organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-1-(4-bromo­phen­yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 September 2011; accepted 20 September 2011; online 30 September 2011)

In the title compound, C22H14BrN3, the fused-ring system is buckled owing to the ethyl­ene linkage in the central ring; the two flanking aromatic rings are twisted by 25.9 (1) ° with respect to each other. The phenyl ring is twisted by 77.0 (1)° relative to the amino- and cyano-bearing aromatic ring. In the crystal, adjacent mol­ecules are linked by two N–H⋯N hydrogen bonds, generating a zigzag chain along [101].

Related literature

For two related compounds, see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.],b[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14BrN3

  • Mr = 400.27

  • Monoclinic, C c

  • a = 13.7683 (5) Å

  • b = 16.2557 (3) Å

  • c = 9.7945 (4) Å

  • β = 127.546 (6)°

  • V = 1738.07 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.29 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.559, Tmax = 0.559

  • 2976 measured reflections

  • 2195 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.08

  • 2195 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 482 Friedel pairs

  • Flack parameter: −0.024 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N1i 0.93 (3) 2.23 (3) 3.097 (3) 155 (3)
N2—H2⋯N3ii 0.88 (4) 2.54 (4) 3.307 (3) 147 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Amino-4-aryl-5,6-dihydrobenzoquinoline-3-carbonitrile is synthesized from the reaction of the α-substituted cinnamonitrile, C6H5CHC(CN)2, with α-tetralone in a reaction that is catalyzed by ammonium acetate. The synthesis when conducted under microwave irradiation leads to an improved yield. In previous studies, we obtained instead di-carbonitrile substituted dihydrophenanthrenes (3-amino-1-(4-methoxyphenyl)-9,10- dihydrophenanthrene-2,4-dicarbonitrile and 3-amino-1-(2H-1,3-benzodioxol-5-yl)- 9,10-dihydrophenanthrene-2,4-dicarbonitrile) with 4-methoxybenzaldehyde and piperonaldehyde in syntheses that differed slightly from the reported ones as we used substituted benzaldehydes, α-tetralone and ethyl cyanoacetate along with a molar excess of ammonium acetate (Asiri et al., 2011a; 2011b). The use of 4-bromobenzaldehyde furnishes the corresponding 4-bromophenyl analog (Scheme I, Fig. 1). The fused-ring system is buckled owing to the ethylene linkage in the central ring; the two flanking aromatic rings are twisted by 25.9 (1) °. Relative to the amino- and cyano-bearing aromatic ring, the phenyl ring is twisted by 77.0 (1) °. Adjacent molecules are linked by two N–H···N hydrogen bonds to generate a chain along [1 0 1] (Table 1).

Related literature top

For two related compounds, see: Asiri et al. (2011a,b).

Experimental top

4-Bromobenzaldehyde (1.85 g,10 mmol), 1-tetralone (1.46 g, 10 mmol), malononitrile (0.66 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) were heated for 6 h. The mixture was allowed to cool, and the precipitate was collected, washed with water, dried and then recrystallized from ethanol; m.p. 517–518.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H atoms were located in a difference Fourier map and were refined freely.

The Flack parameter was refined from 482 Friedel pairs; although the Friedel coverage is low (27%), the Flack parameter was reliably refined owing to the heavy atom.

Structure description top

2-Amino-4-aryl-5,6-dihydrobenzoquinoline-3-carbonitrile is synthesized from the reaction of the α-substituted cinnamonitrile, C6H5CHC(CN)2, with α-tetralone in a reaction that is catalyzed by ammonium acetate. The synthesis when conducted under microwave irradiation leads to an improved yield. In previous studies, we obtained instead di-carbonitrile substituted dihydrophenanthrenes (3-amino-1-(4-methoxyphenyl)-9,10- dihydrophenanthrene-2,4-dicarbonitrile and 3-amino-1-(2H-1,3-benzodioxol-5-yl)- 9,10-dihydrophenanthrene-2,4-dicarbonitrile) with 4-methoxybenzaldehyde and piperonaldehyde in syntheses that differed slightly from the reported ones as we used substituted benzaldehydes, α-tetralone and ethyl cyanoacetate along with a molar excess of ammonium acetate (Asiri et al., 2011a; 2011b). The use of 4-bromobenzaldehyde furnishes the corresponding 4-bromophenyl analog (Scheme I, Fig. 1). The fused-ring system is buckled owing to the ethylene linkage in the central ring; the two flanking aromatic rings are twisted by 25.9 (1) °. Relative to the amino- and cyano-bearing aromatic ring, the phenyl ring is twisted by 77.0 (1) °. Adjacent molecules are linked by two N–H···N hydrogen bonds to generate a chain along [1 0 1] (Table 1).

For two related compounds, see: Asiri et al. (2011a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C22H14N3Br at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3-Amino-1-(4-bromophenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile top
Crystal data top
C22H14BrN3F(000) = 808
Mr = 400.27Dx = 1.530 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
Hall symbol: C -2ycCell parameters from 2539 reflections
a = 13.7683 (5) Åθ = 4.9–74.2°
b = 16.2557 (3) ŵ = 3.29 mm1
c = 9.7945 (4) ÅT = 100 K
β = 127.546 (6)°Prism, orange
V = 1738.07 (17) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2195 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2187 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 4.9°
ω scanh = 1716
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1120
Tmin = 0.559, Tmax = 0.559l = 1112
2976 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.2403P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2195 reflectionsΔρmax = 0.22 e Å3
243 parametersΔρmin = 0.61 e Å3
2 restraintsAbsolute structure: Flack (Flack, 1983), 482 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (14)
Crystal data top
C22H14BrN3V = 1738.07 (17) Å3
Mr = 400.27Z = 4
Monoclinic, CcCu Kα radiation
a = 13.7683 (5) ŵ = 3.29 mm1
b = 16.2557 (3) ÅT = 100 K
c = 9.7945 (4) Å0.20 × 0.20 × 0.20 mm
β = 127.546 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2195 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2187 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.559Rint = 0.012
2976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.61 e Å3
2195 reflectionsAbsolute structure: Flack (Flack, 1983), 482 Friedel pairs
243 parametersAbsolute structure parameter: 0.024 (14)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00008 (3)0.303704 (13)0.00088 (3)0.02570 (9)
N10.8004 (2)0.69430 (12)1.0721 (3)0.0189 (4)
N20.5320 (2)0.70911 (13)0.6833 (3)0.0173 (4)
H10.460 (3)0.739 (2)0.618 (4)0.018 (7)*
H20.597 (3)0.738 (2)0.761 (5)0.024 (8)*
N30.2436 (2)0.64780 (13)0.3201 (3)0.0245 (5)
C10.5286 (2)0.36690 (15)0.8140 (3)0.0172 (5)
H1A0.47530.33680.70360.021*
H1B0.49640.35810.87970.021*
C20.6591 (2)0.33350 (15)0.9166 (3)0.0202 (5)
H2A0.66040.27480.94470.024*
H2B0.68910.33770.84720.024*
C30.7407 (2)0.38245 (14)1.0797 (3)0.0168 (5)
C40.8329 (2)0.34500 (16)1.2344 (4)0.0217 (5)
H40.84620.28751.23640.026*
C50.9058 (2)0.38981 (17)1.3858 (3)0.0221 (5)
H50.97000.36351.48970.026*
C60.8845 (2)0.47317 (16)1.3845 (3)0.0209 (5)
H60.93240.50401.48830.025*
C70.7926 (2)0.51166 (15)1.2307 (3)0.0167 (5)
H70.77800.56871.23090.020*
C80.7217 (2)0.46789 (13)1.0763 (3)0.0144 (4)
C90.6244 (2)0.50717 (14)0.9095 (3)0.0130 (4)
C100.6259 (2)0.59116 (14)0.8755 (3)0.0131 (4)
C110.5282 (2)0.62902 (15)0.7197 (3)0.0133 (4)
C120.4277 (2)0.57892 (14)0.5984 (3)0.0142 (4)
C130.4282 (2)0.49398 (15)0.6262 (3)0.0162 (5)
C140.5264 (2)0.45766 (14)0.7787 (3)0.0166 (4)
C150.7262 (2)0.64517 (14)0.9918 (3)0.0137 (4)
C160.3254 (2)0.61565 (15)0.4420 (3)0.0174 (5)
C170.3244 (2)0.44469 (14)0.4820 (3)0.0143 (4)
C180.3423 (2)0.39889 (15)0.3792 (3)0.0183 (5)
H180.42160.39670.40750.022*
C190.2471 (2)0.35638 (14)0.2367 (3)0.0185 (5)
H190.26010.32530.16700.022*
C200.1321 (2)0.36031 (14)0.1981 (3)0.0166 (5)
C210.1114 (2)0.40498 (17)0.2974 (3)0.0238 (5)
H210.03180.40710.26820.029*
C220.2085 (2)0.44712 (17)0.4412 (3)0.0212 (5)
H220.19530.47760.51140.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02085 (13)0.02220 (13)0.01646 (13)0.00648 (12)0.00229 (10)0.00716 (12)
N10.0175 (11)0.0161 (11)0.0163 (11)0.0000 (8)0.0068 (10)0.0001 (8)
N20.0141 (10)0.0118 (9)0.0155 (11)0.0002 (8)0.0036 (9)0.0002 (8)
N30.0210 (11)0.0174 (10)0.0201 (11)0.0007 (9)0.0048 (10)0.0001 (9)
C10.0180 (12)0.0132 (11)0.0159 (11)0.0025 (9)0.0079 (10)0.0014 (9)
C20.0217 (12)0.0143 (11)0.0213 (13)0.0016 (10)0.0114 (11)0.0011 (10)
C30.0180 (12)0.0132 (11)0.0187 (12)0.0004 (9)0.0110 (11)0.0018 (9)
C40.0171 (11)0.0202 (12)0.0250 (13)0.0042 (10)0.0115 (11)0.0090 (11)
C50.0191 (12)0.0238 (13)0.0197 (12)0.0009 (10)0.0100 (11)0.0105 (10)
C60.0184 (11)0.0261 (13)0.0142 (11)0.0025 (10)0.0079 (10)0.0019 (10)
C70.0159 (10)0.0162 (11)0.0165 (11)0.0016 (9)0.0091 (10)0.0009 (9)
C80.0127 (10)0.0134 (11)0.0160 (11)0.0005 (9)0.0081 (9)0.0024 (9)
C90.0121 (11)0.0131 (10)0.0138 (11)0.0014 (9)0.0079 (10)0.0001 (9)
C100.0126 (10)0.0133 (10)0.0129 (10)0.0014 (9)0.0075 (9)0.0030 (9)
C110.0130 (11)0.0132 (10)0.0140 (11)0.0003 (9)0.0084 (10)0.0019 (9)
C120.0136 (10)0.0140 (11)0.0114 (11)0.0009 (8)0.0057 (9)0.0006 (8)
C130.0146 (11)0.0131 (11)0.0157 (11)0.0013 (9)0.0066 (10)0.0029 (10)
C140.0173 (10)0.0139 (11)0.0165 (11)0.0023 (9)0.0093 (10)0.0007 (9)
C150.0140 (11)0.0116 (10)0.0123 (11)0.0025 (9)0.0063 (10)0.0007 (9)
C160.0173 (11)0.0133 (10)0.0176 (11)0.0026 (9)0.0085 (10)0.0045 (10)
C170.0149 (10)0.0104 (10)0.0121 (10)0.0007 (9)0.0055 (9)0.0000 (9)
C180.0143 (11)0.0174 (11)0.0193 (12)0.0003 (9)0.0082 (10)0.0023 (10)
C190.0208 (11)0.0168 (12)0.0167 (11)0.0005 (10)0.0108 (10)0.0031 (10)
C200.0165 (11)0.0115 (10)0.0115 (11)0.0049 (9)0.0032 (9)0.0006 (9)
C210.0161 (11)0.0328 (14)0.0193 (12)0.0061 (11)0.0091 (10)0.0056 (11)
C220.0187 (12)0.0270 (13)0.0180 (12)0.0043 (10)0.0111 (10)0.0071 (10)
Geometric parameters (Å, º) top
Br1—C201.898 (2)C7—H70.9500
N1—C151.149 (3)C8—C91.485 (3)
N2—C111.359 (3)C9—C101.408 (3)
N2—H10.93 (3)C9—C141.415 (3)
N2—H20.88 (4)C10—C111.420 (3)
N3—C161.152 (4)C10—C151.435 (3)
C1—C141.511 (3)C11—C121.410 (3)
C1—C21.528 (4)C12—C131.407 (3)
C1—H1A0.9900C12—C161.434 (3)
C1—H1B0.9900C13—C141.395 (3)
C2—C31.503 (3)C13—C171.489 (3)
C2—H2A0.9900C17—C221.389 (3)
C2—H2B0.9900C17—C181.390 (3)
C3—C41.390 (4)C18—C191.384 (3)
C3—C81.410 (3)C18—H180.9500
C4—C51.387 (4)C19—C201.387 (3)
C4—H40.9500C19—H190.9500
C5—C61.385 (4)C20—C211.376 (4)
C5—H50.9500C21—C221.395 (4)
C6—C71.392 (4)C21—H210.9500
C6—H60.9500C22—H220.9500
C7—C81.395 (3)
C11—N2—H1119 (2)C9—C10—C11122.2 (2)
C11—N2—H2117 (2)C9—C10—C15123.5 (2)
H1—N2—H2115 (3)C11—C10—C15114.3 (2)
C14—C1—C2110.4 (2)N2—C11—C12120.5 (2)
C14—C1—H1A109.6N2—C11—C10122.3 (2)
C2—C1—H1A109.6C12—C11—C10117.1 (2)
C14—C1—H1B109.6C11—C12—C13121.2 (2)
C2—C1—H1B109.6C11—C12—C16118.7 (2)
H1A—C1—H1B108.1C13—C12—C16120.1 (2)
C3—C2—C1109.2 (2)C14—C13—C12120.6 (2)
C3—C2—H2A109.8C14—C13—C17122.1 (2)
C1—C2—H2A109.8C12—C13—C17117.1 (2)
C3—C2—H2B109.8C13—C14—C9119.7 (2)
C1—C2—H2B109.8C13—C14—C1121.9 (2)
H2A—C2—H2B108.3C9—C14—C1118.2 (2)
C4—C3—C8119.3 (2)N1—C15—C10173.1 (2)
C4—C3—C2121.4 (2)N3—C16—C12177.3 (3)
C8—C3—C2119.3 (2)C22—C17—C18119.1 (2)
C3—C4—C5121.4 (2)C22—C17—C13121.9 (2)
C3—C4—H4119.3C18—C17—C13118.9 (2)
C5—C4—H4119.3C19—C18—C17121.4 (2)
C6—C5—C4119.5 (2)C19—C18—H18119.3
C6—C5—H5120.2C17—C18—H18119.3
C4—C5—H5120.2C18—C19—C20118.3 (2)
C5—C6—C7119.8 (2)C18—C19—H19120.9
C5—C6—H6120.1C20—C19—H19120.9
C7—C6—H6120.1C21—C20—C19121.7 (2)
C6—C7—C8121.2 (2)C21—C20—Br1119.50 (19)
C6—C7—H7119.4C19—C20—Br1118.77 (18)
C8—C7—H7119.4C20—C21—C22119.3 (2)
C7—C8—C3118.6 (2)C20—C21—H21120.4
C7—C8—C9122.7 (2)C22—C21—H21120.4
C3—C8—C9118.7 (2)C17—C22—C21120.2 (2)
C10—C9—C14118.7 (2)C17—C22—H22119.9
C10—C9—C8122.9 (2)C21—C22—H22119.9
C14—C9—C8118.3 (2)
C14—C1—C2—C356.3 (3)C10—C11—C12—C16177.9 (2)
C1—C2—C3—C4141.2 (2)C11—C12—C13—C142.9 (3)
C1—C2—C3—C837.6 (3)C16—C12—C13—C14179.2 (2)
C8—C3—C4—C50.6 (4)C11—C12—C13—C17173.1 (2)
C2—C3—C4—C5178.1 (2)C16—C12—C13—C174.9 (3)
C3—C4—C5—C61.8 (4)C12—C13—C14—C92.4 (3)
C4—C5—C6—C71.9 (4)C17—C13—C14—C9178.1 (2)
C5—C6—C7—C80.6 (4)C12—C13—C14—C1178.8 (2)
C6—C7—C8—C33.0 (3)C17—C13—C14—C15.5 (4)
C6—C7—C8—C9178.9 (2)C10—C9—C14—C136.0 (3)
C4—C3—C8—C73.0 (3)C8—C9—C14—C13174.4 (2)
C2—C3—C8—C7175.8 (2)C10—C9—C14—C1177.4 (2)
C4—C3—C8—C9178.9 (2)C8—C9—C14—C12.2 (3)
C2—C3—C8—C92.3 (3)C2—C1—C14—C13145.4 (2)
C7—C8—C9—C1026.4 (3)C2—C1—C14—C938.2 (3)
C3—C8—C9—C10155.6 (2)C14—C13—C17—C22108.9 (3)
C7—C8—C9—C14154.1 (2)C12—C13—C17—C2275.2 (3)
C3—C8—C9—C1424.0 (3)C14—C13—C17—C1875.0 (3)
C14—C9—C10—C114.7 (3)C12—C13—C17—C18100.9 (3)
C8—C9—C10—C11175.7 (2)C22—C17—C18—C190.6 (4)
C14—C9—C10—C15173.7 (2)C13—C17—C18—C19175.6 (2)
C8—C9—C10—C155.8 (3)C17—C18—C19—C200.1 (4)
C9—C10—C11—N2176.9 (2)C18—C19—C20—C210.0 (4)
C15—C10—C11—N21.7 (3)C18—C19—C20—Br1179.03 (17)
C9—C10—C11—C120.3 (3)C19—C20—C21—C220.4 (4)
C15—C10—C11—C12178.9 (2)Br1—C20—C21—C22179.4 (2)
N2—C11—C12—C13173.1 (2)C18—C17—C22—C210.9 (4)
C10—C11—C12—C134.2 (3)C13—C17—C22—C21175.1 (2)
N2—C11—C12—C164.8 (3)C20—C21—C22—C170.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.93 (3)2.23 (3)3.097 (3)155 (3)
N2—H2···N3ii0.88 (4)2.54 (4)3.307 (3)147 (3)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14BrN3
Mr400.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)13.7683 (5), 16.2557 (3), 9.7945 (4)
β (°) 127.546 (6)
V3)1738.07 (17)
Z4
Radiation typeCu Kα
µ (mm1)3.29
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.559, 0.559
No. of measured, independent and
observed [I > 2σ(I)] reflections
2976, 2195, 2187
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.08
No. of reflections2195
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.61
Absolute structureFlack (Flack, 1983), 482 Friedel pairs
Absolute structure parameter0.024 (14)

Computer programs: CrysAlis PRO (Agilent, 2010), CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.93 (3)2.23 (3)3.097 (3)155 (3)
N2—H2···N3ii0.88 (4)2.54 (4)3.307 (3)147 (3)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds