organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-N-{1-[5-(4-Chloro­benzyl­sulfanyl)-1,3,4-oxa­diazol-2-yl]eth­yl}-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut for Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
*Correspondence e-mail: shameed@qau.edu.pk

(Received 22 September 2011; accepted 23 September 2011; online 30 September 2011)

The title compound, C18H18ClN3O3S2, adopts by folding the form of a distorted disc. Inter­planar angles are 29.51 (7) and 63.43 (7)° from the five-membered ring to the aromatic systems and 34.80 (6)° between these two latter rings. The absolute configuration was confirmed by determination of the Flack parameter. In the crystal, the mol­ecules are linked by four hydrogen bonds, one classical (N—H⋯N) and three `weak' (C—H⋯O), forming layers parallel to the ac plane; these are in turn linked in the third dimension by Cl⋯N [3.1689 (16) Å] and Cl⋯O [3.3148 (13) Å] contacts to the heterocyclic ring.

Related literature

For the chemotherapeutic effects of substituted-1,3,4-oxadiazole derivatives, see: Aboraia et al. (2006[Aboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. M. & EL-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236-1246.]); Akhtar et al. (2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135-149.], 2010[Akhtar, T., Hameed, S., Khan, K. M., Khan, A. & Choudhary, M. I. (2010). J. Enzym. Inhib. Med. Chem. 25, 572-576.]); Khan et al. (2005[Khan, M. T. H., Choudhary, M. I., Khan, K. M., Ranib, M., Atta-ur-Rahman (2005). Bioorg. Med. Chem. 13, 3385-3395.]); Mishra et al. (2005[Mishra, P., Rajak, H. & Mehta, A. (2005). J. Gen. Appl. Microbiol. 51, 133-141.]); Zahid et al. (2009[Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2009). ARKIVOC, xi, 85-93.]). Based on the known structures of 2,5-disubstituted-1,3,4-oxadiazo­les with diverse biological activity, we have designed and synthesized several new derivatives of 1,3,4-oxadiazo­les and evaluated their anti-HIV activity, see: Syed et al. (2011[Syed, T., Akhtar, T., Al-Masoudi, N. A., Jones, P. G. & Hameed, S. (2011). J. Enzym. Inhib. Med. Chem. 26, 668-680.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18ClN3O3S2

  • Mr = 423.92

  • Orthorhombic, P 21 21 21

  • a = 5.5928 (3) Å

  • b = 17.5004 (7) Å

  • c = 20.1431 (7) Å

  • V = 1971.53 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.90 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.785, Tmax = 1.000

  • 31188 measured reflections

  • 3762 independent reflections

  • 3625 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.04

  • 3762 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1563 Friedel pairs

  • Flack parameter: −0.001 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H05⋯N4i 0.90 (3) 2.19 (3) 3.068 (2) 166 (2)
C15—H15B⋯O2ii 0.99 2.41 3.301 (2) 149
C9—H9⋯O2iii 0.95 2.43 3.178 (2) 136
C15—H15B⋯O3iv 0.99 2.47 3.007 (2) 113
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO Oxford Diffraction (2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and RPLUTO (CCDC, 2007[CCDC (2007). RPLUTO. Cambridge Crystallographic Data Centre, Cambridge, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted-1,3,4-oxadiazole derivatives are of significant interest because of their chemotherapeutic effects such as anti-proliferative (Zahid et al., 2009), anti-tumour and anti-viral (Akhtar et al., 2008), anti-microbial (Mishra et al., 2005), urease inhibition (Akhtar et al., 2010), tyrosinase inhibition (Khan et al., 2005), and anti-mitotic (Aboraia et al., 2006) activities. Based on the known structures of 2,5-disubstituted-1,3,4-oxadiazoles with diverse biological activities, we have designed and synthesized several new derivatives of 1,3,4-oxadiazoles and evaluated their anti-HIV activity (Syed et al., 2011). In this paper, we report the crystal structure of one of these compounds.

The molecule of the enantiomerically pure title compound is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The molecule has considerable potential for flexibility; the shape actually adopted is that of a short cylinder or disc, albeit distorted, in which the rings form part of the circumference. The smallest dimension of the molecular "box" is calculated by the program RPLUTO (CCDC, 2007) as 6.8 Å, which is close to the calculated distance between the para H atoms of a phenyl group (including van der Waals' radii). All three rings are planar within r.m.s. deviations of < 0.01 Å; interplanar angles are 29.51 (7)° and 63.43 (7)° from the five-membered ring to the aromatic systems C8–13 and C16–21 respectively, and 34.80 (6)° between these two latter rings. To close the circumference of the cylinder, the methyl hydrogen H14C approaches the centroid of the ring C16–21 at a distance of 3.08 Å.

The molecular packing is determined by four hydrogen bonds, one classical and three "weak" (including a three-centre system based on H15B), which link the molecules to form layers parallel to the ac plane (Fig. 2). It can be seen that the Cl atoms project out of this plane (the angle between the bond C19—Cl and the plane is 72°) and the Cl atoms thereby form short contacts Cl···N3 3.1689 (16) Å, operator -x, y - 1/2, -z + 1/2, and Cl···O1 3.3148 (13) Å, operator -x + 1, y - 1/2, -z + 1/2, to the oxadiazole ring, thus linking the layers (Fig. 3). The approximately linear angle C19—Cl···N3 166.31 (8)° is consistent with the description of Cl···N3 as a halogen bond.

Related literature top

For the chemotherapeutic effects of substituted-1,3,4-oxadiazole derivatives, see: Aboraia et al. (2006); Akhtar et al. (2008, 2010); Khan et al. (2005); Mishra et al. (2005); Zahid et al. (2009). Based on the known structures of 2,5-disubstituted-1,3,4-oxadiazoles with diverse biological activity, we have designed and synthesized several new derivatives of 1,3,4-oxadiazoles and evaluated their anti-HIV activity, see: Syed et al. (2011).

Experimental top

The title compound was prepared according to a reported procedure (Syed et al., 2011) and recrystallized from acetone/water.

Refinement top

The hydrogen at N5 was refined freely. Methyl H atoms were identified in difference syntheses, idealized and refined using rigid groups allowed to rotate but not tip, with C—H 0.98 Å, H—C—H 109.5°. Other H atoms were introduced at the calculated positions and refined using a riding model, with aromatic C—H 0.95, methylene C—H 0.99, methine C—H 1.00 Å. The Uiso(H) values were set equal to mUeq(C) of the parent carbons, with m = 1.5 for methyls and 1.2 for all other H.

The absolute configuration (S at C6) was established by the Flack parameter of -0.001 (11).

Structure description top

Substituted-1,3,4-oxadiazole derivatives are of significant interest because of their chemotherapeutic effects such as anti-proliferative (Zahid et al., 2009), anti-tumour and anti-viral (Akhtar et al., 2008), anti-microbial (Mishra et al., 2005), urease inhibition (Akhtar et al., 2010), tyrosinase inhibition (Khan et al., 2005), and anti-mitotic (Aboraia et al., 2006) activities. Based on the known structures of 2,5-disubstituted-1,3,4-oxadiazoles with diverse biological activities, we have designed and synthesized several new derivatives of 1,3,4-oxadiazoles and evaluated their anti-HIV activity (Syed et al., 2011). In this paper, we report the crystal structure of one of these compounds.

The molecule of the enantiomerically pure title compound is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The molecule has considerable potential for flexibility; the shape actually adopted is that of a short cylinder or disc, albeit distorted, in which the rings form part of the circumference. The smallest dimension of the molecular "box" is calculated by the program RPLUTO (CCDC, 2007) as 6.8 Å, which is close to the calculated distance between the para H atoms of a phenyl group (including van der Waals' radii). All three rings are planar within r.m.s. deviations of < 0.01 Å; interplanar angles are 29.51 (7)° and 63.43 (7)° from the five-membered ring to the aromatic systems C8–13 and C16–21 respectively, and 34.80 (6)° between these two latter rings. To close the circumference of the cylinder, the methyl hydrogen H14C approaches the centroid of the ring C16–21 at a distance of 3.08 Å.

The molecular packing is determined by four hydrogen bonds, one classical and three "weak" (including a three-centre system based on H15B), which link the molecules to form layers parallel to the ac plane (Fig. 2). It can be seen that the Cl atoms project out of this plane (the angle between the bond C19—Cl and the plane is 72°) and the Cl atoms thereby form short contacts Cl···N3 3.1689 (16) Å, operator -x, y - 1/2, -z + 1/2, and Cl···O1 3.3148 (13) Å, operator -x + 1, y - 1/2, -z + 1/2, to the oxadiazole ring, thus linking the layers (Fig. 3). The approximately linear angle C19—Cl···N3 166.31 (8)° is consistent with the description of Cl···N3 as a halogen bond.

For the chemotherapeutic effects of substituted-1,3,4-oxadiazole derivatives, see: Aboraia et al. (2006); Akhtar et al. (2008, 2010); Khan et al. (2005); Mishra et al. (2005); Zahid et al. (2009). Based on the known structures of 2,5-disubstituted-1,3,4-oxadiazoles with diverse biological activity, we have designed and synthesized several new derivatives of 1,3,4-oxadiazoles and evaluated their anti-HIV activity, see: Syed et al. (2011).

Computing details top

Data collection: CrysAlis PRO Oxford Diffraction (2010); cell refinement: CrysAlis PRO Oxford Diffraction (2010); data reduction: CrysAlis PRO Oxford Diffraction (2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994) and RPLUTO (CCDC, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed parallel to the b axis in the region y 1/2.. Thick dashed lines represent classical and thin dashed lines "weak" hydrogen bonds. The numbering corresponds to the order in the H bond Table. H atoms not involved in H bonds are omitted.
[Figure 3] Fig. 3. Molecular packing of the title compound viewed parallel to the c axis in the region z 1/8. A l l H atoms are omitted. The thick dashed lines represent Cl···O and Cl···N contacts.
(S)-N-{1-[5-(4-Chlorobenzylsulfanyl)-1,3,4-oxadiazol-2-yl]ethyl}- 4-methylbenzenesulfonamide top
Crystal data top
C18H18ClN3O3S2Dx = 1.428 Mg m3
Mr = 423.92Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 23563 reflections
a = 5.5928 (3) Åθ = 3.3–75.8°
b = 17.5004 (7) ŵ = 3.90 mm1
c = 20.1431 (7) ÅT = 100 K
V = 1971.53 (15) Å3Tablet, colourless
Z = 40.15 × 0.10 × 0.06 mm
F(000) = 880
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
3762 independent reflections
Radiation source: Nova (Cu) X-ray Source3625 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.3543 pixels mm-1θmax = 70.2°, θmin = 3.4°
ω–scanh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2120
Tmin = 0.785, Tmax = 1.000l = 2424
31188 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.4932P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3762 reflectionsΔρmax = 0.31 e Å3
250 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1563 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Crystal data top
C18H18ClN3O3S2V = 1971.53 (15) Å3
Mr = 423.92Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.5928 (3) ŵ = 3.90 mm1
b = 17.5004 (7) ÅT = 100 K
c = 20.1431 (7) Å0.15 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3625 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 1.000Rint = 0.046
31188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.31 e Å3
S = 1.04Δρmin = 0.28 e Å3
3762 reflectionsAbsolute structure: Flack (1983), 1563 Friedel pairs
250 parametersAbsolute structure parameter: 0.001 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded contacts:

3.1689 (0.0016) Cl - N3_$5 3.3148 (0.0013) Cl - O1_$6 3.7719 (0.0007) Cl - S1_$6

166.31 (0.08) C19 - Cl - N3_$5 102.19 (0.11) Cl - N3_$5 - C2_$5 126.37 (0.07) C19 - Cl - O1_$6 109.03 (0.09) Cl - O1_$6 - C2_$6 114.16 (0.06) C19 - Cl - S1_$6 83.66 (0.06) Cl - S1_$6 - C2_$6

Operators for generating equivalent atoms: $5 - x, y - 1/2, -z + 1/2 $6 - x + 1, y - 1/2, -z + 1/2

===============================================================

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.6855 (0.0038) x - 4.6429 (0.0122) y + 16.8416 (0.0087) z = 2.0416 (0.0053)

* -0.0119 (0.0012) C16 * 0.0104 (0.0013) C17 * 0.0005 (0.0013) C18 * -0.0099 (0.0013) C19 * 0.0082 (0.0013) C20 * 0.0027 (0.0013) C21

Rms deviation of fitted atoms = 0.0084

- 1.1391 (0.0042) x + 17.0266 (0.0034) y - 2.2001 (0.0174) z = 7.9763 (0.0084)

Angle to previous plane (with approximate e.s.d.) = 63.43 (0.07)

* -0.0027 (0.0009) O1 * 0.0047 (0.0010) C2 * -0.0046 (0.0010) N3 * 0.0027 (0.0010) N4 * -0.0002 (0.0010) C5

Rms deviation of fitted atoms = 0.0034

2.6434 (0.0040) x - 12.9885 (0.0091) y + 9.5712 (0.0144) z = 1.4590 (0.0089)

Angle to previous plane (with approximate e.s.d.) = 29.51 (0.07)

* 0.0016 (0.0013) C8 * -0.0004 (0.0013) C9 * 0.0015 (0.0014) C10 * -0.0039 (0.0014) C11 * 0.0051 (0.0015) C12 * -0.0040 (0.0014) C13

Rms deviation of fitted atoms = 0.0032

2.6855 (0.0038) x - 4.6429 (0.0122) y + 16.8416 (0.0087) z = 2.0416 (0.0053)

Angle to previous plane (with approximate e.s.d.) = 34.80 (0.08)

* -0.0119 (0.0012) C16 * 0.0104 (0.0013) C17 * 0.0005 (0.0013) C18 * -0.0099 (0.0013) C19 * 0.0082 (0.0013) C20 * 0.0027 (0.0013) C21

Rms deviation of fitted atoms = 0.0084

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.05592 (10)0.18862 (3)0.15994 (2)0.03349 (12)
S10.52403 (8)0.54474 (3)0.263650 (19)0.02387 (11)
S20.77730 (8)0.45463 (3)0.555955 (19)0.02286 (11)
O10.5636 (2)0.55679 (7)0.39301 (5)0.0211 (3)
O21.0271 (3)0.44179 (8)0.56672 (6)0.0292 (3)
O30.6148 (3)0.45159 (8)0.61070 (6)0.0303 (3)
C20.4061 (3)0.54027 (10)0.34332 (8)0.0193 (3)
N30.1914 (3)0.52799 (9)0.36370 (7)0.0235 (3)
N40.2027 (3)0.53824 (9)0.43387 (7)0.0229 (3)
C50.4199 (3)0.55439 (9)0.44771 (8)0.0202 (3)
N50.7624 (3)0.54058 (9)0.52475 (7)0.0221 (3)
H050.879 (5)0.5469 (14)0.4944 (12)0.034 (6)*
C60.5302 (3)0.57714 (10)0.51284 (8)0.0225 (4)
H60.41860.56260.54950.027*
C70.5667 (4)0.66361 (11)0.51427 (9)0.0311 (4)
H7A0.62870.67880.55780.047*
H7B0.41370.68920.50620.047*
H7C0.68130.67830.47970.047*
C80.6782 (3)0.38998 (10)0.49450 (9)0.0236 (4)
C90.4622 (4)0.35176 (11)0.50209 (10)0.0289 (4)
H90.36510.36020.54010.035*
C100.3915 (4)0.30098 (11)0.45291 (11)0.0332 (5)
H100.24470.27430.45770.040*
C110.5301 (4)0.28842 (11)0.39702 (10)0.0317 (4)
C120.7460 (4)0.32732 (12)0.39112 (9)0.0334 (5)
H120.84410.31850.35340.040*
C130.8207 (4)0.37862 (11)0.43917 (9)0.0278 (4)
H130.96710.40560.43430.033*
C140.4505 (5)0.23359 (13)0.34315 (11)0.0460 (6)
H14A0.31210.20430.35880.069*
H14B0.58160.19850.33250.069*
H14C0.40620.26250.30330.069*
C150.2572 (4)0.52048 (10)0.21572 (8)0.0243 (4)
H15A0.11580.54220.23840.029*
H15B0.26910.54500.17160.029*
C160.2174 (3)0.43593 (10)0.20602 (8)0.0217 (4)
C170.0137 (3)0.40140 (11)0.23032 (9)0.0267 (4)
H170.09450.43010.25680.032*
C180.0354 (4)0.32510 (11)0.21652 (9)0.0273 (4)
H180.17740.30200.23280.033*
C190.1239 (4)0.28349 (11)0.17903 (9)0.0249 (4)
C200.3328 (4)0.31573 (11)0.15569 (9)0.0284 (4)
H200.44330.28610.13080.034*
C210.3790 (3)0.39220 (11)0.16906 (9)0.0264 (4)
H210.52180.41500.15290.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0429 (3)0.0264 (2)0.0311 (2)0.00061 (19)0.0014 (2)0.00327 (18)
S10.0258 (2)0.0332 (2)0.01268 (18)0.00294 (18)0.00137 (15)0.00194 (16)
S20.0256 (2)0.0304 (2)0.01258 (18)0.00513 (18)0.00069 (15)0.00086 (15)
O10.0218 (6)0.0281 (6)0.0133 (5)0.0008 (5)0.0012 (5)0.0009 (5)
O20.0297 (7)0.0400 (7)0.0179 (6)0.0082 (6)0.0051 (5)0.0023 (5)
O30.0356 (8)0.0373 (7)0.0180 (6)0.0076 (6)0.0067 (5)0.0046 (5)
C20.0219 (9)0.0211 (8)0.0150 (7)0.0014 (6)0.0008 (6)0.0002 (6)
N30.0288 (9)0.0297 (8)0.0121 (7)0.0004 (6)0.0004 (6)0.0000 (5)
N40.0251 (8)0.0292 (8)0.0144 (6)0.0015 (7)0.0012 (6)0.0013 (6)
C50.0242 (9)0.0207 (8)0.0155 (8)0.0024 (7)0.0033 (7)0.0013 (6)
N50.0215 (8)0.0292 (8)0.0154 (7)0.0007 (6)0.0006 (6)0.0004 (6)
C60.0243 (10)0.0268 (9)0.0162 (8)0.0011 (7)0.0025 (7)0.0002 (6)
C70.0442 (12)0.0287 (10)0.0205 (9)0.0013 (9)0.0028 (8)0.0057 (7)
C80.0266 (10)0.0238 (9)0.0202 (8)0.0032 (7)0.0008 (7)0.0038 (7)
C90.0259 (10)0.0289 (9)0.0320 (10)0.0040 (8)0.0047 (8)0.0044 (7)
C100.0264 (11)0.0277 (9)0.0454 (12)0.0036 (8)0.0050 (8)0.0063 (8)
C110.0428 (12)0.0263 (9)0.0259 (9)0.0046 (9)0.0113 (9)0.0055 (7)
C120.0459 (13)0.0366 (11)0.0175 (8)0.0087 (9)0.0011 (8)0.0015 (7)
C130.0319 (11)0.0328 (10)0.0187 (8)0.0066 (8)0.0035 (7)0.0016 (7)
C140.0648 (16)0.0385 (11)0.0349 (11)0.0163 (11)0.0161 (12)0.0023 (9)
C150.0284 (10)0.0299 (9)0.0146 (8)0.0006 (7)0.0036 (7)0.0011 (7)
C160.0238 (9)0.0300 (9)0.0112 (7)0.0026 (7)0.0036 (6)0.0007 (6)
C170.0270 (10)0.0331 (9)0.0199 (8)0.0032 (8)0.0011 (7)0.0022 (7)
C180.0261 (10)0.0347 (10)0.0211 (8)0.0001 (8)0.0011 (7)0.0012 (7)
C190.0314 (10)0.0258 (9)0.0173 (8)0.0007 (7)0.0056 (7)0.0004 (7)
C200.0314 (10)0.0335 (10)0.0202 (8)0.0041 (8)0.0018 (7)0.0041 (7)
C210.0252 (10)0.0346 (10)0.0194 (8)0.0008 (7)0.0028 (7)0.0003 (7)
Geometric parameters (Å, º) top
Cl—C191.7462 (19)C16—C211.399 (3)
S1—C21.7369 (17)C17—C181.391 (3)
S1—C151.8272 (19)C18—C191.376 (3)
S2—O31.4300 (13)C19—C201.380 (3)
S2—O21.4314 (15)C20—C211.389 (3)
S2—N51.6323 (15)C6—H61.0000
S2—C81.7662 (19)C7—H7A0.9800
O1—C21.364 (2)C7—H7B0.9800
O1—C51.365 (2)C7—H7C0.9800
C2—N31.287 (2)C9—H90.9500
N3—N41.4262 (19)C10—H100.9500
N4—C51.278 (2)C12—H120.9500
C5—C61.504 (2)C13—H130.9500
N5—C61.468 (2)C14—H14A0.9800
C6—C71.527 (3)C14—H14B0.9800
C8—C131.384 (3)C14—H14C0.9800
C8—C91.389 (3)C15—H15A0.9900
C9—C101.388 (3)C15—H15B0.9900
C10—C111.384 (3)C17—H170.9500
C11—C121.391 (3)C18—H180.9500
C11—C141.515 (3)C20—H200.9500
C12—C131.385 (3)C21—H210.9500
C15—C161.509 (2)N5—H050.90 (3)
C16—C171.380 (3)
C2—S1—C1599.64 (8)C20—C21—C16120.64 (18)
O3—S2—O2119.84 (8)C6—N5—H05118.5 (16)
O3—S2—N5107.38 (8)S2—N5—H05109.7 (16)
O2—S2—N5104.64 (8)N5—C6—H6108.7
O3—S2—C8108.50 (9)C5—C6—H6108.7
O2—S2—C8108.17 (8)C7—C6—H6108.7
N5—S2—C8107.72 (8)C6—C7—H7A109.5
C2—O1—C5101.85 (13)C6—C7—H7B109.5
N3—C2—O1113.82 (14)H7A—C7—H7B109.5
N3—C2—S1131.04 (13)C6—C7—H7C109.5
O1—C2—S1115.02 (12)H7A—C7—H7C109.5
C2—N3—N4104.70 (14)H7B—C7—H7C109.5
C5—N4—N3106.62 (14)C10—C9—H9120.7
N4—C5—O1113.00 (15)C8—C9—H9120.7
N4—C5—C6129.72 (15)C11—C10—H10119.3
O1—C5—C6117.03 (16)C9—C10—H10119.3
C6—N5—S2120.65 (12)C13—C12—H12119.4
N5—C6—C5112.98 (14)C11—C12—H12119.4
N5—C6—C7108.09 (16)C8—C13—H13120.6
C5—C6—C7109.49 (15)C12—C13—H13120.6
C13—C8—C9121.33 (18)C11—C14—H14A109.5
C13—C8—S2118.41 (15)C11—C14—H14B109.5
C9—C8—S2120.27 (14)H14A—C14—H14B109.5
C10—C9—C8118.51 (18)C11—C14—H14C109.5
C11—C10—C9121.49 (19)H14A—C14—H14C109.5
C10—C11—C12118.54 (18)H14B—C14—H14C109.5
C10—C11—C14121.2 (2)C16—C15—H15A108.6
C12—C11—C14120.2 (2)S1—C15—H15A108.6
C13—C12—C11121.28 (19)C16—C15—H15B108.6
C8—C13—C12118.84 (19)S1—C15—H15B108.6
C16—C15—S1114.63 (13)H15A—C15—H15B107.6
C17—C16—C21118.88 (17)C16—C17—H17119.6
C17—C16—C15120.35 (17)C18—C17—H17119.6
C21—C16—C15120.66 (17)C19—C18—H18120.3
C16—C17—C18120.82 (17)C17—C18—H18120.3
C19—C18—C17119.33 (18)C19—C20—H20120.5
C18—C19—C20121.24 (18)C21—C20—H20120.5
C18—C19—Cl118.89 (15)C20—C21—H21119.7
C20—C19—Cl119.87 (15)C16—C21—H21119.7
C19—C20—C21119.05 (17)
C5—O1—C2—N30.76 (19)N5—S2—C8—C9110.51 (15)
C5—O1—C2—S1175.70 (11)C13—C8—C9—C100.5 (3)
C15—S1—C2—N33.60 (19)S2—C8—C9—C10179.52 (15)
C15—S1—C2—O1179.31 (13)C8—C9—C10—C110.5 (3)
O1—C2—N3—N40.94 (19)C9—C10—C11—C120.8 (3)
S1—C2—N3—N4174.82 (14)C9—C10—C11—C14179.29 (19)
C2—N3—N4—C50.73 (19)C10—C11—C12—C131.1 (3)
N3—N4—C5—O10.3 (2)C14—C11—C12—C13178.9 (2)
N3—N4—C5—C6174.36 (16)C9—C8—C13—C120.8 (3)
C2—O1—C5—N40.24 (18)S2—C8—C13—C12179.18 (16)
C2—O1—C5—C6174.64 (14)C11—C12—C13—C81.1 (3)
O3—S2—N5—C645.79 (14)C2—S1—C15—C1686.77 (14)
O2—S2—N5—C6174.15 (12)S1—C15—C16—C17118.83 (16)
C8—S2—N5—C670.90 (14)S1—C15—C16—C2164.89 (19)
S2—N5—C6—C583.75 (17)C21—C16—C17—C182.2 (3)
S2—N5—C6—C7154.93 (12)C15—C16—C17—C18174.13 (16)
N4—C5—C6—N5138.58 (19)C16—C17—C18—C191.1 (3)
O1—C5—C6—N547.6 (2)C17—C18—C19—C200.9 (3)
N4—C5—C6—C7100.9 (2)C17—C18—C19—Cl178.08 (14)
O1—C5—C6—C773.0 (2)C18—C19—C20—C211.6 (3)
O3—S2—C8—C13174.53 (14)Cl—C19—C20—C21177.35 (14)
O2—S2—C8—C1343.07 (17)C19—C20—C21—C160.4 (3)
N5—S2—C8—C1369.52 (17)C17—C16—C21—C201.5 (3)
O3—S2—C8—C95.45 (17)C15—C16—C21—C20174.86 (17)
O2—S2—C8—C9136.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H05···N4i0.90 (3)2.19 (3)3.068 (2)166 (2)
C15—H15B···O2ii0.992.413.301 (2)149
C9—H9···O2iii0.952.433.178 (2)136
C15—H15B···O3iv0.992.473.007 (2)113
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1, z1/2; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC18H18ClN3O3S2
Mr423.92
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.5928 (3), 17.5004 (7), 20.1431 (7)
V3)1971.53 (15)
Z4
Radiation typeCu Kα
µ (mm1)3.90
Crystal size (mm)0.15 × 0.10 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Nova A
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.785, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
31188, 3762, 3625
Rint0.046
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.04
No. of reflections3762
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28
Absolute structureFlack (1983), 1563 Friedel pairs
Absolute structure parameter0.001 (11)

Computer programs: CrysAlis PRO Oxford Diffraction (2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994) and RPLUTO (CCDC, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H05···N4i0.90 (3)2.19 (3)3.068 (2)166 (2)
C15—H15B···O2ii0.992.413.301 (2)149.3
C9—H9···O2iii0.952.433.178 (2)135.6
C15—H15B···O3iv0.992.473.007 (2)113.4
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1, z1/2; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2.
 

References

First citationAboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. M. & EL-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236–1246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Khan, K. M., Khan, A. & Choudhary, M. I. (2010). J. Enzym. Inhib. Med. Chem. 25, 572–576.  Web of Science CrossRef CAS Google Scholar
First citationCCDC (2007). RPLUTO. Cambridge Crystallographic Data Centre, Cambridge, England.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, M. T. H., Choudhary, M. I., Khan, K. M., Ranib, M., Atta-ur-Rahman (2005). Bioorg. Med. Chem. 13, 3385–3395.  Google Scholar
First citationMishra, P., Rajak, H. & Mehta, A. (2005). J. Gen. Appl. Microbiol. 51, 133–141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSyed, T., Akhtar, T., Al-Masoudi, N. A., Jones, P. G. & Hameed, S. (2011). J. Enzym. Inhib. Med. Chem. 26, 668–680.  Web of Science CrossRef CAS Google Scholar
First citationZahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2009). ARKIVOC, xi, 85–93.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds