organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Hy­dr­oxy-4,8-di­methyl-12-(piperidin-1-ylmeth­yl)-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah,40000 Marrakech, Morocco, bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 20 September 2011; accepted 21 September 2011; online 30 September 2011)

The title compound, C20H31NO4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxa-tricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five-and ten-membered rings with the pipyridin-1-yl-methyl group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the six-membered ring display a chair conformation and the five-membered ring an envelope conformation with the C(H)–C–C(H) atom at the flap. The dihedral angle between the ten-membered ring and the lactone ring is 21.7 (4)°. The mol­ecular conformation is stabilized by an O—H⋯N hydrogen bond and the crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); Bellakhdar (1997[Bellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272-274. Paris: Edition Ibis Press.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the typical conformation of sesquiterpene lactones, see: Watson & Zabel (1982[Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834-838.]). For reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R, Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H31NO4

  • Mr = 349.46

  • Monoclinic, P 21

  • a = 11.8390 (6) Å

  • b = 6.7053 (3) Å

  • c = 12.0875 (6) Å

  • β = 101.399 (5)°

  • V = 940.63 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.44 × 0.13 × 0.11 mm

Data collection
  • Agilent Xcalibur Sapphire1 long nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.858, Tmax = 1.000

  • 10503 measured reflections

  • 2096 independent reflections

  • 1996 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.05

  • 2096 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N 0.84 2.12 2.9564 (14) 176
C2—H2⋯O1i 1.00 2.45 3.2622 (15) 138
C4—H4B⋯O3ii 0.99 2.54 3.3387 (16) 137
C6—H6⋯O2iii 0.95 2.54 3.2206 (15) 128
C13—H13A⋯O2i 0.99 2.55 3.5178 (15) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in the traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with a high added value that can be used in the pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with an equivalent amount of pyridine in ethanol (Hwang et al., 2006) led to 9- hydroxyl-4,8-dimethyl-12-(pipyrydin-1-ylmethyl)- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one, in a yield of 89%. The structure of this new product was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyridin ring as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.2304 (12) Å and φ = 69.5 (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyridin ring has a perfect chair conformation with QT = 0.5736 (14) Å, θ = 176.64 (14)° and φ2 = 143 (2)°. This is the typical conformation observed for other sesquiterpenes lactones (Watson & Zabel, 1982). In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into zigzag chains along the a axis (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the typical conformation of sesquiterpene lactones, see: Watson & Zabel (1982). For reactivity of this sesquiterpene, see: Hwang et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The mixture of 9α-hydroxyparthenolide (500 mg, 1.98 mmol) and one equivalent of pipyridine in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 584 mg (1.68 mmol) of 9- hydroxyl-4,8-dimethyl-12-(pipyrydin-1-ylmethyl)-3,14- dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one, which was recrystallized in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1747 Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in the traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with a high added value that can be used in the pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with an equivalent amount of pyridine in ethanol (Hwang et al., 2006) led to 9- hydroxyl-4,8-dimethyl-12-(pipyrydin-1-ylmethyl)- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one, in a yield of 89%. The structure of this new product was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyridin ring as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.2304 (12) Å and φ = 69.5 (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyridin ring has a perfect chair conformation with QT = 0.5736 (14) Å, θ = 176.64 (14)° and φ2 = 143 (2)°. This is the typical conformation observed for other sesquiterpenes lactones (Watson & Zabel, 1982). In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into zigzag chains along the a axis (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the typical conformation of sesquiterpene lactones, see: Watson & Zabel (1982). For reactivity of this sesquiterpene, see: Hwang et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
9-Hydroxy-4,8-dimethyl-12-(piperidin-1-ylmethyl)-3,14-dioxatricyclo [9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C20H31NO4F(000) = 380
Mr = 349.46Dx = 1.234 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10503 reflections
a = 11.8390 (6) Åθ = 3.4–26.4°
b = 6.7053 (3) ŵ = 0.09 mm1
c = 12.0875 (6) ÅT = 180 K
β = 101.399 (5)°Box, colorless
V = 940.63 (8) Å30.44 × 0.13 × 0.11 mm
Z = 2
Data collection top
Agilent Xcalibur Sapphire1 long nozzle
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube1996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 88
Tmin = 0.858, Tmax = 1.000l = 1515
10503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.0809P]
where P = (Fo2 + 2Fc2)/3
2096 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C20H31NO4V = 940.63 (8) Å3
Mr = 349.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.8390 (6) ŵ = 0.09 mm1
b = 6.7053 (3) ÅT = 180 K
c = 12.0875 (6) Å0.44 × 0.13 × 0.11 mm
β = 101.399 (5)°
Data collection top
Agilent Xcalibur Sapphire1 long nozzle
diffractometer
2096 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1996 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.024
10503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2096 reflectionsΔρmin = 0.16 e Å3
229 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71467 (12)0.2598 (2)0.66934 (12)0.0185 (3)
H10.76780.18670.73060.022*
C20.78094 (12)0.3815 (2)0.60123 (12)0.0204 (3)
H20.73290.48080.55100.024*
C30.90205 (13)0.4403 (3)0.63599 (14)0.0242 (3)
C40.93406 (14)0.6394 (3)0.59414 (15)0.0320 (4)
H4A0.88320.66880.52060.038*
H4B1.01440.63410.58230.038*
C50.92313 (15)0.8072 (3)0.67800 (17)0.0341 (4)
H5A0.99050.80400.74130.041*
H5B0.92260.93790.63970.041*
C60.81409 (13)0.7844 (2)0.72347 (14)0.0265 (3)
H60.74400.79970.67030.032*
C70.80412 (13)0.7456 (3)0.82848 (14)0.0264 (3)
C80.68939 (14)0.6851 (2)0.85621 (13)0.0237 (3)
H80.69200.71710.93750.028*
C90.67106 (13)0.4587 (2)0.84106 (12)0.0202 (3)
H9A0.74480.39060.87200.024*
H9B0.61430.41570.88640.024*
C100.62893 (11)0.3886 (2)0.71874 (11)0.0172 (3)
H100.61030.50930.67000.021*
C110.52119 (12)0.2569 (2)0.70277 (11)0.0186 (3)
H110.52050.18080.77380.022*
C120.53608 (12)0.1144 (2)0.61067 (12)0.0207 (3)
C130.40794 (12)0.3691 (3)0.66791 (12)0.0216 (3)
H13A0.40400.42560.59160.026*
H13B0.34340.27370.66360.026*
C140.90140 (16)0.7399 (4)0.93004 (17)0.0431 (5)
H14A0.97450.76630.90630.065*
H14B0.90440.60790.96540.065*
H14C0.88860.84170.98440.065*
C150.97876 (14)0.3631 (3)0.74176 (16)0.0336 (4)
H15A1.05730.34660.72860.050*
H15B0.94970.23420.76210.050*
H15C0.97930.45830.80340.050*
C160.36161 (14)0.4537 (3)0.84869 (13)0.0241 (3)
H16A0.42190.36040.88640.029*
H16B0.28820.37910.82910.029*
C170.30269 (13)0.6655 (3)0.68699 (13)0.0258 (3)
H17A0.22980.59030.66490.031*
H17B0.32480.71640.61740.031*
C180.28408 (15)0.8390 (3)0.76082 (15)0.0316 (4)
H18A0.21960.92190.72070.038*
H18B0.35430.92280.77600.038*
C190.34845 (15)0.6219 (3)0.92854 (13)0.0315 (4)
H19A0.42290.69240.95130.038*
H19B0.32660.56680.99740.038*
C200.25678 (15)0.7677 (3)0.87217 (14)0.0341 (4)
H20A0.25390.88330.92250.041*
H20B0.18040.70190.85830.041*
N0.39312 (10)0.5309 (2)0.74545 (10)0.0202 (3)
O10.46527 (10)0.00689 (19)0.55635 (10)0.0299 (3)
O20.64460 (9)0.12085 (16)0.59253 (9)0.0211 (2)
O30.86868 (9)0.2885 (2)0.55096 (10)0.0295 (3)
O40.59735 (10)0.79420 (18)0.79140 (10)0.0297 (3)
H40.53760.72350.77950.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (6)0.0179 (7)0.0187 (6)0.0003 (6)0.0017 (5)0.0029 (6)
C20.0194 (7)0.0215 (7)0.0212 (7)0.0018 (6)0.0065 (6)0.0019 (6)
C30.0180 (7)0.0247 (8)0.0314 (8)0.0006 (6)0.0081 (6)0.0036 (7)
C40.0246 (8)0.0331 (10)0.0415 (9)0.0051 (7)0.0143 (7)0.0047 (8)
C50.0301 (8)0.0225 (8)0.0514 (11)0.0055 (7)0.0119 (8)0.0035 (8)
C60.0237 (7)0.0155 (7)0.0401 (9)0.0000 (6)0.0060 (6)0.0004 (7)
C70.0242 (7)0.0188 (7)0.0344 (8)0.0023 (6)0.0015 (6)0.0065 (6)
C80.0251 (7)0.0208 (7)0.0240 (7)0.0002 (6)0.0022 (6)0.0054 (6)
C90.0217 (7)0.0215 (7)0.0169 (7)0.0015 (6)0.0024 (5)0.0015 (6)
C100.0171 (6)0.0175 (7)0.0169 (7)0.0008 (5)0.0033 (5)0.0007 (5)
C110.0192 (6)0.0200 (7)0.0167 (6)0.0033 (6)0.0041 (5)0.0000 (6)
C120.0211 (7)0.0215 (7)0.0198 (6)0.0024 (6)0.0047 (5)0.0004 (6)
C130.0188 (7)0.0284 (8)0.0178 (7)0.0012 (6)0.0041 (5)0.0021 (6)
C140.0302 (9)0.0549 (13)0.0404 (10)0.0072 (9)0.0021 (7)0.0102 (10)
C150.0217 (7)0.0288 (9)0.0470 (10)0.0011 (7)0.0012 (7)0.0003 (8)
C160.0269 (7)0.0272 (8)0.0199 (7)0.0002 (7)0.0089 (6)0.0032 (6)
C170.0235 (7)0.0325 (9)0.0221 (7)0.0055 (7)0.0057 (6)0.0052 (7)
C180.0319 (8)0.0283 (9)0.0342 (9)0.0086 (7)0.0058 (7)0.0037 (7)
C190.0377 (9)0.0373 (10)0.0202 (7)0.0049 (8)0.0078 (6)0.0008 (7)
C200.0344 (9)0.0408 (10)0.0290 (8)0.0092 (9)0.0108 (7)0.0049 (8)
N0.0188 (6)0.0247 (6)0.0178 (6)0.0011 (5)0.0057 (4)0.0031 (5)
O10.0277 (6)0.0321 (7)0.0293 (6)0.0091 (5)0.0041 (5)0.0100 (5)
O20.0207 (5)0.0207 (5)0.0226 (5)0.0025 (4)0.0058 (4)0.0058 (4)
O30.0236 (5)0.0338 (6)0.0346 (6)0.0012 (5)0.0145 (5)0.0100 (6)
O40.0244 (5)0.0211 (6)0.0431 (6)0.0033 (5)0.0051 (5)0.0017 (6)
Geometric parameters (Å, º) top
C1—O21.4541 (17)C11—H111.0000
C1—C21.488 (2)C12—O11.1982 (19)
C1—C101.5401 (19)C12—O21.3461 (17)
C1—H11.0000C13—N1.466 (2)
C2—O31.4444 (17)C13—H13A0.9900
C2—C31.466 (2)C13—H13B0.9900
C2—H21.0000C14—H14A0.9800
C3—O31.445 (2)C14—H14B0.9800
C3—C41.503 (2)C14—H14C0.9800
C3—C151.506 (2)C15—H15A0.9800
C4—C51.537 (3)C15—H15B0.9800
C4—H4A0.9900C15—H15C0.9800
C4—H4B0.9900C16—N1.4658 (19)
C5—C61.508 (2)C16—C191.512 (2)
C5—H5A0.9900C16—H16A0.9900
C5—H5B0.9900C16—H16B0.9900
C6—C71.324 (2)C17—N1.4699 (19)
C6—H60.9500C17—C181.509 (2)
C7—C141.509 (2)C17—H17A0.9900
C7—C81.517 (2)C17—H17B0.9900
C8—O41.4136 (19)C18—C201.522 (2)
C8—C91.540 (2)C18—H18A0.9900
C8—H81.0000C18—H18B0.9900
C9—C101.5375 (19)C19—C201.518 (3)
C9—H9A0.9900C19—H19A0.9900
C9—H9B0.9900C19—H19B0.9900
C10—C111.5320 (19)C20—H20A0.9900
C10—H101.0000C20—H20B0.9900
C11—C121.504 (2)O4—H40.8400
C11—C131.523 (2)
O2—C1—C2107.15 (11)C10—C11—H11109.5
O2—C1—C10105.68 (10)O1—C12—O2121.14 (14)
C2—C1—C10111.55 (12)O1—C12—C11128.04 (14)
O2—C1—H1110.8O2—C12—C11110.82 (12)
C2—C1—H1110.8N—C13—C11113.50 (11)
C10—C1—H1110.8N—C13—H13A108.9
O3—C2—C359.52 (9)C11—C13—H13A108.9
O3—C2—C1119.86 (13)N—C13—H13B108.9
C3—C2—C1125.56 (13)C11—C13—H13B108.9
O3—C2—H2113.7H13A—C13—H13B107.7
C3—C2—H2113.7C7—C14—H14A109.5
C1—C2—H2113.7C7—C14—H14B109.5
O3—C3—C259.49 (9)H14A—C14—H14B109.5
O3—C3—C4115.98 (14)C7—C14—H14C109.5
C2—C3—C4116.10 (14)H14A—C14—H14C109.5
O3—C3—C15113.34 (14)H14B—C14—H14C109.5
C2—C3—C15122.85 (14)C3—C15—H15A109.5
C4—C3—C15116.18 (14)C3—C15—H15B109.5
C3—C4—C5111.64 (14)H15A—C15—H15B109.5
C3—C4—H4A109.3C3—C15—H15C109.5
C5—C4—H4A109.3H15A—C15—H15C109.5
C3—C4—H4B109.3H15B—C15—H15C109.5
C5—C4—H4B109.3N—C16—C19110.83 (14)
H4A—C4—H4B108.0N—C16—H16A109.5
C6—C5—C4110.84 (14)C19—C16—H16A109.5
C6—C5—H5A109.5N—C16—H16B109.5
C4—C5—H5A109.5C19—C16—H16B109.5
C6—C5—H5B109.5H16A—C16—H16B108.1
C4—C5—H5B109.5N—C17—C18111.51 (12)
H5A—C5—H5B108.1N—C17—H17A109.3
C7—C6—C5127.93 (16)C18—C17—H17A109.3
C7—C6—H6116.0N—C17—H17B109.3
C5—C6—H6116.0C18—C17—H17B109.3
C6—C7—C14125.94 (16)H17A—C17—H17B108.0
C6—C7—C8121.18 (14)C17—C18—C20111.23 (15)
C14—C7—C8112.72 (15)C17—C18—H18A109.4
O4—C8—C7111.41 (13)C20—C18—H18A109.4
O4—C8—C9111.66 (12)C17—C18—H18B109.4
C7—C8—C9110.39 (13)C20—C18—H18B109.4
O4—C8—H8107.7H18A—C18—H18B108.0
C7—C8—H8107.7C16—C19—C20110.39 (13)
C9—C8—H8107.7C16—C19—H19A109.6
C10—C9—C8115.28 (13)C20—C19—H19A109.6
C10—C9—H9A108.5C16—C19—H19B109.6
C8—C9—H9A108.5C20—C19—H19B109.6
C10—C9—H9B108.5H19A—C19—H19B108.1
C8—C9—H9B108.5C19—C20—C18109.95 (14)
H9A—C9—H9B107.5C19—C20—H20A109.7
C11—C10—C9113.65 (11)C18—C20—H20A109.7
C11—C10—C1102.95 (12)C19—C20—H20B109.7
C9—C10—C1115.52 (12)C18—C20—H20B109.7
C11—C10—H10108.1H20A—C20—H20B108.2
C9—C10—H10108.1C16—N—C13111.44 (13)
C1—C10—H10108.1C16—N—C17110.02 (12)
C12—C11—C13109.57 (11)C13—N—C17108.34 (11)
C12—C11—C10104.07 (11)C12—O2—C1111.05 (11)
C13—C11—C10114.55 (13)C2—O3—C360.99 (9)
C12—C11—H11109.5C8—O4—H4109.5
C13—C11—H11109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N0.842.122.9564 (14)176
C2—H2···O1i1.002.453.2622 (15)138
C4—H4B···O3ii0.992.543.3387 (16)137
C6—H6···O2iii0.952.543.2206 (15)128
C13—H13A···O2i0.992.553.5178 (15)166
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H31NO4
Mr349.46
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)11.8390 (6), 6.7053 (3), 12.0875 (6)
β (°) 101.399 (5)
V3)940.63 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.13 × 0.11
Data collection
DiffractometerAgilent Xcalibur Sapphire1 long nozzle
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.858, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10503, 2096, 1996
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.05
No. of reflections2096
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N0.842.122.9564 (14)176
C2—H2···O1i1.002.453.2622 (15)138
C4—H4B···O3ii0.992.543.3387 (16)137
C6—H6···O2iii0.952.543.2206 (15)128
C13—H13A···O2i0.992.553.5178 (15)166
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R, Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.  Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds