metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Aqua­bis­­(2,2′-bi­pyrimidine-κ2N1,N1′)iodidomanganese(II) iodide monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 27 August 2011; accepted 21 September 2011; online 30 September 2011)

The asymmetric unit of the title compound, [MnI(C8H6N4)2(H2O)]I·H2O, consists of a cationic MnII complex, an I anion and a solvent water mol­ecule. In the complex, the MnII ion is six-coordinated in a distorted octa­hedral environment defined by four N atoms of the two chelating 2,2′-bipyrimidine (bpym) ligands, one I anion and one O atom of a water ligand. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.092 (7) Å] is 79.9 (1)°. In the crystal, the complex, anion and solvent water mol­ecule are linked by inter­molecular O—H⋯O, O—H⋯I and O—H⋯N hydrogen bonds.

Related literature

For the crystal structures of mononuclear 2,2′-bipyrimidine MnII complexes, see: Hong et al. (1996[Hong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335-2340.]); Smith et al. (2001[Smith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727-1734.]); Ha (2011[Ha, K. (2011). Acta Cryst. E67, m474.]).

[Scheme 1]

Experimental

Crystal data
  • [MnI(C8H6N4)2(H2O)]I·H2O

  • Mr = 661.11

  • Triclinic, [P \overline 1]

  • a = 7.8799 (9) Å

  • b = 12.8197 (15) Å

  • c = 12.9563 (15) Å

  • α = 113.302 (2)°

  • β = 101.695 (2)°

  • γ = 104.053 (3)°

  • V = 1098.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.44 mm−1

  • T = 200 K

  • 0.18 × 0.17 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 1.000

  • 8099 measured reflections

  • 5309 independent reflections

  • 3106 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.07

  • 5309 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −1.98 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.115 (5)
Mn1—N1 2.256 (6)
Mn1—N4 2.262 (6)
Mn1—N5 2.270 (6)
Mn1—N8 2.304 (6)
Mn1—I1 2.8048 (13)
N1—Mn1—N4 72.8 (2)
N5—Mn1—N8 72.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 1.93 2.767 (8) 172
O1—H1B⋯O2 0.84 1.82 2.645 (8) 167
O2—H2A⋯I2 0.84 2.60 3.423 (6) 168
O2—H2B⋯N6ii 0.84 2.06 2.871 (8) 162
O2—H2B⋯N7ii 0.84 2.38 2.918 (9) 122
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Mononuclear MnII complexes of the 2,2'-bipyrimidine (bpym; C8H6N4) ligand, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996), [Mn(bpym)2(H2O)2](BF4)2.2H2O (Smith et al., 2001) and [MnBr2(bpym)2].CH3NO2 (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(bpym)2(H2O)]I.H2O, consists of a cationic MnII complex, an I- anion and a solvent water molecule (Fig. 1). In the complex, the MnII ion is six-coordinated in a distorted octahedral environment defined by four N atoms of the two chelating bpym ligands, one I- anion and one O atom of a water ligand in a cis-N4IO coordination geometry. The small bite of the bpym ligand results in N—Mn—N chelating angles of 72.2 (2)° and 72.8 (2)° and (Table 1) contributes to the distortion of the octahedron, which results in non-linear trans angles (O1—Mn1—N1 = 166.1 (2)°, I1—Mn1—N8 = 174.35 (16)° and N4—Mn1—N5 = 159.3 (2)°). The Mn—N(bpym) bond lengths are slightly different and longer than the Mn—O(H2O) bond. Because of the different trans effects of the I and O atoms, the Mn1—N8 bond trans to the I atom is somewhat longer than the Mn1—N1 bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.092 (7) Å] is 79.9 (1)°. In the crystal structure, the complex, anion and solvent water molecule are linked by intermolecular O—H···O, O—H···I and O—H···N hydrogen bonds (Fig. 2, Table 2). In addition, the complexes display numerous inter- and intramolecular π-π interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.648 (5) Å.

Related literature top

For the crystal structures of mononuclear 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Smith et al. (2001); Ha (2011).

Experimental top

To a solution of 2,2'-bipyrimidine (0.1587 g, 1.003 mmol) in acetone (40 ml) was added MnI2 (0.1540 g, 0.499 mmol) and refluxed for 3 h. The formed precipitate was separated by filtration, washed with acetone and dried at 50°C, to give a yellow powder (0.0701 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a 2-butanone solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand and solvent molecule were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (1.69 e Å-3) and the deepest hole (-1.98 e Å-3) in the difference Fourier map are located 1.15 Å and 0.85 Å from the atoms I2 and I1, respectively.

Structure description top

Mononuclear MnII complexes of the 2,2'-bipyrimidine (bpym; C8H6N4) ligand, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996), [Mn(bpym)2(H2O)2](BF4)2.2H2O (Smith et al., 2001) and [MnBr2(bpym)2].CH3NO2 (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(bpym)2(H2O)]I.H2O, consists of a cationic MnII complex, an I- anion and a solvent water molecule (Fig. 1). In the complex, the MnII ion is six-coordinated in a distorted octahedral environment defined by four N atoms of the two chelating bpym ligands, one I- anion and one O atom of a water ligand in a cis-N4IO coordination geometry. The small bite of the bpym ligand results in N—Mn—N chelating angles of 72.2 (2)° and 72.8 (2)° and (Table 1) contributes to the distortion of the octahedron, which results in non-linear trans angles (O1—Mn1—N1 = 166.1 (2)°, I1—Mn1—N8 = 174.35 (16)° and N4—Mn1—N5 = 159.3 (2)°). The Mn—N(bpym) bond lengths are slightly different and longer than the Mn—O(H2O) bond. Because of the different trans effects of the I and O atoms, the Mn1—N8 bond trans to the I atom is somewhat longer than the Mn1—N1 bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.092 (7) Å] is 79.9 (1)°. In the crystal structure, the complex, anion and solvent water molecule are linked by intermolecular O—H···O, O—H···I and O—H···N hydrogen bonds (Fig. 2, Table 2). In addition, the complexes display numerous inter- and intramolecular π-π interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.648 (5) Å.

For the crystal structures of mononuclear 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Smith et al. (2001); Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
cis-Aquabis(2,2'-bipyrimidine-κ2N1,N1')iodidomanganese(II) iodide monohydrate top
Crystal data top
[MnI(C8H6N4)2(H2O)]I·H2OZ = 2
Mr = 661.11F(000) = 630
Triclinic, P1Dx = 1.999 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8799 (9) ÅCell parameters from 2443 reflections
b = 12.8197 (15) Åθ = 2.8–27.6°
c = 12.9563 (15) ŵ = 3.44 mm1
α = 113.302 (2)°T = 200 K
β = 101.695 (2)°Plate, yellow
γ = 104.053 (3)°0.18 × 0.17 × 0.07 mm
V = 1098.6 (2) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5309 independent reflections
Radiation source: fine-focus sealed tube3106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.859, Tmax = 1.000k = 179
8099 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0257P)2 + 5.0797P]
where P = (Fo2 + 2Fc2)/3
5309 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 1.98 e Å3
Crystal data top
[MnI(C8H6N4)2(H2O)]I·H2Oγ = 104.053 (3)°
Mr = 661.11V = 1098.6 (2) Å3
Triclinic, P1Z = 2
a = 7.8799 (9) ÅMo Kα radiation
b = 12.8197 (15) ŵ = 3.44 mm1
c = 12.9563 (15) ÅT = 200 K
α = 113.302 (2)°0.18 × 0.17 × 0.07 mm
β = 101.695 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3106 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.000Rint = 0.035
8099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 1.69 e Å3
5309 reflectionsΔρmin = 1.98 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00869 (15)0.35516 (10)0.67962 (10)0.0291 (3)
I10.28559 (8)0.41022 (5)0.57919 (5)0.04330 (18)
O10.0292 (8)0.4141 (5)0.8476 (5)0.0409 (14)
H1A0.04800.47950.87930.061*
H1B0.01510.39790.90170.061*
N10.0377 (8)0.2491 (5)0.5019 (5)0.0241 (13)
N20.0908 (9)0.0587 (6)0.3252 (6)0.0351 (16)
N30.2538 (9)0.0424 (6)0.4477 (6)0.0341 (16)
N40.1572 (8)0.1567 (5)0.6127 (5)0.0280 (14)
N50.2578 (8)0.5264 (5)0.7448 (6)0.0290 (14)
N60.5769 (9)0.6325 (6)0.8644 (6)0.0318 (15)
N70.5861 (9)0.4338 (6)0.8923 (6)0.0353 (16)
N80.2658 (8)0.3303 (6)0.7736 (5)0.0297 (15)
C10.1275 (11)0.2974 (7)0.4444 (7)0.037 (2)
H10.20530.38080.48610.045*
C20.1111 (12)0.2304 (8)0.3274 (8)0.042 (2)
H20.17550.26590.28800.050*
C30.0021 (13)0.1100 (9)0.2699 (8)0.043 (2)
H30.01790.06190.18850.052*
C40.0672 (10)0.1311 (7)0.4396 (7)0.0284 (17)
C50.1668 (9)0.0769 (6)0.5026 (6)0.0253 (16)
C60.3435 (11)0.0869 (8)0.5083 (7)0.037 (2)
H60.40920.17210.47180.045*
C70.3448 (11)0.0163 (8)0.6187 (8)0.038 (2)
H70.40960.05000.65920.046*
C80.2460 (10)0.1078 (8)0.6692 (7)0.0341 (19)
H80.24160.15960.74690.041*
C90.2540 (11)0.6266 (8)0.7371 (7)0.038 (2)
H90.14180.62430.69060.046*
C100.4058 (11)0.7330 (7)0.7937 (8)0.040 (2)
H100.39930.80460.79000.048*
C110.5674 (11)0.7309 (7)0.8557 (7)0.038 (2)
H110.67590.80220.89370.046*
C120.4217 (10)0.5351 (7)0.8106 (6)0.0277 (17)
C130.4269 (10)0.4261 (7)0.8252 (6)0.0290 (17)
C140.5846 (11)0.3351 (8)0.9053 (7)0.037 (2)
H140.69660.33610.95070.045*
C150.4283 (11)0.2325 (8)0.8558 (7)0.0361 (19)
H150.42840.16390.86750.043*
C160.2732 (12)0.2347 (7)0.7892 (6)0.0332 (19)
H160.16380.16400.75170.040*
I20.22530 (8)0.08320 (5)0.95698 (5)0.04477 (18)
O20.0658 (7)0.3656 (5)1.0267 (5)0.0432 (15)
H2A0.00860.29561.01590.065*
H2B0.17800.38261.06270.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0289 (6)0.0251 (7)0.0261 (6)0.0058 (5)0.0067 (5)0.0086 (5)
I10.0360 (3)0.0390 (4)0.0546 (4)0.0107 (3)0.0067 (3)0.0274 (3)
O10.054 (4)0.046 (4)0.031 (3)0.028 (3)0.017 (3)0.020 (3)
N10.031 (3)0.018 (3)0.027 (3)0.012 (3)0.010 (3)0.013 (3)
N20.042 (4)0.028 (4)0.031 (4)0.010 (3)0.013 (3)0.010 (3)
N30.033 (4)0.027 (4)0.041 (4)0.011 (3)0.011 (3)0.016 (3)
N40.032 (3)0.022 (3)0.025 (3)0.004 (3)0.008 (3)0.010 (3)
N50.028 (3)0.018 (3)0.037 (4)0.007 (3)0.008 (3)0.012 (3)
N60.033 (4)0.022 (3)0.037 (4)0.007 (3)0.013 (3)0.011 (3)
N70.030 (4)0.037 (4)0.032 (4)0.010 (3)0.005 (3)0.013 (3)
N80.029 (3)0.026 (4)0.027 (3)0.010 (3)0.002 (3)0.008 (3)
C10.044 (5)0.019 (4)0.045 (5)0.005 (4)0.015 (4)0.016 (4)
C20.053 (6)0.041 (5)0.043 (5)0.016 (5)0.027 (5)0.026 (5)
C30.059 (6)0.050 (6)0.029 (5)0.025 (5)0.018 (4)0.022 (4)
C40.031 (4)0.022 (4)0.031 (4)0.008 (3)0.009 (3)0.012 (3)
C50.023 (4)0.017 (4)0.033 (4)0.005 (3)0.001 (3)0.014 (3)
C60.029 (4)0.030 (5)0.040 (5)0.004 (4)0.001 (4)0.014 (4)
C70.030 (4)0.039 (5)0.046 (5)0.001 (4)0.010 (4)0.028 (4)
C80.034 (4)0.046 (5)0.036 (5)0.024 (4)0.017 (4)0.024 (4)
C90.033 (4)0.035 (5)0.044 (5)0.008 (4)0.006 (4)0.021 (4)
C100.043 (5)0.028 (5)0.056 (6)0.014 (4)0.015 (4)0.027 (4)
C110.034 (4)0.022 (4)0.041 (5)0.004 (4)0.010 (4)0.008 (4)
C120.028 (4)0.028 (4)0.026 (4)0.011 (3)0.009 (3)0.011 (3)
C130.028 (4)0.022 (4)0.022 (4)0.000 (3)0.006 (3)0.003 (3)
C140.036 (5)0.038 (5)0.042 (5)0.017 (4)0.010 (4)0.022 (4)
C150.041 (5)0.031 (5)0.039 (5)0.018 (4)0.016 (4)0.015 (4)
C160.046 (5)0.025 (4)0.019 (4)0.016 (4)0.005 (4)0.003 (3)
I20.0522 (4)0.0349 (3)0.0454 (4)0.0132 (3)0.0127 (3)0.0203 (3)
O20.034 (3)0.041 (4)0.051 (4)0.012 (3)0.005 (3)0.024 (3)
Geometric parameters (Å, º) top
Mn1—O12.115 (5)C1—C21.374 (11)
Mn1—N12.256 (6)C1—H10.9500
Mn1—N42.262 (6)C2—C31.372 (12)
Mn1—N52.270 (6)C2—H20.9500
Mn1—N82.304 (6)C3—H30.9500
Mn1—I12.8048 (13)C4—C51.486 (10)
O1—H1A0.8400C6—C71.361 (11)
O1—H1B0.8400C6—H60.9500
N1—C41.334 (9)C7—C81.391 (11)
N1—C11.343 (9)C7—H70.9500
N2—C31.338 (10)C8—H80.9500
N2—C41.345 (9)C9—C101.375 (11)
N3—C51.322 (9)C9—H90.9500
N3—C61.350 (10)C10—C111.374 (11)
N4—C81.332 (9)C10—H100.9500
N4—C51.361 (9)C11—H110.9500
N5—C91.333 (10)C12—C131.492 (11)
N5—C121.348 (9)C14—C151.373 (11)
N6—C111.328 (10)C14—H140.9500
N6—C121.328 (9)C15—C161.359 (11)
N7—C131.330 (9)C15—H150.9500
N7—C141.338 (10)C16—H160.9500
N8—C161.331 (10)O2—H2A0.8400
N8—C131.347 (9)O2—H2B0.8400
O1—Mn1—N1166.1 (2)C2—C3—H3119.1
O1—Mn1—N494.6 (2)N1—C4—N2125.4 (7)
N1—Mn1—N472.8 (2)N1—C4—C5116.6 (6)
O1—Mn1—N593.0 (2)N2—C4—C5118.0 (7)
N1—Mn1—N597.0 (2)N3—C5—N4126.6 (7)
N4—Mn1—N5159.3 (2)N3—C5—C4117.6 (7)
O1—Mn1—N884.1 (2)N4—C5—C4115.8 (6)
N1—Mn1—N889.6 (2)N3—C6—C7123.6 (8)
N4—Mn1—N889.4 (2)N3—C6—H6118.2
N5—Mn1—N872.2 (2)C7—C6—H6118.2
O1—Mn1—I193.91 (15)C6—C7—C8116.4 (8)
N1—Mn1—I193.41 (15)C6—C7—H7121.8
N4—Mn1—I196.02 (16)C8—C7—H7121.8
N5—Mn1—I1102.63 (16)N4—C8—C7122.5 (7)
N8—Mn1—I1174.35 (16)N4—C8—H8118.7
Mn1—O1—H1A120.6C7—C8—H8118.7
Mn1—O1—H1B125.9N5—C9—C10122.7 (8)
H1A—O1—H1B108.5N5—C9—H9118.7
C4—N1—C1116.3 (6)C10—C9—H9118.7
C4—N1—Mn1117.2 (5)C11—C10—C9116.8 (7)
C1—N1—Mn1125.6 (5)C11—C10—H10121.6
C3—N2—C4116.9 (7)C9—C10—H10121.6
C5—N3—C6115.3 (7)N6—C11—C10122.2 (7)
C8—N4—C5115.6 (6)N6—C11—H11118.9
C8—N4—Mn1127.6 (5)C10—C11—H11118.9
C5—N4—Mn1116.8 (5)N6—C12—N5125.6 (7)
C9—N5—C12115.7 (7)N6—C12—C13117.7 (7)
C9—N5—Mn1126.1 (5)N5—C12—C13116.7 (7)
C12—N5—Mn1117.6 (5)N7—C13—N8125.8 (7)
C11—N6—C12116.9 (7)N7—C13—C12117.6 (7)
C13—N7—C14116.0 (7)N8—C13—C12116.4 (7)
C16—N8—C13115.4 (7)N7—C14—C15122.8 (8)
C16—N8—Mn1127.8 (5)N7—C14—H14118.6
C13—N8—Mn1116.7 (5)C15—C14—H14118.6
N1—C1—C2122.4 (7)C16—C15—C14116.2 (8)
N1—C1—H1118.8C16—C15—H15121.9
C2—C1—H1118.8C14—C15—H15121.9
C3—C2—C1117.3 (8)N8—C16—C15123.8 (8)
C3—C2—H2121.4N8—C16—H16118.1
C1—C2—H2121.4C15—C16—H16118.1
N2—C3—C2121.8 (8)H2A—O2—H2B106.3
N2—C3—H3119.1
O1—Mn1—N1—C433.9 (12)C1—N1—C4—C5179.9 (6)
N4—Mn1—N1—C47.6 (5)Mn1—N1—C4—C510.5 (8)
N5—Mn1—N1—C4169.2 (5)C3—N2—C4—N10.3 (12)
N8—Mn1—N1—C497.2 (5)C3—N2—C4—C5178.9 (7)
I1—Mn1—N1—C487.6 (5)C6—N3—C5—N41.1 (11)
O1—Mn1—N1—C1157.6 (8)C6—N3—C5—C4179.5 (6)
N4—Mn1—N1—C1176.1 (6)C8—N4—C5—N30.3 (11)
N5—Mn1—N1—C122.3 (6)Mn1—N4—C5—N3179.1 (6)
N8—Mn1—N1—C194.3 (6)C8—N4—C5—C4179.7 (6)
I1—Mn1—N1—C180.9 (6)Mn1—N4—C5—C40.4 (8)
O1—Mn1—N4—C81.8 (6)N1—C4—C5—N3172.3 (6)
N1—Mn1—N4—C8175.7 (7)N2—C4—C5—N38.4 (10)
N5—Mn1—N4—C8113.1 (8)N1—C4—C5—N47.2 (9)
N8—Mn1—N4—C885.9 (6)N2—C4—C5—N4172.1 (7)
I1—Mn1—N4—C892.6 (6)C5—N3—C6—C70.8 (11)
O1—Mn1—N4—C5177.4 (5)N3—C6—C7—C80.3 (12)
N1—Mn1—N4—C53.6 (5)C5—N4—C8—C71.0 (11)
N5—Mn1—N4—C566.2 (9)Mn1—N4—C8—C7179.8 (6)
N8—Mn1—N4—C593.4 (5)C6—C7—C8—N41.3 (12)
I1—Mn1—N4—C588.2 (5)C12—N5—C9—C100.9 (12)
O1—Mn1—N5—C993.1 (7)Mn1—N5—C9—C10170.3 (6)
N1—Mn1—N5—C996.7 (7)N5—C9—C10—C112.7 (13)
N4—Mn1—N5—C9155.4 (7)C12—N6—C11—C100.4 (12)
N8—Mn1—N5—C9176.0 (7)C9—C10—C11—N62.0 (13)
I1—Mn1—N5—C91.6 (7)C11—N6—C12—N52.5 (11)
O1—Mn1—N5—C1278.0 (5)C11—N6—C12—C13176.6 (7)
N1—Mn1—N5—C1292.2 (5)C9—N5—C12—N61.8 (11)
N4—Mn1—N5—C1233.5 (10)Mn1—N5—C12—N6173.8 (6)
N8—Mn1—N5—C124.9 (5)C9—N5—C12—C13177.2 (7)
I1—Mn1—N5—C12172.7 (5)Mn1—N5—C12—C135.2 (8)
O1—Mn1—N8—C1684.7 (6)C14—N7—C13—N82.3 (11)
N1—Mn1—N8—C1682.8 (6)C14—N7—C13—C12178.7 (7)
N4—Mn1—N8—C1610.0 (6)C16—N8—C13—N72.6 (11)
N5—Mn1—N8—C16179.8 (7)Mn1—N8—C13—N7173.7 (6)
O1—Mn1—N8—C1391.1 (5)C16—N8—C13—C12179.1 (6)
N1—Mn1—N8—C13101.4 (5)Mn1—N8—C13—C122.8 (8)
N4—Mn1—N8—C13174.2 (5)N6—C12—C13—N70.8 (10)
N5—Mn1—N8—C134.0 (5)N5—C12—C13—N7178.4 (6)
C4—N1—C1—C21.0 (11)N6—C12—C13—N8177.5 (6)
Mn1—N1—C1—C2167.6 (6)N5—C12—C13—N81.6 (10)
N1—C1—C2—C30.1 (13)C13—N7—C14—C151.8 (12)
C4—N2—C3—C21.4 (12)N7—C14—C15—C161.6 (12)
C1—C2—C3—N21.2 (13)C13—N8—C16—C152.4 (11)
C1—N1—C4—N20.8 (11)Mn1—N8—C16—C15173.4 (6)
Mn1—N1—C4—N2168.7 (6)C14—C15—C16—N82.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.841.932.767 (8)172
O1—H1B···O20.841.822.645 (8)167
O2—H2A···I20.842.603.423 (6)168
O2—H2B···N6ii0.842.062.871 (8)162
O2—H2B···N7ii0.842.382.918 (9)122
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[MnI(C8H6N4)2(H2O)]I·H2O
Mr661.11
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.8799 (9), 12.8197 (15), 12.9563 (15)
α, β, γ (°)113.302 (2), 101.695 (2), 104.053 (3)
V3)1098.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.44
Crystal size (mm)0.18 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.859, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8099, 5309, 3106
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.126, 1.07
No. of reflections5309
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 1.98

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.115 (5)Mn1—N52.270 (6)
Mn1—N12.256 (6)Mn1—N82.304 (6)
Mn1—N42.262 (6)Mn1—I12.8048 (13)
N1—Mn1—N472.8 (2)N5—Mn1—N872.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.841.932.767 (8)171.7
O1—H1B···O20.841.822.645 (8)167.4
O2—H2A···I20.842.603.423 (6)168.4
O2—H2B···N6ii0.842.062.871 (8)162.2
O2—H2B···N7ii0.842.382.918 (9)122.0
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335–2340.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727–1734.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds