organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Meth­­oxy-2-methyl-1-phenyl-1H-indole-3-carbo­nitrile

aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: qxx@zzu.edu.cn

(Received 19 September 2011; accepted 21 September 2011; online 30 September 2011)

In the title compound, C17H14N2O, the dihedral angle between the indole ring system and the phenyl ring is 64.48 (7)°. The crystal packing features weak C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Du et al. (2006[Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919-5922.]). For its precursor, see: Jin et al. (2009[Jin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.]). For related structures, see: Yang et al. (2011[Yang, K., Li, P.-F., Liu, Y. & Fang, Z.-Z. (2011). Acta Cryst. E67, o1041.]); Yan & Qi (2011a[Yan, Q. & Qi, X. (2011a). Acta Cryst. E67, o2312.],b[Yan, Q. & Qi, X. (2011b). Acta Cryst. E67, o2509.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O

  • Mr = 262.30

  • Triclinic, [P \overline 1]

  • a = 6.3699 (7) Å

  • b = 10.6084 (10) Å

  • c = 10.8139 (11) Å

  • α = 70.059 (10)°

  • β = 79.455 (13)°

  • γ = 78.869 (12)°

  • V = 668.55 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.984

  • 7078 measured reflections

  • 3157 independent reflections

  • 1404 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 0.89

  • 3157 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C8, C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9BCg2i 0.98 2.78 3.701 (2) 156
C10—H10BCg3ii 0.98 2.65 3.516 (2) 148
C10—H10CCg1iii 0.98 2.73 3.509 (2) 137
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z; (iii) x+1, y, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In our continuous investigation about indole derivatives, herein, we report the title compound (I). In the molecular structure (Fig. 1), the indole ring is almost planar with a dihedral angle of 1.37 (10)° between its pyrrole ring and fused benzene ring, greater than those in 1-(2-chlorophenyl)- 6-fluoro-2-methyl-1H-indole-3-carbonitrile [0.85 (6)°] (Yang et al., 2011) and 1-(4-bromophenyl)-2-methyl-1H-indole-3-carbonitrile [0.95 (16)°] (Yan & Qi, 2011b), but less than that [2.66 (6)°] of our previously reported 1-(4-methoxyphenyl)-2-methyl-1H-indole-3-carbonitrile (Yan & Qi, 2011a).

The indole ring forms an angle of 64.48 (7)° with the phenyl ring, being between those [58.41 (4)° & 58.85 (11) °] reported by our group (Yan & Qi, 2011a,b), and that [80.91 (5)°] reported by Yang et al. (2011).

In the crystal packing, weak C—H···π interaction were observed, establishing the packing (Table 1).

Related literature top

For the synthesis of the title compound, see: Du et al. (2006). For its precursor, see: Jin et al. (2009). For related structures, see: Yang et al. (2011); Yan & Qi (2011a,b).

Experimental top

The title compound was prepared according to the method of the literature (Du, et al., 2006). Colourless prisms were grown from a mixture of ethyl acetate and petroleum ether.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å)and refined as riding with Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3).

Structure description top

In our continuous investigation about indole derivatives, herein, we report the title compound (I). In the molecular structure (Fig. 1), the indole ring is almost planar with a dihedral angle of 1.37 (10)° between its pyrrole ring and fused benzene ring, greater than those in 1-(2-chlorophenyl)- 6-fluoro-2-methyl-1H-indole-3-carbonitrile [0.85 (6)°] (Yang et al., 2011) and 1-(4-bromophenyl)-2-methyl-1H-indole-3-carbonitrile [0.95 (16)°] (Yan & Qi, 2011b), but less than that [2.66 (6)°] of our previously reported 1-(4-methoxyphenyl)-2-methyl-1H-indole-3-carbonitrile (Yan & Qi, 2011a).

The indole ring forms an angle of 64.48 (7)° with the phenyl ring, being between those [58.41 (4)° & 58.85 (11) °] reported by our group (Yan & Qi, 2011a,b), and that [80.91 (5)°] reported by Yang et al. (2011).

In the crystal packing, weak C—H···π interaction were observed, establishing the packing (Table 1).

For the synthesis of the title compound, see: Du et al. (2006). For its precursor, see: Jin et al. (2009). For related structures, see: Yang et al. (2011); Yan & Qi (2011a,b).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of molecule one of (I) with the atom-numbering scheme and 50% probability displacement ellipsoids.
6-Methoxy-2-methyl-1-phenyl-1H-indole-3-carbonitrile top
Crystal data top
C17H14N2OZ = 2
Mr = 262.30F(000) = 276
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3699 (7) ÅCell parameters from 2377 reflections
b = 10.6084 (10) Åθ = 2.0–28.1°
c = 10.8139 (11) ŵ = 0.08 mm1
α = 70.059 (10)°T = 113 K
β = 79.455 (13)°Prism, colorless
γ = 78.869 (12)°0.24 × 0.20 × 0.20 mm
V = 668.55 (12) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
3157 independent reflections
Radiation source: fine-focus sealed tube1404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 14.22 pixels mm-1θmax = 28.0°, θmin = 2.0°
ω and φ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1313
Tmin = 0.981, Tmax = 0.984l = 1414
7078 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
3157 reflectionsΔρmax = 0.36 e Å3
184 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (4)
Crystal data top
C17H14N2Oγ = 78.869 (12)°
Mr = 262.30V = 668.55 (12) Å3
Triclinic, P1Z = 2
a = 6.3699 (7) ÅMo Kα radiation
b = 10.6084 (10) ŵ = 0.08 mm1
c = 10.8139 (11) ÅT = 113 K
α = 70.059 (10)°0.24 × 0.20 × 0.20 mm
β = 79.455 (13)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3157 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
1404 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.052
7078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.89Δρmax = 0.36 e Å3
3157 reflectionsΔρmin = 0.25 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.04602 (18)0.50144 (11)0.16822 (10)0.0270 (3)
N10.4880 (2)0.22413 (13)0.23013 (11)0.0196 (3)
N20.1580 (2)0.13570 (16)0.67436 (13)0.0360 (4)
C10.6199 (3)0.29364 (16)0.26611 (14)0.0191 (4)
C20.7805 (3)0.36887 (16)0.18802 (15)0.0211 (4)
H20.81730.37790.09650.025*
C30.8845 (3)0.42998 (17)0.24916 (15)0.0226 (4)
C40.8278 (3)0.41970 (18)0.38350 (15)0.0260 (4)
H40.90080.46340.42280.031*
C50.6652 (3)0.34576 (17)0.45878 (15)0.0257 (4)
H50.62610.33920.54960.031*
C60.5590 (3)0.28104 (17)0.40116 (14)0.0203 (4)
C70.3836 (3)0.20116 (17)0.44466 (14)0.0220 (4)
C80.3453 (3)0.16698 (17)0.33986 (15)0.0217 (4)
C90.1853 (3)0.08298 (18)0.33621 (15)0.0264 (4)
H9A0.21200.06570.25080.040*
H9B0.03920.13140.34720.040*
H9C0.19960.00330.40820.040*
C101.1759 (3)0.55522 (18)0.22829 (15)0.0303 (5)
H10A1.08620.62540.26220.045*
H10B1.29250.59470.16200.045*
H10C1.23770.48230.30160.045*
C110.2601 (3)0.16396 (18)0.57217 (16)0.0261 (4)
C120.5114 (3)0.20522 (17)0.10210 (14)0.0194 (4)
C130.3439 (3)0.25740 (17)0.02478 (15)0.0238 (4)
H130.21710.30880.05390.029*
C140.3643 (3)0.23346 (17)0.09557 (15)0.0266 (4)
H140.24880.26550.14800.032*
C150.5530 (3)0.16287 (17)0.13911 (15)0.0251 (4)
H150.56660.14720.22180.030*
C160.7218 (3)0.11496 (17)0.06358 (15)0.0253 (4)
H160.85220.06840.09520.030*
C170.7001 (3)0.13519 (17)0.05889 (15)0.0227 (4)
H170.81420.10110.11230.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (8)0.0277 (8)0.0277 (6)0.0125 (6)0.0001 (5)0.0083 (6)
N10.0208 (8)0.0226 (9)0.0161 (7)0.0061 (7)0.0003 (6)0.0068 (6)
N20.0381 (11)0.0441 (11)0.0254 (8)0.0143 (8)0.0003 (7)0.0082 (8)
C10.0194 (10)0.0185 (9)0.0192 (8)0.0011 (8)0.0035 (7)0.0061 (7)
C20.0219 (10)0.0211 (10)0.0181 (8)0.0020 (8)0.0005 (7)0.0052 (7)
C30.0215 (10)0.0199 (10)0.0243 (9)0.0040 (8)0.0002 (8)0.0052 (7)
C40.0269 (11)0.0283 (11)0.0262 (9)0.0073 (9)0.0047 (8)0.0105 (8)
C50.0316 (11)0.0274 (11)0.0179 (8)0.0061 (9)0.0034 (8)0.0058 (8)
C60.0207 (10)0.0218 (10)0.0169 (8)0.0015 (8)0.0025 (7)0.0049 (7)
C70.0239 (11)0.0213 (10)0.0182 (8)0.0034 (8)0.0007 (7)0.0036 (7)
C80.0196 (10)0.0210 (10)0.0210 (9)0.0017 (8)0.0007 (7)0.0046 (7)
C90.0274 (11)0.0256 (11)0.0248 (9)0.0066 (9)0.0001 (8)0.0063 (8)
C100.0268 (11)0.0261 (11)0.0388 (11)0.0105 (9)0.0085 (8)0.0056 (9)
C110.0303 (11)0.0261 (11)0.0237 (9)0.0086 (9)0.0048 (8)0.0070 (8)
C120.0197 (10)0.0195 (10)0.0180 (8)0.0042 (8)0.0010 (7)0.0057 (7)
C130.0210 (10)0.0241 (11)0.0265 (9)0.0005 (8)0.0025 (8)0.0106 (8)
C140.0298 (11)0.0260 (11)0.0246 (9)0.0039 (9)0.0089 (8)0.0062 (8)
C150.0329 (12)0.0238 (10)0.0190 (9)0.0065 (9)0.0011 (8)0.0070 (8)
C160.0251 (11)0.0239 (10)0.0247 (9)0.0023 (8)0.0011 (8)0.0079 (8)
C170.0222 (10)0.0216 (10)0.0234 (9)0.0027 (8)0.0040 (8)0.0057 (8)
Geometric parameters (Å, º) top
O1—C31.3848 (17)C8—C91.491 (2)
O1—C101.4367 (17)C9—H9A0.9800
N1—C81.3891 (18)C9—H9B0.9800
N1—C11.3984 (19)C9—H9C0.9800
N1—C121.4428 (18)C10—H10A0.9800
N2—C111.1491 (17)C10—H10B0.9800
C1—C21.392 (2)C10—H10C0.9800
C1—C61.4074 (18)C12—C171.379 (2)
C2—C31.384 (2)C12—C131.388 (2)
C2—H20.9500C13—C141.388 (2)
C3—C41.4028 (19)C13—H130.9500
C4—C51.386 (2)C14—C151.383 (2)
C4—H40.9500C14—H140.9500
C5—C61.394 (2)C15—C161.382 (2)
C5—H50.9500C15—H150.9500
C6—C71.445 (2)C16—C171.3908 (19)
C7—C81.375 (2)C16—H160.9500
C7—C111.424 (2)C17—H170.9500
C3—O1—C10118.09 (12)H9A—C9—H9B109.5
C8—N1—C1109.28 (12)C8—C9—H9C109.5
C8—N1—C12125.76 (13)H9A—C9—H9C109.5
C1—N1—C12124.74 (12)H9B—C9—H9C109.5
C2—C1—N1129.25 (13)O1—C10—H10A109.5
C2—C1—C6122.54 (14)O1—C10—H10B109.5
N1—C1—C6108.17 (13)H10A—C10—H10B109.5
C3—C2—C1117.25 (13)O1—C10—H10C109.5
C3—C2—H2121.4H10A—C10—H10C109.5
C1—C2—H2121.4H10B—C10—H10C109.5
C2—C3—O1115.18 (13)N2—C11—C7178.9 (2)
C2—C3—C4121.71 (14)C17—C12—C13121.16 (15)
O1—C3—C4123.10 (14)C17—C12—N1119.28 (15)
C5—C4—C3119.96 (15)C13—C12—N1119.56 (14)
C5—C4—H4120.0C14—C13—C12119.08 (15)
C3—C4—H4120.0C14—C13—H13120.5
C4—C5—C6119.97 (14)C12—C13—H13120.5
C4—C5—H5120.0C15—C14—C13119.90 (16)
C6—C5—H5120.0C15—C14—H14120.0
C5—C6—C1118.55 (14)C13—C14—H14120.0
C5—C6—C7135.72 (14)C16—C15—C14120.69 (15)
C1—C6—C7105.69 (13)C16—C15—H15119.7
C8—C7—C11123.12 (16)C14—C15—H15119.7
C8—C7—C6108.95 (13)C15—C16—C17119.69 (16)
C11—C7—C6127.90 (15)C15—C16—H16120.2
C7—C8—N1107.91 (14)C17—C16—H16120.2
C7—C8—C9129.08 (14)C12—C17—C16119.42 (16)
N1—C8—C9123.01 (13)C12—C17—H17120.3
C8—C9—H9A109.5C16—C17—H17120.3
C8—C9—H9B109.5
C8—N1—C1—C2177.94 (16)C11—C7—C8—N1177.40 (15)
C12—N1—C1—C27.2 (3)C6—C7—C8—N10.93 (19)
C8—N1—C1—C60.32 (18)C11—C7—C8—C93.4 (3)
C12—N1—C1—C6175.17 (14)C6—C7—C8—C9178.30 (17)
N1—C1—C2—C3178.75 (16)C1—N1—C8—C70.78 (19)
C6—C1—C2—C31.4 (2)C12—N1—C8—C7175.56 (15)
C1—C2—C3—O1178.75 (14)C1—N1—C8—C9178.50 (16)
C1—C2—C3—C41.5 (2)C12—N1—C8—C93.7 (3)
C10—O1—C3—C2173.49 (15)C8—C7—C11—N283 (10)
C10—O1—C3—C46.8 (2)C6—C7—C11—N295 (10)
C2—C3—C4—C50.6 (3)C8—N1—C12—C17112.79 (18)
O1—C3—C4—C5179.64 (16)C1—N1—C12—C1761.2 (2)
C3—C4—C5—C60.4 (3)C8—N1—C12—C1367.1 (2)
C4—C5—C6—C10.4 (3)C1—N1—C12—C13118.94 (17)
C4—C5—C6—C7177.77 (18)C17—C12—C13—C142.7 (2)
C2—C1—C6—C50.5 (2)N1—C12—C13—C14177.16 (14)
N1—C1—C6—C5178.30 (15)C12—C13—C14—C152.4 (2)
C2—C1—C6—C7177.58 (15)C13—C14—C15—C160.4 (2)
N1—C1—C6—C70.24 (18)C14—C15—C16—C171.5 (2)
C5—C6—C7—C8178.28 (19)C13—C12—C17—C160.8 (2)
C1—C6—C7—C80.72 (19)N1—C12—C17—C16179.00 (14)
C5—C6—C7—C110.1 (3)C15—C16—C17—C121.3 (2)
C1—C6—C7—C11177.50 (17)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C8, C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg2i0.982.783.701 (2)156
C10—H10B···Cg3ii0.982.653.516 (2)148
C10—H10C···Cg1iii0.982.733.509 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O
Mr262.30
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.3699 (7), 10.6084 (10), 10.8139 (11)
α, β, γ (°)70.059 (10), 79.455 (13), 78.869 (12)
V3)668.55 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7078, 3157, 1404
Rint0.052
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 0.89
No. of reflections3157
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C8, C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg2i0.982.783.701 (2)156
C10—H10B···Cg3ii0.982.653.516 (2)148
C10—H10C···Cg1iii0.982.733.509 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

XQ is grateful for financial support of this project by the China Postdoctoral Science Foundation (200904507610).

References

First citationDu, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919–5922.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Q. & Qi, X. (2011a). Acta Cryst. E67, o2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, Q. & Qi, X. (2011b). Acta Cryst. E67, o2509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, K., Li, P.-F., Liu, Y. & Fang, Z.-Z. (2011). Acta Cryst. E67, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds