organic compounds
9-Hydroxy-4,8-dimethyl-12-(piperidin-1-ylmethyl)-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one
aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah,40000 Marrakech, Morocco, bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr
The title compound, C20H31NO4, was synthesized from 9α-hydroxyparthenolide (9α-hydroxy-4,8-dimethyl-12-methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one), which was isolated from the chloroform extract of the aerial parts of Anvillea radiata. The molecule is built up from fused five-and ten-membered rings with the pipyridin-1-yl-methyl group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the six-membered ring display a chair conformation and the five-membered ring an with the C(H)–C–C(H) atom at the flap. The dihedral angle between the ten-membered ring and the lactone ring is 21.7 (4)°. The molecular conformation is stabilized by an O—H⋯N hydrogen bond and the is stabilized by weak intermolecular C—H⋯O interactions.
Related literature
For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the typical conformation of sesquiterpene see: Watson & Zabel (1982). For reactivity of this sesquiterpene, see: Hwang et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811038803/bt5649sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038803/bt5649Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038803/bt5649Isup3.cml
The mixture of 9α-hydroxyparthenolide (500 mg, 1.98 mmol) and one equivalent of pipyridine in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 584 mg (1.68 mmol) of 9- hydroxyl-4,8-dimethyl-12-(pipyrydin-1-ylmethyl)-3,14- dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one, which was recrystallized in ethyl acetate.
All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant
the could not be reliably determined and thus 1747 Friedel pairs were merged and any references to the were removed.Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in the traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with a high added value that can be used in the pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with an equivalent amount of pyridine in ethanol (Hwang et al., 2006) led to 9- hydroxyl-4,8-dimethyl-12-(pipyrydin-1-ylmethyl)- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one, in a yield of 89%. The structure of this new product was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyridin ring as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an φ = 69.5 (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyridin ring has a perfect chair conformation with QT = 0.5736 (14) Å, θ = 176.64 (14)° and φ2 = 143 (2)°. This is the typical conformation observed for other sesquiterpenes (Watson & Zabel, 1982). In the the molecules are linked by C—H···O intermolecular hydrogen bonds into zigzag chains along the a axis (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.
as indicated by Cremer & Pople (1975) puckering parameters Q = 0.2304 (12) Å andFor background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the typical conformation of sesquiterpene
see: Watson & Zabel (1982). For reactivity of this sesquiterpene, see: Hwang et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975).Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C20H31NO4 | F(000) = 380 |
Mr = 349.46 | Dx = 1.234 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 10503 reflections |
a = 11.8390 (6) Å | θ = 3.4–26.4° |
b = 6.7053 (3) Å | µ = 0.09 mm−1 |
c = 12.0875 (6) Å | T = 180 K |
β = 101.399 (5)° | Box, colorless |
V = 940.63 (8) Å3 | 0.44 × 0.13 × 0.11 mm |
Z = 2 |
Agilent Xcalibur Sapphire1 long nozzle diffractometer | 2096 independent reflections |
Radiation source: fine-focus sealed tube | 1996 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4°, θmin = 3.4° |
ω scan | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −8→8 |
Tmin = 0.858, Tmax = 1.000 | l = −15→15 |
10503 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0473P)2 + 0.0809P] where P = (Fo2 + 2Fc2)/3 |
2096 reflections | (Δ/σ)max < 0.001 |
229 parameters | Δρmax = 0.16 e Å−3 |
1 restraint | Δρmin = −0.16 e Å−3 |
C20H31NO4 | V = 940.63 (8) Å3 |
Mr = 349.46 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 11.8390 (6) Å | µ = 0.09 mm−1 |
b = 6.7053 (3) Å | T = 180 K |
c = 12.0875 (6) Å | 0.44 × 0.13 × 0.11 mm |
β = 101.399 (5)° |
Agilent Xcalibur Sapphire1 long nozzle diffractometer | 2096 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 1996 reflections with I > 2σ(I) |
Tmin = 0.858, Tmax = 1.000 | Rint = 0.024 |
10503 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 1 restraint |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.16 e Å−3 |
2096 reflections | Δρmin = −0.16 e Å−3 |
229 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.71467 (12) | 0.2598 (2) | 0.66934 (12) | 0.0185 (3) | |
H1 | 0.7678 | 0.1867 | 0.7306 | 0.022* | |
C2 | 0.78094 (12) | 0.3815 (2) | 0.60123 (12) | 0.0204 (3) | |
H2 | 0.7329 | 0.4808 | 0.5510 | 0.024* | |
C3 | 0.90205 (13) | 0.4403 (3) | 0.63599 (14) | 0.0242 (3) | |
C4 | 0.93406 (14) | 0.6394 (3) | 0.59414 (15) | 0.0320 (4) | |
H4A | 0.8832 | 0.6688 | 0.5206 | 0.038* | |
H4B | 1.0144 | 0.6341 | 0.5823 | 0.038* | |
C5 | 0.92313 (15) | 0.8072 (3) | 0.67800 (17) | 0.0341 (4) | |
H5A | 0.9905 | 0.8040 | 0.7413 | 0.041* | |
H5B | 0.9226 | 0.9379 | 0.6397 | 0.041* | |
C6 | 0.81409 (13) | 0.7844 (2) | 0.72347 (14) | 0.0265 (3) | |
H6 | 0.7440 | 0.7997 | 0.6703 | 0.032* | |
C7 | 0.80412 (13) | 0.7456 (3) | 0.82848 (14) | 0.0264 (3) | |
C8 | 0.68939 (14) | 0.6851 (2) | 0.85621 (13) | 0.0237 (3) | |
H8 | 0.6920 | 0.7171 | 0.9375 | 0.028* | |
C9 | 0.67106 (13) | 0.4587 (2) | 0.84106 (12) | 0.0202 (3) | |
H9A | 0.7448 | 0.3906 | 0.8720 | 0.024* | |
H9B | 0.6143 | 0.4157 | 0.8864 | 0.024* | |
C10 | 0.62893 (11) | 0.3886 (2) | 0.71874 (11) | 0.0172 (3) | |
H10 | 0.6103 | 0.5093 | 0.6700 | 0.021* | |
C11 | 0.52119 (12) | 0.2569 (2) | 0.70277 (11) | 0.0186 (3) | |
H11 | 0.5205 | 0.1808 | 0.7738 | 0.022* | |
C12 | 0.53608 (12) | 0.1144 (2) | 0.61067 (12) | 0.0207 (3) | |
C13 | 0.40794 (12) | 0.3691 (3) | 0.66791 (12) | 0.0216 (3) | |
H13A | 0.4040 | 0.4256 | 0.5916 | 0.026* | |
H13B | 0.3434 | 0.2737 | 0.6636 | 0.026* | |
C14 | 0.90140 (16) | 0.7399 (4) | 0.93004 (17) | 0.0431 (5) | |
H14A | 0.9745 | 0.7663 | 0.9063 | 0.065* | |
H14B | 0.9044 | 0.6079 | 0.9654 | 0.065* | |
H14C | 0.8886 | 0.8417 | 0.9844 | 0.065* | |
C15 | 0.97876 (14) | 0.3631 (3) | 0.74176 (16) | 0.0336 (4) | |
H15A | 1.0573 | 0.3466 | 0.7286 | 0.050* | |
H15B | 0.9497 | 0.2342 | 0.7621 | 0.050* | |
H15C | 0.9793 | 0.4583 | 0.8034 | 0.050* | |
C16 | 0.36161 (14) | 0.4537 (3) | 0.84869 (13) | 0.0241 (3) | |
H16A | 0.4219 | 0.3604 | 0.8864 | 0.029* | |
H16B | 0.2882 | 0.3791 | 0.8291 | 0.029* | |
C17 | 0.30269 (13) | 0.6655 (3) | 0.68699 (13) | 0.0258 (3) | |
H17A | 0.2298 | 0.5903 | 0.6649 | 0.031* | |
H17B | 0.3248 | 0.7164 | 0.6174 | 0.031* | |
C18 | 0.28408 (15) | 0.8390 (3) | 0.76082 (15) | 0.0316 (4) | |
H18A | 0.2196 | 0.9219 | 0.7207 | 0.038* | |
H18B | 0.3543 | 0.9228 | 0.7760 | 0.038* | |
C19 | 0.34845 (15) | 0.6219 (3) | 0.92854 (13) | 0.0315 (4) | |
H19A | 0.4229 | 0.6924 | 0.9513 | 0.038* | |
H19B | 0.3266 | 0.5668 | 0.9974 | 0.038* | |
C20 | 0.25678 (15) | 0.7677 (3) | 0.87217 (14) | 0.0341 (4) | |
H20A | 0.2539 | 0.8833 | 0.9225 | 0.041* | |
H20B | 0.1804 | 0.7019 | 0.8583 | 0.041* | |
N | 0.39312 (10) | 0.5309 (2) | 0.74545 (10) | 0.0202 (3) | |
O1 | 0.46527 (10) | 0.00689 (19) | 0.55635 (10) | 0.0299 (3) | |
O2 | 0.64460 (9) | 0.12085 (16) | 0.59253 (9) | 0.0211 (2) | |
O3 | 0.86868 (9) | 0.2885 (2) | 0.55096 (10) | 0.0295 (3) | |
O4 | 0.59735 (10) | 0.79420 (18) | 0.79140 (10) | 0.0297 (3) | |
H4 | 0.5376 | 0.7235 | 0.7795 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0182 (6) | 0.0179 (7) | 0.0187 (6) | −0.0003 (6) | 0.0017 (5) | −0.0029 (6) |
C2 | 0.0194 (7) | 0.0215 (7) | 0.0212 (7) | 0.0018 (6) | 0.0065 (6) | −0.0019 (6) |
C3 | 0.0180 (7) | 0.0247 (8) | 0.0314 (8) | −0.0006 (6) | 0.0081 (6) | −0.0036 (7) |
C4 | 0.0246 (8) | 0.0331 (10) | 0.0415 (9) | −0.0051 (7) | 0.0143 (7) | 0.0047 (8) |
C5 | 0.0301 (8) | 0.0225 (8) | 0.0514 (11) | −0.0055 (7) | 0.0119 (8) | 0.0035 (8) |
C6 | 0.0237 (7) | 0.0155 (7) | 0.0401 (9) | 0.0000 (6) | 0.0060 (6) | 0.0004 (7) |
C7 | 0.0242 (7) | 0.0188 (7) | 0.0344 (8) | −0.0023 (6) | 0.0015 (6) | −0.0065 (6) |
C8 | 0.0251 (7) | 0.0208 (7) | 0.0240 (7) | 0.0002 (6) | 0.0022 (6) | −0.0054 (6) |
C9 | 0.0217 (7) | 0.0215 (7) | 0.0169 (7) | −0.0015 (6) | 0.0024 (5) | −0.0015 (6) |
C10 | 0.0171 (6) | 0.0175 (7) | 0.0169 (7) | −0.0008 (5) | 0.0033 (5) | −0.0007 (5) |
C11 | 0.0192 (6) | 0.0200 (7) | 0.0167 (6) | −0.0033 (6) | 0.0041 (5) | 0.0000 (6) |
C12 | 0.0211 (7) | 0.0215 (7) | 0.0198 (6) | −0.0024 (6) | 0.0047 (5) | −0.0004 (6) |
C13 | 0.0188 (7) | 0.0284 (8) | 0.0178 (7) | −0.0012 (6) | 0.0041 (5) | −0.0021 (6) |
C14 | 0.0302 (9) | 0.0549 (13) | 0.0404 (10) | −0.0072 (9) | −0.0021 (7) | −0.0102 (10) |
C15 | 0.0217 (7) | 0.0288 (9) | 0.0470 (10) | 0.0011 (7) | −0.0012 (7) | −0.0003 (8) |
C16 | 0.0269 (7) | 0.0272 (8) | 0.0199 (7) | 0.0002 (7) | 0.0089 (6) | 0.0032 (6) |
C17 | 0.0235 (7) | 0.0325 (9) | 0.0221 (7) | 0.0055 (7) | 0.0057 (6) | 0.0052 (7) |
C18 | 0.0319 (8) | 0.0283 (9) | 0.0342 (9) | 0.0086 (7) | 0.0058 (7) | 0.0037 (7) |
C19 | 0.0377 (9) | 0.0373 (10) | 0.0202 (7) | 0.0049 (8) | 0.0078 (6) | −0.0008 (7) |
C20 | 0.0344 (9) | 0.0408 (10) | 0.0290 (8) | 0.0092 (9) | 0.0108 (7) | −0.0049 (8) |
N | 0.0188 (6) | 0.0247 (6) | 0.0178 (6) | 0.0011 (5) | 0.0057 (4) | 0.0031 (5) |
O1 | 0.0277 (6) | 0.0321 (7) | 0.0293 (6) | −0.0091 (5) | 0.0041 (5) | −0.0100 (5) |
O2 | 0.0207 (5) | 0.0207 (5) | 0.0226 (5) | −0.0025 (4) | 0.0058 (4) | −0.0058 (4) |
O3 | 0.0236 (5) | 0.0338 (6) | 0.0346 (6) | −0.0012 (5) | 0.0145 (5) | −0.0100 (6) |
O4 | 0.0244 (5) | 0.0211 (6) | 0.0431 (6) | 0.0033 (5) | 0.0051 (5) | −0.0017 (6) |
C1—O2 | 1.4541 (17) | C11—H11 | 1.0000 |
C1—C2 | 1.488 (2) | C12—O1 | 1.1982 (19) |
C1—C10 | 1.5401 (19) | C12—O2 | 1.3461 (17) |
C1—H1 | 1.0000 | C13—N | 1.466 (2) |
C2—O3 | 1.4444 (17) | C13—H13A | 0.9900 |
C2—C3 | 1.466 (2) | C13—H13B | 0.9900 |
C2—H2 | 1.0000 | C14—H14A | 0.9800 |
C3—O3 | 1.445 (2) | C14—H14B | 0.9800 |
C3—C4 | 1.503 (2) | C14—H14C | 0.9800 |
C3—C15 | 1.506 (2) | C15—H15A | 0.9800 |
C4—C5 | 1.537 (3) | C15—H15B | 0.9800 |
C4—H4A | 0.9900 | C15—H15C | 0.9800 |
C4—H4B | 0.9900 | C16—N | 1.4658 (19) |
C5—C6 | 1.508 (2) | C16—C19 | 1.512 (2) |
C5—H5A | 0.9900 | C16—H16A | 0.9900 |
C5—H5B | 0.9900 | C16—H16B | 0.9900 |
C6—C7 | 1.324 (2) | C17—N | 1.4699 (19) |
C6—H6 | 0.9500 | C17—C18 | 1.509 (2) |
C7—C14 | 1.509 (2) | C17—H17A | 0.9900 |
C7—C8 | 1.517 (2) | C17—H17B | 0.9900 |
C8—O4 | 1.4136 (19) | C18—C20 | 1.522 (2) |
C8—C9 | 1.540 (2) | C18—H18A | 0.9900 |
C8—H8 | 1.0000 | C18—H18B | 0.9900 |
C9—C10 | 1.5375 (19) | C19—C20 | 1.518 (3) |
C9—H9A | 0.9900 | C19—H19A | 0.9900 |
C9—H9B | 0.9900 | C19—H19B | 0.9900 |
C10—C11 | 1.5320 (19) | C20—H20A | 0.9900 |
C10—H10 | 1.0000 | C20—H20B | 0.9900 |
C11—C12 | 1.504 (2) | O4—H4 | 0.8400 |
C11—C13 | 1.523 (2) | ||
O2—C1—C2 | 107.15 (11) | C10—C11—H11 | 109.5 |
O2—C1—C10 | 105.68 (10) | O1—C12—O2 | 121.14 (14) |
C2—C1—C10 | 111.55 (12) | O1—C12—C11 | 128.04 (14) |
O2—C1—H1 | 110.8 | O2—C12—C11 | 110.82 (12) |
C2—C1—H1 | 110.8 | N—C13—C11 | 113.50 (11) |
C10—C1—H1 | 110.8 | N—C13—H13A | 108.9 |
O3—C2—C3 | 59.52 (9) | C11—C13—H13A | 108.9 |
O3—C2—C1 | 119.86 (13) | N—C13—H13B | 108.9 |
C3—C2—C1 | 125.56 (13) | C11—C13—H13B | 108.9 |
O3—C2—H2 | 113.7 | H13A—C13—H13B | 107.7 |
C3—C2—H2 | 113.7 | C7—C14—H14A | 109.5 |
C1—C2—H2 | 113.7 | C7—C14—H14B | 109.5 |
O3—C3—C2 | 59.49 (9) | H14A—C14—H14B | 109.5 |
O3—C3—C4 | 115.98 (14) | C7—C14—H14C | 109.5 |
C2—C3—C4 | 116.10 (14) | H14A—C14—H14C | 109.5 |
O3—C3—C15 | 113.34 (14) | H14B—C14—H14C | 109.5 |
C2—C3—C15 | 122.85 (14) | C3—C15—H15A | 109.5 |
C4—C3—C15 | 116.18 (14) | C3—C15—H15B | 109.5 |
C3—C4—C5 | 111.64 (14) | H15A—C15—H15B | 109.5 |
C3—C4—H4A | 109.3 | C3—C15—H15C | 109.5 |
C5—C4—H4A | 109.3 | H15A—C15—H15C | 109.5 |
C3—C4—H4B | 109.3 | H15B—C15—H15C | 109.5 |
C5—C4—H4B | 109.3 | N—C16—C19 | 110.83 (14) |
H4A—C4—H4B | 108.0 | N—C16—H16A | 109.5 |
C6—C5—C4 | 110.84 (14) | C19—C16—H16A | 109.5 |
C6—C5—H5A | 109.5 | N—C16—H16B | 109.5 |
C4—C5—H5A | 109.5 | C19—C16—H16B | 109.5 |
C6—C5—H5B | 109.5 | H16A—C16—H16B | 108.1 |
C4—C5—H5B | 109.5 | N—C17—C18 | 111.51 (12) |
H5A—C5—H5B | 108.1 | N—C17—H17A | 109.3 |
C7—C6—C5 | 127.93 (16) | C18—C17—H17A | 109.3 |
C7—C6—H6 | 116.0 | N—C17—H17B | 109.3 |
C5—C6—H6 | 116.0 | C18—C17—H17B | 109.3 |
C6—C7—C14 | 125.94 (16) | H17A—C17—H17B | 108.0 |
C6—C7—C8 | 121.18 (14) | C17—C18—C20 | 111.23 (15) |
C14—C7—C8 | 112.72 (15) | C17—C18—H18A | 109.4 |
O4—C8—C7 | 111.41 (13) | C20—C18—H18A | 109.4 |
O4—C8—C9 | 111.66 (12) | C17—C18—H18B | 109.4 |
C7—C8—C9 | 110.39 (13) | C20—C18—H18B | 109.4 |
O4—C8—H8 | 107.7 | H18A—C18—H18B | 108.0 |
C7—C8—H8 | 107.7 | C16—C19—C20 | 110.39 (13) |
C9—C8—H8 | 107.7 | C16—C19—H19A | 109.6 |
C10—C9—C8 | 115.28 (13) | C20—C19—H19A | 109.6 |
C10—C9—H9A | 108.5 | C16—C19—H19B | 109.6 |
C8—C9—H9A | 108.5 | C20—C19—H19B | 109.6 |
C10—C9—H9B | 108.5 | H19A—C19—H19B | 108.1 |
C8—C9—H9B | 108.5 | C19—C20—C18 | 109.95 (14) |
H9A—C9—H9B | 107.5 | C19—C20—H20A | 109.7 |
C11—C10—C9 | 113.65 (11) | C18—C20—H20A | 109.7 |
C11—C10—C1 | 102.95 (12) | C19—C20—H20B | 109.7 |
C9—C10—C1 | 115.52 (12) | C18—C20—H20B | 109.7 |
C11—C10—H10 | 108.1 | H20A—C20—H20B | 108.2 |
C9—C10—H10 | 108.1 | C16—N—C13 | 111.44 (13) |
C1—C10—H10 | 108.1 | C16—N—C17 | 110.02 (12) |
C12—C11—C13 | 109.57 (11) | C13—N—C17 | 108.34 (11) |
C12—C11—C10 | 104.07 (11) | C12—O2—C1 | 111.05 (11) |
C13—C11—C10 | 114.55 (13) | C2—O3—C3 | 60.99 (9) |
C12—C11—H11 | 109.5 | C8—O4—H4 | 109.5 |
C13—C11—H11 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···N | 0.84 | 2.12 | 2.9564 (14) | 176 |
C2—H2···O1i | 1.00 | 2.45 | 3.2622 (15) | 138 |
C4—H4B···O3ii | 0.99 | 2.54 | 3.3387 (16) | 137 |
C6—H6···O2iii | 0.95 | 2.54 | 3.2206 (15) | 128 |
C13—H13A···O2i | 0.99 | 2.55 | 3.5178 (15) | 166 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y+1/2, −z+1; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C20H31NO4 |
Mr | 349.46 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 180 |
a, b, c (Å) | 11.8390 (6), 6.7053 (3), 12.0875 (6) |
β (°) | 101.399 (5) |
V (Å3) | 940.63 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.44 × 0.13 × 0.11 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire1 long nozzle |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.858, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10503, 2096, 1996 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.071, 1.05 |
No. of reflections | 2096 |
No. of parameters | 229 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.16 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···N | 0.84 | 2.12 | 2.9564 (14) | 176 |
C2—H2···O1i | 1.00 | 2.45 | 3.2622 (15) | 138 |
C4—H4B···O3ii | 0.99 | 2.54 | 3.3387 (16) | 137 |
C6—H6···O2iii | 0.95 | 2.54 | 3.2206 (15) | 128 |
C13—H13A···O2i | 0.99 | 2.55 | 3.5178 (15) | 166 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y+1/2, −z+1; (iii) x, y+1, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.
References
Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405. CrossRef CAS PubMed Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hwang, D.-R, Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91. Google Scholar
Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in the traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with a high added value that can be used in the pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with an equivalent amount of pyridine in ethanol (Hwang et al., 2006) led to 9- hydroxyl-4,8-dimethyl-12-(pipyrydin-1-ylmethyl)- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one, in a yield of 89%. The structure of this new product was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyridin ring as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.2304 (12) Å and φ = 69.5 (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyridin ring has a perfect chair conformation with QT = 0.5736 (14) Å, θ = 176.64 (14)° and φ2 = 143 (2)°. This is the typical conformation observed for other sesquiterpenes lactones (Watson & Zabel, 1982). In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into zigzag chains along the a axis (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.