 (16)0.0630 (15)0.0803 (18)0.0342 (13)0.0083 (14)0.0139 (13)
C160.0793 (17)0.0678 (16)0.0757 (17)0.0188 (14)0.0051 (14)0.0284 (14)
C170.0607 (14)0.0744 (16)0.0530 (13)0.0085 (12)0.0033 (10)0.0187 (12)
C180.0398 (10)0.0650 (13)0.0457 (11)0.0067 (10)0.0025 (8)0.0072 (10)
C190.0609 (14)0.0723 (15)0.0493 (12)0.0043 (12)0.0074 (10)0.0049 (11)
O10.1097 (14)0.0511 (9)0.0574 (9)0.0001 (9)0.0075 (9)0.0037 (8)
O20.0781 (11)0.0482 (9)0.0593 (9)0.0066 (8)0.0001 (8)0.0129 (7)
O30.0386 (7)0.0575 (8)0.0496 (8)0.0131 (6)0.0068 (6)0.0009 (6)
O40.0632 (11)0.1185 (16)0.1058 (15)0.0513 (11)0.0325 (10)0.0350 (12)
Br10.1485 (4)0.1068 (3)0.05066 (17)0.0334 (2)0.00845 (17)0.01403 (15)
Geometric parameters (Å, º) top
C1—C21.396 (3)C10—H10A0.9600
C1—C61.398 (3)C10—H10B0.9600
C1—C111.464 (3)C10—H10C0.9600
C2—C31.370 (3)C11—O41.197 (3)
C2—H20.9300C11—H110.9300
C3—C41.378 (3)C12—C131.466 (3)
C3—Br11.895 (2)C12—H120.9300
C4—C51.376 (3)C13—C141.392 (3)
C4—H40.9300C13—C181.408 (3)
C5—C61.387 (3)C14—C151.380 (3)
C5—H50.9300C14—H140.9300
C6—O31.354 (2)C15—C161.369 (4)
C7—O31.443 (2)C15—H150.9300
C7—C81.496 (3)C16—C171.373 (4)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—C181.389 (3)
C8—C121.339 (3)C17—H170.9300
C8—C91.478 (3)C18—C191.504 (3)
C9—O11.191 (3)C19—H19A0.9600
C9—O21.343 (3)C19—H19B0.9600
C10—O21.440 (3)C19—H19C0.9600
C2—C1—C6118.86 (19)H10A—C10—H10C109.5
C2—C1—C11119.93 (19)H10B—C10—H10C109.5
C6—C1—C11121.20 (19)O4—C11—C1124.1 (2)
C3—C2—C1120.2 (2)O4—C11—H11117.9
C3—C2—H2119.9C1—C11—H11117.9
C1—C2—H2119.9C8—C12—C13128.39 (19)
C2—C3—C4120.4 (2)C8—C12—H12115.8
C2—C3—Br1120.44 (18)C13—C12—H12115.8
C4—C3—Br1119.17 (19)C14—C13—C18119.1 (2)
C5—C4—C3120.6 (2)C14—C13—C12121.34 (19)
C5—C4—H4119.7C18—C13—C12119.46 (19)
C3—C4—H4119.7C15—C14—C13121.1 (2)
C4—C5—C6119.5 (2)C15—C14—H14119.4
C4—C5—H5120.2C13—C14—H14119.4
C6—C5—H5120.2C16—C15—C14119.5 (2)
O3—C6—C5123.87 (17)C16—C15—H15120.2
O3—C6—C1115.80 (17)C14—C15—H15120.2
C5—C6—C1120.33 (18)C15—C16—C17120.4 (2)
O3—C7—C8107.34 (15)C15—C16—H16119.8
O3—C7—H7A110.2C17—C16—H16119.8
C8—C7—H7A110.2C16—C17—C18121.5 (2)
O3—C7—H7B110.2C16—C17—H17119.2
C8—C7—H7B110.2C18—C17—H17119.2
H7A—C7—H7B108.5C17—C18—C13118.2 (2)
C12—C8—C9116.79 (19)C17—C18—C19120.2 (2)
C12—C8—C7124.91 (19)C13—C18—C19121.5 (2)
C9—C8—C7118.25 (18)C18—C19—H19A109.5
O1—C9—O2122.5 (2)C18—C19—H19B109.5
O1—C9—C8125.9 (2)H19A—C19—H19B109.5
O2—C9—C8111.64 (18)C18—C19—H19C109.5
O2—C10—H10A109.5H19A—C19—H19C109.5
O2—C10—H10B109.5H19B—C19—H19C109.5
H10A—C10—H10B109.5C9—O2—C10115.46 (19)
O2—C10—H10C109.5C6—O3—C7118.17 (15)
C6—C1—C2—C31.0 (3)C9—C8—C12—C13177.09 (19)
C11—C1—C2—C3177.82 (19)C7—C8—C12—C135.6 (3)
C1—C2—C3—C40.2 (3)C8—C12—C13—C1437.2 (3)
C1—C2—C3—Br1179.89 (15)C8—C12—C13—C18145.6 (2)
C2—C3—C4—C50.5 (4)C18—C13—C14—C151.7 (3)
Br1—C3—C4—C5179.47 (17)C12—C13—C14—C15179.0 (2)
C3—C4—C5—C60.3 (3)C13—C14—C15—C160.2 (4)
C4—C5—C6—O3179.72 (19)C14—C15—C16—C171.4 (4)
C4—C5—C6—C10.5 (3)C15—C16—C17—C181.5 (4)
C2—C1—C6—O3179.09 (17)C16—C17—C18—C130.0 (3)
C11—C1—C6—O32.1 (3)C16—C17—C18—C19179.6 (2)
C2—C1—C6—C51.2 (3)C14—C13—C18—C171.5 (3)
C11—C1—C6—C5177.62 (19)C12—C13—C18—C17178.89 (19)
O3—C7—C8—C12100.2 (2)C14—C13—C18—C19178.89 (19)
O3—C7—C8—C982.5 (2)C12—C13—C18—C191.5 (3)
C12—C8—C9—O14.1 (3)O1—C9—O2—C102.9 (3)
C7—C8—C9—O1178.4 (2)C8—C9—O2—C10177.5 (2)
C12—C8—C9—O2176.27 (18)C5—C6—O3—C71.6 (3)
C7—C8—C9—O21.2 (3)C1—C6—O3—C7178.66 (16)
C2—C1—C11—O45.7 (3)C8—C7—O3—C6171.39 (15)
C6—C1—C11—O4173.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.593.377 (3)143
C19—H19B···O1i0.962.533.436 (3)157
C5—H5···O4ii0.932.443.273 (3)149
C19—H19C···Cgiii0.962.743.580 (3)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H17BrO4
Mr389.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0114 (2), 8.6138 (2), 13.4827 (4)
α, β, γ (°)96.466 (1), 97.185 (1), 106.546 (2)
V3)874.08 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.547, 0.653
No. of measured, independent and
observed [I > 2σ(I)] reflections
21788, 5440, 2870
Rint0.025
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.02
No. of reflections5440
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.61

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.593.377 (3)143
C19—H19B···O1i0.962.533.436 (3)157
C5—H5···O4ii0.932.443.273 (3)149
C19—H19C···Cgiii0.962.743.580 (3)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y+1, z.
 

Acknowledgements

SM thanks Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFraine, P. J. de & Martin, A. (1991). US Patent 5 055 471.  Google Scholar
First citationHou, J. (2008). Acta Cryst. E64, o2293.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. P. & Ji, Z. Z. (1992). Acta Pharmacol. Sin. 27, 817–823.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds