organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{(1E)-1-[(3-{(E)-[1-(2-Hy­dr­oxy-4-meth­­oxy­phen­yl)ethyl­­idene]amino}-2,2-di­methyl­prop­yl)imino]­eth­yl}-5-meth­­oxy­phenol

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, K. N. Toosi University of Technology, PO Box, 16315-1618, Tehran, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 19 September 2011; accepted 21 September 2011; online 30 September 2011)

Mol­ecules of the title compound, C23H30N2O4, are located on a crystallographic mirror plane. The mol­ecule has a curved shape with the dihedral angle formed between the two benzene rings being 55.26 (5)°. Intra­molecular O—H⋯N hydrogen bonds are noted. In the crystal, supra­molecular layers are formed in the ac plane owing to the presence of C—H⋯π inter­actions.

Related literature

For our previous work on Schiff base complexes, see: Rayati et al. (2007[Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545-1548.], 2010[Rayati, S., Zakavi, S., Koliaei, M., Wojtczak, A. & Kozakiewicz, A. (2010). Inorg. Chem. Commun. 13, 203-207.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N2O4

  • Mr = 398.49

  • Orthorhombic, P n m a

  • a = 10.0764 (7) Å

  • b = 36.069 (2) Å

  • c = 5.8322 (4) Å

  • V = 2119.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.793, Tmax = 1.000

  • 6816 measured reflections

  • 2419 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.155

  • S = 1.08

  • 2419 reflections

  • 141 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (1) 1.70 (2) 2.507 (2) 157 (4)
C7—H7c⋯Cg1i 0.96 2.75 3.547 (2) 141
C9—H9b⋯Cg1ii 0.96 2.66 3.456 (2) 140
Symmetry codes: (i) [x-{\script{3\over 2}}, y, -z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystallographic investigation of the title compound, (I), was motivated by recent research in Schiff base complexes (Rayati et al., 2007; Rayati et al., 2010). The molecule of (I), Fig. 1, has crystallographically imposed mirror symmetry. The dihedral angle formed between the two benzene rings is 55.26 (5) ° indicating that, overall, the molecule has a curved shape. The presence of an intramolecular O—H···N hydrogen bond is noted, Table 1. The methoxy group is co-planar with the benzene ring to which it is attached as seen in the value of the C7—O2—C4—C3 torsion angle of -3.4 (3) °.

Molecules are assembled into layers in the ac plane through the agency of C—H···π interactions, Table 1 and Fig. 2, formed by methyl-H and the (C1—C6) benzene ring, indicating that the latter is bridging. Layers stack along the b axis, Fig. 3.

Related literature top

For our previous work on Schiff base complexes, see: Rayati et al. (2007, 2010).

Experimental top

To a stirred ethanolic solution (30 ml) of 2,2-dimethylpropylenediamine (0.102 g, 1 mmol), 2-hydroxy-4-methoxyacetophenone (0.332 g, 2 mmol) was added. The bright-yellow solution was stirred and heated under reflux for 1 h. Crystals were obtained by evaporation of an ethanol solution of the product at room temperature. Yield: 85%; M.pt. 423 K. Selected FT—IR data (cm-1): 3427 ν(O—H), 2929–2965 ν(C—H), 1607 ν(CN), 1446 ν(CC), 1022 ν(C—O). 1H NMR (δ): 1.23 (s, 6H, C(CH3)2), 2.31 (s, 6H, OCH3C N), 3.47 (s, 4H, NCH2), 3.80 (s, 6H, OCH3), 6.24–7.37 (m, 6H, ArH), 12.35 (s, 2H, OH) p.p.m..

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Structure description top

The crystallographic investigation of the title compound, (I), was motivated by recent research in Schiff base complexes (Rayati et al., 2007; Rayati et al., 2010). The molecule of (I), Fig. 1, has crystallographically imposed mirror symmetry. The dihedral angle formed between the two benzene rings is 55.26 (5) ° indicating that, overall, the molecule has a curved shape. The presence of an intramolecular O—H···N hydrogen bond is noted, Table 1. The methoxy group is co-planar with the benzene ring to which it is attached as seen in the value of the C7—O2—C4—C3 torsion angle of -3.4 (3) °.

Molecules are assembled into layers in the ac plane through the agency of C—H···π interactions, Table 1 and Fig. 2, formed by methyl-H and the (C1—C6) benzene ring, indicating that the latter is bridging. Layers stack along the b axis, Fig. 3.

For our previous work on Schiff base complexes, see: Rayati et al. (2007, 2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecule has mirror symmetry and the unlabelled atoms are related by the symmetry operation x, 3/2 - y, z.
[Figure 2] Fig. 2. Supramolecular layer in the ac plane in (I) sustained by C—H···π interactions shown as purple dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I), highlighting the stacking of layers along the b axis. The C—H···π interactions are shown as purple dashed lines.
2-{(1E)-1-[(3-{(E)-[1-(2-Hydroxy-4- methoxyphenyl)ethylidene]amino}-2,2-dimethylpropyl)imino]ethyl}-5-methoxyphenol top
Crystal data top
C23H30N2O4F(000) = 856
Mr = 398.49Dx = 1.249 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2488 reflections
a = 10.0764 (7) Åθ = 2.3–27.5°
b = 36.069 (2) ŵ = 0.09 mm1
c = 5.8322 (4) ÅT = 294 K
V = 2119.7 (2) Å3Prism, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2419 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1952 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.4°
ω scanh = 913
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3346
Tmin = 0.793, Tmax = 1.000l = 57
6816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.9075P]
where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C23H30N2O4V = 2119.7 (2) Å3
Mr = 398.49Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.0764 (7) ŵ = 0.09 mm1
b = 36.069 (2) ÅT = 294 K
c = 5.8322 (4) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2419 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1952 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 1.000Rint = 0.039
6816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
2419 reflectionsΔρmin = 0.18 e Å3
141 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30246 (15)0.64954 (4)0.1933 (2)0.0531 (4)
H10.354 (3)0.6654 (8)0.256 (6)0.122 (13)*
O20.13785 (15)0.53184 (4)0.4322 (3)0.0574 (4)
N10.46777 (15)0.68176 (4)0.4452 (3)0.0419 (4)
C10.39243 (16)0.62163 (5)0.5332 (3)0.0352 (4)
C20.30646 (17)0.62129 (5)0.3409 (3)0.0372 (4)
C30.22205 (18)0.59119 (5)0.3013 (3)0.0409 (4)
H30.16820.59080.17190.049*
C40.21869 (18)0.56202 (5)0.4543 (3)0.0422 (4)
C50.3005 (2)0.56209 (5)0.6471 (3)0.0477 (5)
H50.29750.54250.75060.057*
C60.38514 (19)0.59118 (5)0.6829 (3)0.0436 (4)
H60.43990.59080.81120.052*
C70.0463 (2)0.53147 (6)0.2451 (5)0.0660 (6)
H7A0.00430.50890.24900.099*
H7B0.09420.53290.10310.099*
H7C0.01250.55230.25760.099*
C80.47861 (17)0.65354 (5)0.5787 (3)0.0360 (4)
C90.5749 (2)0.65215 (6)0.7746 (4)0.0538 (5)
H9A0.64380.67010.75040.081*
H9B0.61340.62780.78360.081*
H9C0.52930.65760.91510.081*
C100.54167 (19)0.71600 (5)0.4786 (4)0.0460 (5)
H10A0.62190.71530.38690.055*
H10B0.56740.71810.63840.055*
C110.4589 (2)0.75000.4108 (4)0.0342 (5)
C120.4327 (3)0.75000.1527 (4)0.0441 (6)
H12A0.51570.75000.07190.066*
H12B0.38300.77170.11210.066*0.50
H12C0.38300.72830.11210.066*0.50
C130.3269 (3)0.75000.5407 (5)0.0493 (7)
H13A0.34370.75000.70270.074*
H13B0.27700.72830.50050.074*0.50
H13C0.27700.77170.50050.074*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0641 (9)0.0448 (7)0.0504 (8)0.0113 (7)0.0195 (7)0.0126 (6)
O20.0598 (9)0.0403 (7)0.0721 (10)0.0103 (7)0.0096 (8)0.0061 (7)
N10.0415 (8)0.0358 (7)0.0482 (8)0.0012 (6)0.0100 (7)0.0021 (6)
C10.0334 (8)0.0348 (8)0.0375 (8)0.0061 (7)0.0004 (7)0.0005 (7)
C20.0387 (9)0.0364 (8)0.0365 (8)0.0052 (7)0.0004 (7)0.0000 (7)
C30.0405 (9)0.0397 (9)0.0425 (9)0.0020 (8)0.0043 (8)0.0016 (7)
C40.0394 (9)0.0352 (9)0.0518 (10)0.0020 (8)0.0028 (8)0.0021 (8)
C50.0526 (11)0.0398 (9)0.0507 (10)0.0033 (9)0.0001 (9)0.0104 (8)
C60.0434 (10)0.0439 (9)0.0435 (9)0.0057 (8)0.0071 (8)0.0054 (8)
C70.0645 (14)0.0506 (11)0.0829 (16)0.0150 (11)0.0162 (13)0.0018 (12)
C80.0310 (8)0.0375 (8)0.0396 (8)0.0071 (7)0.0012 (7)0.0025 (7)
C90.0536 (12)0.0484 (10)0.0594 (12)0.0001 (9)0.0215 (10)0.0064 (9)
C100.0389 (10)0.0398 (9)0.0594 (11)0.0008 (8)0.0164 (9)0.0033 (8)
C110.0301 (11)0.0377 (12)0.0348 (11)0.0000.0039 (9)0.000
C120.0476 (14)0.0482 (14)0.0366 (12)0.0000.0019 (11)0.000
C130.0399 (14)0.0658 (18)0.0422 (14)0.0000.0010 (11)0.000
Geometric parameters (Å, º) top
O1—C21.334 (2)C7—H7C0.9600
O1—H10.857 (10)C8—C91.500 (2)
O2—C41.366 (2)C9—H9A0.9600
O2—C71.429 (3)C9—H9B0.9600
N1—C81.286 (2)C9—H9C0.9600
N1—C101.455 (2)C10—C111.535 (2)
C1—C61.405 (2)C10—H10A0.9700
C1—C21.417 (2)C10—H10B0.9700
C1—C81.466 (2)C11—C121.528 (3)
C2—C31.399 (2)C11—C131.531 (3)
C3—C41.380 (3)C11—C10i1.535 (2)
C3—H30.9300C12—H12A0.9600
C4—C51.394 (3)C12—H12B0.9600
C5—C61.369 (3)C12—H12C0.9600
C5—H50.9300C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C7—H7A0.9600C13—H13C0.9600
C7—H7B0.9600
C2—O1—H1103 (3)C8—C9—H9A109.5
C4—O2—C7117.70 (16)C8—C9—H9B109.5
C8—N1—C10123.15 (15)H9A—C9—H9B109.5
C6—C1—C2116.94 (16)C8—C9—H9C109.5
C6—C1—C8122.15 (16)H9A—C9—H9C109.5
C2—C1—C8120.81 (15)H9B—C9—H9C109.5
O1—C2—C3117.90 (15)N1—C10—C11111.42 (14)
O1—C2—C1121.50 (16)N1—C10—H10A109.3
C3—C2—C1120.60 (16)C11—C10—H10A109.3
C4—C3—C2120.01 (17)N1—C10—H10B109.3
C4—C3—H3120.0C11—C10—H10B109.3
C2—C3—H3120.0H10A—C10—H10B108.0
O2—C4—C3124.15 (17)C12—C11—C13109.7 (2)
O2—C4—C5115.47 (16)C12—C11—C10110.34 (14)
C3—C4—C5120.38 (17)C13—C11—C10110.17 (14)
C6—C5—C4119.53 (17)C12—C11—C10i110.34 (14)
C6—C5—H5120.2C13—C11—C10i110.17 (14)
C4—C5—H5120.2C10—C11—C10i106.04 (19)
C5—C6—C1122.50 (17)C11—C12—H12A109.5
C5—C6—H6118.8C11—C12—H12B109.5
C1—C6—H6118.8H12A—C12—H12B109.5
O2—C7—H7A109.5C11—C12—H12C109.5
O2—C7—H7B109.5H12A—C12—H12C109.5
H7A—C7—H7B109.5H12B—C12—H12C109.5
O2—C7—H7C109.5C11—C13—H13A109.5
H7A—C7—H7C109.5C11—C13—H13B109.5
H7B—C7—H7C109.5H13A—C13—H13B109.5
N1—C8—C1117.46 (15)C11—C13—H13C109.5
N1—C8—C9122.87 (16)H13A—C13—H13C109.5
C1—C8—C9119.67 (15)H13B—C13—H13C109.5
C6—C1—C2—O1177.56 (17)C2—C1—C6—C50.5 (3)
C8—C1—C2—O11.1 (3)C8—C1—C6—C5176.91 (17)
C6—C1—C2—C32.0 (2)C10—N1—C8—C1176.40 (16)
C8—C1—C2—C3178.41 (16)C10—N1—C8—C93.9 (3)
O1—C2—C3—C4177.35 (17)C6—C1—C8—N1172.62 (17)
C1—C2—C3—C42.2 (3)C2—C1—C8—N13.6 (2)
C7—O2—C4—C33.4 (3)C6—C1—C8—C97.7 (3)
C7—O2—C4—C5176.26 (19)C2—C1—C8—C9176.04 (16)
C2—C3—C4—O2178.73 (17)C8—N1—C10—C11144.49 (18)
C2—C3—C4—C50.9 (3)N1—C10—C11—C1266.5 (2)
O2—C4—C5—C6179.79 (17)N1—C10—C11—C1354.8 (2)
C3—C4—C5—C60.5 (3)N1—C10—C11—C10i173.97 (11)
C4—C5—C6—C10.7 (3)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.70 (2)2.507 (2)157 (4)
C7—H7c···Cg1ii0.962.753.547 (2)141
C9—H9b···Cg1iii0.962.663.456 (2)140
Symmetry codes: (ii) x3/2, y, z1/2; (iii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H30N2O4
Mr398.49
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)294
a, b, c (Å)10.0764 (7), 36.069 (2), 5.8322 (4)
V3)2119.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.793, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6816, 2419, 1952
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.155, 1.08
No. of reflections2419
No. of parameters141
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.857 (10)1.695 (17)2.507 (2)157 (4)
C7—H7c···Cg1i0.962.753.547 (2)141
C9—H9b···Cg1ii0.962.663.456 (2)140
Symmetry codes: (i) x3/2, y, z1/2; (ii) x1/2, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

We gratefully acknowledge practical support of this study by K. N. Toosi University of Technology, Islamic Azad University (Saveh Branch), and thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.  Web of Science CrossRef CAS Google Scholar
First citationRayati, S., Zakavi, S., Koliaei, M., Wojtczak, A. & Kozakiewicz, A. (2010). Inorg. Chem. Commun. 13, 203–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds