organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Sulfamoylanilinium nitrate

aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, India, and bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 16 September 2011; accepted 21 September 2011; online 30 September 2011)

In the crystal structure of the title compound, C6H9N2O2S+·NO3, the cations and anions are connected by N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the biological importance of the title compound, see: Kent (2000[Kent, M. (2000). Advanced Biology. New York: Oxford University Press Inc.]). For related structures, see: Alléaume & Decap (1965a[Alléaume, M. & Decap, J. (1965a). Acta Cryst. 18, 731-736.],b[Alléaume, M. & Decap, J. (1965b). Acta Cryst. 19, 934-938.]); Buttle et al. (1936[Buttle, G. A. H., Grey, W. H. & Stephenson, D. (1936). Lancet, 1, 1286-1290.]); Chatterjee et al. (1981[Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835-1838.]); Gelbrich et al. (2007[Gelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, o323-o326.], 2008[Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205-o207.]); Gelmboldt et al. (2004[Gelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem. 125, 1951-1957.]); Hughes et al. (1999[Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831-1833.]); O'Connell & Maslen (1967[O'Connell, A. M. & Maslen, E. N. (1967). Acta Cryst. 22, 134-145.]); O'Connor & Maslen (1965[O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363-366.]); Smith et al. (2001[Smith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036-o1038.]); Zaouali Zgolli et al. (2010[Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488.]). For the polymorphism of sulfanilamide, see: Burger (1973[Burger, A. (1973). Sci. Pharm. 4, 290-293.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2O2S+·NO3

  • Mr = 235.22

  • Monoclinic, C c

  • a = 14.1489 (19) Å

  • b = 8.1786 (11) Å

  • c = 8.6931 (12) Å

  • β = 107.129 (2)°

  • V = 961.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 4345 measured reflections

  • 1694 independent reflections

  • 1689 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.15

  • 1694 reflections

  • 157 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 840 Friedel pairs

  • Flack parameter: 0.06 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.81 (3) 2.33 (3) 2.992 (2) 139 (2)
N1—H1B⋯O4ii 0.75 (3) 2.30 (3) 3.045 (3) 172 (3)
N2—H1N⋯O5iii 0.93 (3) 2.01 (3) 2.866 (2) 151 (3)
N2—H2N⋯O1iii 0.92 (2) 1.97 (2) 2.858 (2) 163 (2)
N2—H3N⋯O5iv 0.83 (3) 1.95 (3) 2.770 (2) 171 (2)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Sulfanilamide, a sulfonamide antibacterial, acts as competitive inhibitor of the enzyme dihydropteroate synthetase (DHPS), an enzyme involved in folate synthesis which involves para-aminobenzoic acid (PABA). PABA is needed in enzymatic reactions that produce folic acid which acts as a coenzyme in the synthesis of purine, pyrimidine and other amino acids (Kent, 2000). Sulfonamide drugs were the first antimicrobial drugs, and paved the way for the antibiotic revolution in medicine. The antibacterial activity of sulfanilamide, was first investigated by Buttle (Buttle et al., 1936). The use of sulfanilamide was eclipsed by its prodrugs, the more effective sulfadrugs, shortly afterwards. From literature, it is observed that sulfadrugs are remarkably polymorphic. The polymorphs of sulfathiazole (Hughes et al., 1999) and sulfapyridine (Gelbrich et al., 2007) were already reported. The polymorphism of sulfanilamide was extensively investigated over a number of years (Burger, 1973). There are three well known polymorphs, usually represented as α, β and γ sulfanilamides (Alléaume & Decap, 1965a,b; O'Connor & Maslen, 1965; O'Connell & Maslen, 1967). Based on the above specifics, we are interested on the investigation of hydrogen bonding tendancy and its reactivity with different inorganic/organic acids.

The asymmetric part of the unit cell, contains a protonated sulfomylanilinium cation and a nitrate anion (Fig 1). The protonation on the one of the N sites is confirmed from C—N bond distance. The other geometrical parameters of the cation are in agreement with the reported structures of 4-homosulfanilamide hydrochloride (Chatterjee et al., 1981), 4-aminobenzenesulfonamide (Gelbrich et al., 2008), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate (Gelmboldt et al.,2004), 4-sulfonamidoanilinium 3,5-dinitrosalicylate (Smith et al., 2001) and 4-sulfamoylanilinium chloride (Zaouali Zgolli et al., 2010).

The crystal structure is stabilized through intricate three dimensional hydrogen bonding network formed through N—H···O hydrogen bonds (Fig 2, Table 1). The N atom of the –NH2 group of the cation is hydrogen bonded with O atom of the S=O group making a zigzag chain C(4) motif extending along c axis of the unit cell (Etter et al., 1990). Further, the N atom of the –NH3 group of the cation is hydrogen bonded with another O atom of the S=O group making a head-to-tail like chain C(8) motif extending along diagonal of the ab-plane. Nitrate anions are sandwiched between these two chains leading to a unusual asymmetric ring R55(16) motif which involves four cation and one anion. Also, cations are linked through anion by two N—H···O hydrogen bonds [viz., N1—H1B···O4 (x, 1 - y, 1/2 + z) and N2—H3N···O5 (-1/2 + x, 3/2 - y, -1/2 + z)] forming a chain C22(12)motif extending along diagonal of the bc-plane.

Related literature top

For the biological importance of the title compound, see: Kent (2000). For related structures, see: Alléaume & Decap (1965a,b); Buttle et al. (1936); Chatterjee et al. (1981); Gelbrich et al. (2007, 2008); Gelmboldt et al. (2004); Hughes et al. (1999); O'Connell & Maslen (1967); O'Connor & Maslen (1965); Smith et al. (2001); Zaouali Zgolli et al. (2010). For the polymorphism of sulfanilamide, see: Burger (1973). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

Colourless crystals of 4-sulfamoylanilinium nitrate suitable for single-crystal X-ray analysis were obtained by slow evaporation at room temperature from an aqeuous solution of sulphanilamide and nitric acid.

Refinement top

The H atoms bonded to N located were refined istropically. All other H atoms were positioned geometrically and refined by the riding model approximation with d(C—H) = 0.93 Å and Uiso(H)= 1.2 Ueq(C).

Structure description top

Sulfanilamide, a sulfonamide antibacterial, acts as competitive inhibitor of the enzyme dihydropteroate synthetase (DHPS), an enzyme involved in folate synthesis which involves para-aminobenzoic acid (PABA). PABA is needed in enzymatic reactions that produce folic acid which acts as a coenzyme in the synthesis of purine, pyrimidine and other amino acids (Kent, 2000). Sulfonamide drugs were the first antimicrobial drugs, and paved the way for the antibiotic revolution in medicine. The antibacterial activity of sulfanilamide, was first investigated by Buttle (Buttle et al., 1936). The use of sulfanilamide was eclipsed by its prodrugs, the more effective sulfadrugs, shortly afterwards. From literature, it is observed that sulfadrugs are remarkably polymorphic. The polymorphs of sulfathiazole (Hughes et al., 1999) and sulfapyridine (Gelbrich et al., 2007) were already reported. The polymorphism of sulfanilamide was extensively investigated over a number of years (Burger, 1973). There are three well known polymorphs, usually represented as α, β and γ sulfanilamides (Alléaume & Decap, 1965a,b; O'Connor & Maslen, 1965; O'Connell & Maslen, 1967). Based on the above specifics, we are interested on the investigation of hydrogen bonding tendancy and its reactivity with different inorganic/organic acids.

The asymmetric part of the unit cell, contains a protonated sulfomylanilinium cation and a nitrate anion (Fig 1). The protonation on the one of the N sites is confirmed from C—N bond distance. The other geometrical parameters of the cation are in agreement with the reported structures of 4-homosulfanilamide hydrochloride (Chatterjee et al., 1981), 4-aminobenzenesulfonamide (Gelbrich et al., 2008), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate (Gelmboldt et al.,2004), 4-sulfonamidoanilinium 3,5-dinitrosalicylate (Smith et al., 2001) and 4-sulfamoylanilinium chloride (Zaouali Zgolli et al., 2010).

The crystal structure is stabilized through intricate three dimensional hydrogen bonding network formed through N—H···O hydrogen bonds (Fig 2, Table 1). The N atom of the –NH2 group of the cation is hydrogen bonded with O atom of the S=O group making a zigzag chain C(4) motif extending along c axis of the unit cell (Etter et al., 1990). Further, the N atom of the –NH3 group of the cation is hydrogen bonded with another O atom of the S=O group making a head-to-tail like chain C(8) motif extending along diagonal of the ab-plane. Nitrate anions are sandwiched between these two chains leading to a unusual asymmetric ring R55(16) motif which involves four cation and one anion. Also, cations are linked through anion by two N—H···O hydrogen bonds [viz., N1—H1B···O4 (x, 1 - y, 1/2 + z) and N2—H3N···O5 (-1/2 + x, 3/2 - y, -1/2 + z)] forming a chain C22(12)motif extending along diagonal of the bc-plane.

For the biological importance of the title compound, see: Kent (2000). For related structures, see: Alléaume & Decap (1965a,b); Buttle et al. (1936); Chatterjee et al. (1981); Gelbrich et al. (2007, 2008); Gelmboldt et al. (2004); Hughes et al. (1999); O'Connell & Maslen (1967); O'Connor & Maslen (1965); Smith et al. (2001); Zaouali Zgolli et al. (2010). For the polymorphism of sulfanilamide, see: Burger (1973). For hydrogen-bond motifs, see: Etter et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b-axis. H-bonds are shown as dashed lines.
4-Sulfamoylanilinium nitrate top
Crystal data top
C6H9N2O2S+·NO3F(000) = 488
Mr = 235.22Dx = 1.625 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2432 reflections
a = 14.1489 (19) Åθ = 2.3–24.3°
b = 8.1786 (11) ŵ = 0.34 mm1
c = 8.6931 (12) ÅT = 293 K
β = 107.129 (2)°Block, colourless
V = 961.3 (2) Å30.24 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1689 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω scansh = 1616
4345 measured reflectionsk = 99
1694 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.043P)2 + 0.0928P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.17 e Å3
1694 reflectionsΔρmin = 0.25 e Å3
157 parametersExtinction correction: SHELXTL/PC, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.050 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 840 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (5)
Crystal data top
C6H9N2O2S+·NO3V = 961.3 (2) Å3
Mr = 235.22Z = 4
Monoclinic, CcMo Kα radiation
a = 14.1489 (19) ŵ = 0.34 mm1
b = 8.1786 (11) ÅT = 293 K
c = 8.6931 (12) Å0.24 × 0.22 × 0.19 mm
β = 107.129 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1689 reflections with I > 2σ(I)
4345 measured reflectionsRint = 0.017
1694 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.17 e Å3
S = 1.15Δρmin = 0.25 e Å3
1694 reflectionsAbsolute structure: Flack (1983), 840 Friedel pairs
157 parametersAbsolute structure parameter: 0.06 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29701 (12)0.3638 (2)0.66596 (19)0.0342 (3)
C20.20184 (13)0.3652 (2)0.5630 (2)0.0403 (3)
H20.17370.27050.50980.048*
C30.14895 (12)0.5103 (2)0.5403 (2)0.0428 (4)
H30.08450.51380.47210.051*
C40.19244 (12)0.6488 (2)0.6193 (2)0.0334 (3)
C50.28819 (14)0.6483 (2)0.7208 (2)0.0414 (4)
H50.31660.74370.77230.050*
C60.34101 (13)0.5037 (2)0.7443 (2)0.0424 (4)
H60.40550.50050.81220.051*
N10.39052 (16)0.1289 (2)0.8816 (2)0.0511 (4)
N20.13535 (11)0.79981 (18)0.59414 (18)0.0374 (3)
N30.55860 (12)0.64779 (19)0.6987 (2)0.0447 (3)
O10.45798 (12)0.21351 (19)0.6684 (2)0.0596 (4)
O20.30328 (10)0.05499 (16)0.60456 (18)0.0520 (3)
O30.51772 (13)0.76152 (19)0.7468 (2)0.0658 (4)
O40.53047 (11)0.60273 (18)0.55635 (17)0.0557 (3)
O50.63098 (11)0.57493 (19)0.79609 (15)0.0522 (3)
S10.36568 (3)0.17908 (4)0.69713 (4)0.03650 (14)
H1A0.343 (2)0.088 (3)0.900 (3)0.060 (7)*
H1B0.4231 (19)0.194 (4)0.932 (3)0.056 (7)*
H1N0.156 (2)0.875 (4)0.678 (4)0.074 (8)*
H2N0.0721 (18)0.783 (3)0.599 (3)0.045 (5)*
H3N0.1270 (18)0.837 (3)0.503 (3)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0360 (7)0.0310 (8)0.0390 (7)0.0001 (6)0.0165 (6)0.0030 (6)
C20.0376 (8)0.0324 (7)0.0484 (8)0.0050 (7)0.0086 (7)0.0025 (7)
C30.0317 (7)0.0412 (9)0.0502 (9)0.0028 (6)0.0038 (6)0.0022 (7)
C40.0359 (8)0.0308 (7)0.0362 (7)0.0028 (6)0.0146 (6)0.0036 (5)
C50.0417 (9)0.0318 (8)0.0459 (9)0.0015 (7)0.0057 (7)0.0045 (7)
C60.0344 (7)0.0372 (9)0.0495 (9)0.0017 (6)0.0030 (6)0.0006 (6)
N10.0581 (10)0.0410 (8)0.0550 (9)0.0039 (8)0.0179 (8)0.0072 (8)
N20.0387 (8)0.0359 (7)0.0399 (7)0.0054 (6)0.0152 (6)0.0053 (6)
N30.0447 (9)0.0421 (8)0.0486 (9)0.0043 (6)0.0154 (7)0.0024 (7)
O10.0491 (8)0.0516 (7)0.0924 (11)0.0044 (6)0.0430 (7)0.0048 (7)
O20.0521 (8)0.0368 (7)0.0682 (8)0.0014 (5)0.0194 (6)0.0139 (6)
O30.0643 (9)0.0538 (9)0.0795 (11)0.0092 (7)0.0214 (7)0.0178 (8)
O40.0622 (8)0.0551 (8)0.0420 (6)0.0030 (7)0.0033 (6)0.0058 (6)
O50.0586 (8)0.0551 (8)0.0402 (6)0.0095 (6)0.0105 (5)0.0017 (6)
S10.0357 (2)0.0304 (2)0.0475 (2)0.00160 (14)0.01862 (14)0.00021 (15)
Geometric parameters (Å, º) top
C1—C21.380 (2)N1—S11.5911 (19)
C1—C61.382 (2)N1—H1A0.81 (3)
C1—S11.7737 (16)N1—H1B0.75 (3)
C2—C31.386 (2)N2—H1N0.93 (3)
C2—H20.9300N2—H2N0.92 (2)
C3—C41.372 (2)N2—H3N0.83 (3)
C3—H30.9300N3—O31.232 (2)
C4—C51.382 (2)N3—O41.239 (2)
C4—N21.457 (2)N3—O51.269 (2)
C5—C61.382 (3)O1—S11.4283 (14)
C5—H50.9300O2—S11.4277 (14)
C6—H60.9300
C2—C1—C6121.65 (15)S1—N1—H1A110.7 (19)
C2—C1—S1119.47 (12)S1—N1—H1B109 (2)
C6—C1—S1118.87 (13)H1A—N1—H1B125 (3)
C1—C2—C3118.84 (15)C4—N2—H1N114.6 (19)
C1—C2—H2120.6C4—N2—H2N111.9 (14)
C3—C2—H2120.6H1N—N2—H2N98 (2)
C4—C3—C2119.44 (14)C4—N2—H3N112.0 (17)
C4—C3—H3120.3H1N—N2—H3N115 (2)
C2—C3—H3120.3H2N—N2—H3N104 (2)
C3—C4—C5121.88 (15)O3—N3—O4121.26 (17)
C3—C4—N2118.52 (14)O3—N3—O5119.70 (17)
C5—C4—N2119.60 (16)O4—N3—O5119.05 (16)
C6—C5—C4118.85 (16)O2—S1—O1119.14 (9)
C6—C5—H5120.6O2—S1—N1107.54 (11)
C4—C5—H5120.6O1—S1—N1106.58 (11)
C5—C6—C1119.34 (15)O2—S1—C1107.43 (8)
C5—C6—H6120.3O1—S1—C1107.05 (8)
C1—C6—H6120.3N1—S1—C1108.78 (8)
C6—C1—C2—C31.1 (2)C2—C1—C6—C50.8 (3)
S1—C1—C2—C3179.76 (14)S1—C1—C6—C5179.95 (14)
C1—C2—C3—C40.5 (3)C2—C1—S1—O21.42 (15)
C2—C3—C4—C50.4 (3)C6—C1—S1—O2179.42 (14)
C2—C3—C4—N2179.77 (16)C2—C1—S1—O1127.65 (14)
C3—C4—C5—C60.7 (3)C6—C1—S1—O151.51 (16)
N2—C4—C5—C6179.48 (16)C2—C1—S1—N1117.54 (15)
C4—C5—C6—C10.1 (3)C6—C1—S1—N163.29 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.81 (3)2.33 (3)2.992 (2)139 (2)
N1—H1B···O4ii0.75 (3)2.30 (3)3.045 (3)172 (3)
N2—H1N···O5iii0.93 (3)2.01 (3)2.866 (2)151 (3)
N2—H2N···O1iii0.92 (2)1.97 (2)2.858 (2)163 (2)
N2—H3N···O5iv0.83 (3)1.95 (3)2.770 (2)171 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2O2S+·NO3
Mr235.22
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)14.1489 (19), 8.1786 (11), 8.6931 (12)
β (°) 107.129 (2)
V3)961.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4345, 1694, 1689
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.15
No. of reflections1694
No. of parameters157
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25
Absolute structureFlack (1983), 840 Friedel pairs
Absolute structure parameter0.06 (5)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.81 (3)2.33 (3)2.992 (2)139 (2)
N1—H1B···O4ii0.75 (3)2.30 (3)3.045 (3)172 (3)
N2—H1N···O5iii0.93 (3)2.01 (3)2.866 (2)151 (3)
N2—H2N···O1iii0.92 (2)1.97 (2)2.858 (2)163 (2)
N2—H3N···O5iv0.83 (3)1.95 (3)2.770 (2)171 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

SPR and BRK thank the management of the Devanga Arts College for their support and encouragement and also extend their thanks to the University Grants Commission for the financial support of this work in the form of a Minor Research Project.

References

First citationAlléaume, M. & Decap, J. (1965a). Acta Cryst. 18, 731–736.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationAlléaume, M. & Decap, J. (1965b). Acta Cryst. 19, 934–938.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. (1973). Sci. Pharm. 4, 290–293.  Google Scholar
First citationButtle, G. A. H., Grey, W. H. & Stephenson, D. (1936). Lancet, 1, 1286–1290.  CrossRef Google Scholar
First citationChatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, o323–o326.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem. 125, 1951–1957.  CAS Google Scholar
First citationHughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831–1833.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKent, M. (2000). Advanced Biology. New York: Oxford University Press Inc.  Google Scholar
First citationO'Connell, A. M. & Maslen, E. N. (1967). Acta Cryst. 22, 134–145.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationO'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036–o1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds