organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(7R,8S,9S,12S)-1-Benz­yl­oxy-13,14-dide­hydro-12-hy­dr­oxy-2,13-dimeth­­oxy-N-methyl­morphinane

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, People's Republic of China
*Correspondence e-mail: xingliangzheng@163.com

(Received 13 August 2011; accepted 13 September 2011; online 17 September 2011)

In the title compound, C26H31NO4, a sinomenine derivative, the angle between the two aromatic rings is 53.34 (4)°. The N-containing ring is in a chair conformation, while the other two non-planar rings are in a half-boat conformation. In the crystal, mol­ecules are linked by O—H⋯N inter­actions into a C(8) chain along [100].

Related literature

For background to the biological effects (such as anti-inflammatory, analgesic, anti-rheumatoid arthritis and arrhythmia, lowering of blood pressure and immune function) of sinomenine derivatives and other related compounds, see: Liu et al. (1994[Liu, L., Riese, J., Resch, K. & Kaever, V. (1994). Arzneim. Forsch. 44, 1223-1226.], 1996[Liu, L., Buchner, E., Beitze, D., Schmidt-Weber, C. B., Kaever, V. & Emmricinne, R. W. (1996). Int. J. Immunopharmacol. 18, 529-543.], 1997[Liu, Q., Zhou, L. L. & Li, R. (1997). Chin. Trad. Herb. Drugs, 28, 247-249.]); Mark et al. (2003[Mark, W., Schneeberger, S., Seiler, R., Stroka, D. M., Amberger, A., Offner, F., Candinas, D. & Margreiter, R. (2003). Transplantation, 75, 940-945.]); Ye et al. (2004[Ye, X. R., Yan, K. X., Wu, K. M., Feng, X. Z., Huang, Y. M. & Qiu, P. (2004). Acta Pharmacol. Sin. 39, 180-183.]). For related structures, see: Li et al. (2009[Li, Y.-F., Qian, Y., Yin, L.-H., Lv, R. & Zhu, H.-J. (2009). Acta Cryst. E65, o689.]); Batterham et al. (1965[Batterham, T. J., Bell, K. H. & Weis, U. (1965). Aust. J. Chem. 18, 1799-1806.]); Zheng & Jiang (2010[Zheng, X.-L. & Jiang, N.-F. (2010). Acta Cryst. E66, o2817.]); Zheng et al. (2011[Zheng, X.-L., Chen, S.-J., Jiang, N.-F. & Zhan, S.-H. (2011). Acta Cryst. E67, o1190.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of 9S,13R,14S)-7,8-didehydro-4-benz­yloxy-3,7-dimeth­oxy-17-methyl­morphinan-6-one, a starting material in the preparation of the title compound, see: Hitotsuyanagi et al. (1995[Hitotsuyanagi, Y., Nishimura, K., Ikuta, H., Takeya, K. & Hideji Itokawa, H. (1995). J. Org. Chem. 60, 4549-4558.]).

[Scheme 1]

Experimental

Crystal data
  • C26H31NO4

  • Mr = 421.52

  • Triclinic, P 1

  • a = 7.7191 (2) Å

  • b = 8.5100 (2) Å

  • c = 9.9630 (2) Å

  • α = 79.971 (1)°

  • β = 67.663 (1)°

  • γ = 64.605 (1)°

  • V = 546.81 (2) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 133 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.864, Tmax = 0.898

  • 9789 measured reflections

  • 2925 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.07

  • 2925 reflections

  • 320 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1075 Friedel pairs

  • Flack parameter: −0.09 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.81 (3) 2.20 (3) 2.8966 (17) 145 (2)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have synthesized a new sinomenine derivative, the title compound (7R,8S,9S,12S)-13,14-didehydro-1-benzyloxy-N-methyl-2,13- dimethoxy-12-hydroxymorphinane, C26H31NO4 and report its crystal structure. The molecular structure of the title compound is shown in Fig. 1. The angle between the two aromatic planar rings is 53.34 (4)°. The N-containing ring approximates the chair conformation (QT = 0.6052 (17) Å θ = 171.70 (16)° & φ = 330.4 (11)°) while other non-planar rings; C5—C10 & C7/C8/C11—C14 approximate have half-boat conformation (QT = 0.5304 (17) Å θ =48.94 (18)° & φ = 207.8 (2)°; QT = 0.5065 (18) Å, θ = 51.5 (2)° & φ = 347.7 (3)° respectively, Cremer & Pople, 1975). In the crystal structure de molecules are linked by O—H···N interactions into a chain along [100] with set-graph notation C(8), (Bernstein et al., 1995), Fig. 2, Table 1. Similar features have been described in related compounds (Zheng & Jiang, 2010; Zheng et al., 2011; Li et al., 2009; Batterham et al., 1965).

Related literature top

For background to the biological effects (such as anti-inflammatory, analgesic, anti-rheumatoid arthritis and arrhythmia, lowering of blood pressure and immune function) of sinomenine derivatives and other related compounds, see: Liu et al. (1994, 1996, 1997); Mark et al. (2003); Ye et al. (2004). For related structures, see: Li et al. (2009); Batterham et al. (1965); Zheng & Jiang (2010); Zheng et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the synthesis of 9S,13R,14S)-7,8-didehydro-4-benzyloxy-3,7-dimethoxy-17-methylmorphinan-6-one, a starting material in the preparation of the title compound, see: Hitotsuyanagi et al. (1995).

Experimental top

The title compound was obtained by reducing (9S,13R,14S)-7,8-Didehydro-4-benzyloxy-3,7-dimethoxy-17-methyl-morphinan-6-one (which was synthesized by Hitotsuyanagi et al., 1995) with lithium aluminium tetrahydride. Colorless blocks were grown from a ethyl acetate–hexane solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95 (aromatic CH), 0.98 (methyl CH3), 0.99 (methylene CH2) or 1.00 Å (methine CH), and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(carrier C) or Uiso(H) = 1.5Ueq (carrier C17 C18 C19). H atom attached to O atom was refined isotropically. 1141 Friedel pairs were used for the Flack parameter refinement.

Structure description top

We have synthesized a new sinomenine derivative, the title compound (7R,8S,9S,12S)-13,14-didehydro-1-benzyloxy-N-methyl-2,13- dimethoxy-12-hydroxymorphinane, C26H31NO4 and report its crystal structure. The molecular structure of the title compound is shown in Fig. 1. The angle between the two aromatic planar rings is 53.34 (4)°. The N-containing ring approximates the chair conformation (QT = 0.6052 (17) Å θ = 171.70 (16)° & φ = 330.4 (11)°) while other non-planar rings; C5—C10 & C7/C8/C11—C14 approximate have half-boat conformation (QT = 0.5304 (17) Å θ =48.94 (18)° & φ = 207.8 (2)°; QT = 0.5065 (18) Å, θ = 51.5 (2)° & φ = 347.7 (3)° respectively, Cremer & Pople, 1975). In the crystal structure de molecules are linked by O—H···N interactions into a chain along [100] with set-graph notation C(8), (Bernstein et al., 1995), Fig. 2, Table 1. Similar features have been described in related compounds (Zheng & Jiang, 2010; Zheng et al., 2011; Li et al., 2009; Batterham et al., 1965).

For background to the biological effects (such as anti-inflammatory, analgesic, anti-rheumatoid arthritis and arrhythmia, lowering of blood pressure and immune function) of sinomenine derivatives and other related compounds, see: Liu et al. (1994, 1996, 1997); Mark et al. (2003); Ye et al. (2004). For related structures, see: Li et al. (2009); Batterham et al. (1965); Zheng & Jiang (2010); Zheng et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the synthesis of 9S,13R,14S)-7,8-didehydro-4-benzyloxy-3,7-dimethoxy-17-methylmorphinan-6-one, a starting material in the preparation of the title compound, see: Hitotsuyanagi et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing the formation of a C(8) chain along [100]. Hydrogen bond shown as dashed lines. The hydrogen atom no involved to hydrogen bond were omitted by clarity. Symmetry code: (i) x + 1, y, z.
(7R,8S,9S,12S)-1-Benzyloxy-13,14- didehydro-12-hydroxy-2,13-dimethoxy-N-methylmorphinane top
Crystal data top
C26H31NO4Z = 1
Mr = 421.52F(000) = 226
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.7191 (2) ÅCell parameters from 9563 reflections
b = 8.5100 (2) Åθ = 4.8–67.7°
c = 9.9630 (2) ŵ = 0.69 mm1
α = 79.971 (1)°T = 133 K
β = 67.663 (1)°Block, colourless
γ = 64.605 (1)°0.22 × 0.18 × 0.16 mm
V = 546.81 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2925 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 65.0°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.864, Tmax = 0.898k = 910
9789 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.074P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2925 reflectionsΔρmax = 0.16 e Å3
320 parametersΔρmin = 0.21 e Å3
3 restraintsAbsolute structure: Flack (1983), 1075 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (14)
Crystal data top
C26H31NO4γ = 64.605 (1)°
Mr = 421.52V = 546.81 (2) Å3
Triclinic, P1Z = 1
a = 7.7191 (2) ÅCu Kα radiation
b = 8.5100 (2) ŵ = 0.69 mm1
c = 9.9630 (2) ÅT = 133 K
α = 79.971 (1)°0.22 × 0.18 × 0.16 mm
β = 67.663 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2918 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.898Rint = 0.020
9789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.21 e Å3
2925 reflectionsAbsolute structure: Flack (1983), 1075 Friedel pairs
320 parametersAbsolute structure parameter: 0.09 (14)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1846 (2)0.69043 (16)0.42381 (14)0.0213 (3)
O10.20888 (17)0.54646 (13)0.78285 (11)0.0221 (3)
O20.1468 (2)0.84505 (15)0.88590 (12)0.0311 (3)
O30.6444 (2)0.43153 (16)0.48351 (13)0.0299 (3)
H30.699 (5)0.493 (4)0.431 (3)0.048 (7)*
O40.7533 (2)0.42073 (17)0.17433 (13)0.0325 (3)
C10.1806 (2)0.6935 (2)0.69393 (16)0.0196 (3)
C20.1435 (3)0.8511 (2)0.74825 (17)0.0224 (3)
C30.0987 (3)1.0021 (2)0.66552 (17)0.0227 (3)
H3A0.08501.10710.69740.027*
C40.0742 (2)0.99827 (19)0.53580 (16)0.0206 (3)
H40.03781.10310.48120.025*
C50.1011 (2)0.84563 (19)0.48291 (15)0.0178 (3)
C60.1651 (2)0.68794 (19)0.55900 (16)0.0180 (3)
C70.1781 (2)0.52104 (19)0.50805 (15)0.0186 (3)
C80.1850 (2)0.53675 (19)0.34957 (15)0.0191 (3)
H80.16070.43650.33280.023*
C90.0109 (2)0.70153 (19)0.32873 (16)0.0194 (3)
H90.01820.70460.22600.023*
C100.0495 (2)0.85695 (19)0.34874 (16)0.0197 (3)
H10A0.16310.86700.26250.024*
H10B0.07380.96440.35310.024*
C110.3642 (3)0.35419 (18)0.51321 (16)0.0215 (3)
H11A0.36460.33490.61400.026*
H11B0.34890.25460.48780.026*
C120.5705 (3)0.3557 (2)0.41207 (18)0.0241 (3)
H120.66910.23190.39190.029*
C130.5602 (3)0.4429 (2)0.26876 (17)0.0238 (3)
C140.3887 (3)0.5234 (2)0.23985 (15)0.0225 (3)
H140.39440.57470.14640.027*
C150.0260 (3)0.50452 (19)0.60092 (16)0.0210 (3)
H15A0.02590.39800.57370.025*
H15B0.04010.49400.70470.025*
C160.2061 (2)0.6625 (2)0.57832 (16)0.0212 (3)
H16A0.33400.64540.63350.025*
H16B0.21550.76700.61620.025*
C170.0786 (4)1.0089 (3)0.9494 (2)0.0391 (5)
H17A0.172 (4)1.067 (3)0.899 (3)0.042 (6)*
H17B0.069 (4)1.089 (3)0.950 (2)0.032 (5)*
H17C0.082 (4)0.984 (3)1.044 (3)0.043 (6)*
C180.7681 (3)0.4831 (3)0.0298 (2)0.0387 (5)
H18A0.903 (5)0.467 (3)0.018 (3)0.051 (7)*
H18B0.692 (4)0.609 (3)0.029 (2)0.042 (6)*
H18C0.725 (4)0.419 (3)0.020 (3)0.044 (6)*
C190.3610 (3)0.8391 (2)0.4052 (2)0.0307 (4)
H19A0.393 (4)0.944 (3)0.456 (2)0.042 (6)*
H19B0.477 (4)0.811 (3)0.452 (2)0.037 (6)*
H19C0.340 (4)0.871 (3)0.304 (3)0.038 (6)*
C200.3930 (3)0.4804 (2)0.81955 (18)0.0264 (4)
H20A0.38720.56700.87760.032*
H20B0.51400.45880.72990.032*
C210.4100 (3)0.3140 (2)0.90526 (17)0.0231 (3)
C220.2758 (3)0.3134 (2)1.04523 (17)0.0263 (4)
H220.16500.41861.08580.032*
C230.3022 (3)0.1601 (2)1.12647 (17)0.0335 (4)
H230.20980.16101.22240.040*
C240.4635 (3)0.0053 (2)1.0678 (2)0.0349 (4)
H240.48280.09921.12400.042*
C250.5956 (3)0.0046 (3)0.9271 (2)0.0405 (5)
H250.70500.10090.88590.049*
C260.5683 (3)0.1574 (3)0.8465 (2)0.0347 (4)
H260.65870.15570.74970.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0167 (8)0.0222 (7)0.0249 (6)0.0089 (6)0.0070 (5)0.0024 (5)
O10.0253 (7)0.0243 (5)0.0217 (5)0.0144 (5)0.0113 (5)0.0073 (4)
O20.0463 (9)0.0300 (6)0.0225 (6)0.0164 (6)0.0159 (5)0.0007 (5)
O30.0305 (7)0.0379 (7)0.0307 (6)0.0217 (6)0.0133 (5)0.0053 (5)
O40.0190 (7)0.0432 (7)0.0286 (6)0.0103 (6)0.0016 (5)0.0056 (5)
C10.0192 (10)0.0199 (7)0.0201 (7)0.0102 (7)0.0065 (6)0.0042 (6)
C20.0209 (10)0.0267 (8)0.0205 (7)0.0112 (7)0.0058 (6)0.0006 (6)
C30.0222 (10)0.0207 (8)0.0236 (8)0.0097 (7)0.0036 (7)0.0033 (6)
C40.0175 (9)0.0177 (7)0.0236 (7)0.0082 (7)0.0039 (6)0.0023 (6)
C50.0125 (8)0.0195 (7)0.0173 (7)0.0070 (6)0.0005 (6)0.0002 (5)
C60.0145 (9)0.0184 (7)0.0190 (7)0.0079 (6)0.0024 (6)0.0005 (5)
C70.0196 (9)0.0174 (7)0.0198 (7)0.0090 (7)0.0068 (6)0.0023 (5)
C80.0180 (9)0.0189 (7)0.0209 (7)0.0082 (7)0.0059 (6)0.0010 (5)
C90.0186 (9)0.0222 (7)0.0168 (6)0.0088 (7)0.0055 (6)0.0013 (5)
C100.0185 (9)0.0187 (7)0.0203 (7)0.0077 (7)0.0065 (6)0.0039 (6)
C110.0242 (10)0.0168 (7)0.0249 (8)0.0094 (7)0.0096 (7)0.0021 (6)
C120.0190 (9)0.0185 (7)0.0327 (8)0.0041 (7)0.0099 (7)0.0018 (6)
C130.0183 (10)0.0225 (7)0.0271 (8)0.0068 (7)0.0033 (7)0.0062 (6)
C140.0233 (10)0.0224 (7)0.0192 (7)0.0094 (7)0.0032 (6)0.0030 (6)
C150.0238 (9)0.0204 (7)0.0223 (7)0.0136 (7)0.0073 (6)0.0027 (6)
C160.0192 (9)0.0225 (7)0.0220 (7)0.0109 (7)0.0039 (6)0.0008 (6)
C170.0616 (17)0.0366 (10)0.0284 (9)0.0220 (11)0.0207 (9)0.0039 (8)
C180.0260 (12)0.0494 (12)0.0301 (9)0.0144 (10)0.0006 (8)0.0009 (8)
C190.0212 (11)0.0330 (9)0.0361 (10)0.0103 (8)0.0114 (8)0.0063 (8)
C200.0265 (10)0.0319 (9)0.0279 (8)0.0165 (8)0.0151 (7)0.0089 (6)
C210.0248 (10)0.0289 (8)0.0231 (7)0.0154 (7)0.0135 (6)0.0061 (6)
C220.0345 (11)0.0277 (8)0.0221 (8)0.0173 (8)0.0092 (7)0.0010 (6)
C230.0539 (14)0.0422 (10)0.0189 (7)0.0343 (10)0.0126 (8)0.0060 (7)
C240.0414 (13)0.0320 (9)0.0415 (10)0.0220 (9)0.0240 (9)0.0172 (8)
C250.0266 (12)0.0313 (9)0.0521 (12)0.0054 (8)0.0115 (9)0.0063 (8)
C260.0218 (11)0.0393 (10)0.0324 (9)0.0106 (8)0.0032 (7)0.0069 (7)
Geometric parameters (Å, º) top
N1—C191.457 (2)C11—H11B0.9900
N1—C161.4717 (19)C12—C131.504 (2)
N1—C91.479 (2)C12—H121.0000
O1—C11.3874 (18)C13—C141.322 (3)
O1—C201.452 (2)C14—H140.9500
O2—C21.3728 (19)C15—C161.523 (2)
O2—C171.431 (2)C15—H15A0.9900
O3—C121.426 (2)C15—H15B0.9900
O3—H30.81 (3)C16—H16A0.9900
O4—C131.377 (2)C16—H16B0.9900
O4—C181.424 (2)C17—H17A0.98 (3)
C1—C61.405 (2)C17—H17B1.04 (2)
C1—C21.407 (2)C17—H17C0.94 (3)
C2—C31.384 (2)C18—H18A0.93 (3)
C3—C41.383 (2)C18—H18B0.97 (3)
C3—H3A0.9500C18—H18C1.02 (3)
C4—C51.390 (2)C19—H19A1.00 (2)
C4—H40.9500C19—H19B0.95 (3)
C5—C61.408 (2)C19—H19C0.96 (2)
C5—C101.511 (2)C20—C211.502 (2)
C6—C71.5414 (19)C20—H20A0.9900
C7—C111.537 (2)C20—H20B0.9900
C7—C81.5437 (19)C21—C221.386 (2)
C7—C151.548 (2)C21—C261.394 (3)
C8—C141.505 (2)C22—C231.389 (2)
C8—C91.519 (2)C22—H220.9500
C8—H81.0000C23—C241.391 (3)
C9—C101.534 (2)C23—H230.9500
C9—H91.0000C24—C251.384 (3)
C10—H10A0.9900C24—H240.9500
C10—H10B0.9900C25—C261.382 (3)
C11—C121.531 (2)C25—H250.9500
C11—H11A0.9900C26—H260.9500
C19—N1—C16110.48 (13)C14—C13—O4126.33 (15)
C19—N1—C9112.48 (12)C14—C13—C12123.58 (15)
C16—N1—C9113.97 (12)O4—C13—C12110.06 (15)
C1—O1—C20115.41 (11)C13—C14—C8122.38 (14)
C2—O2—C17116.24 (13)C13—C14—H14118.8
C12—O3—H3113.4 (19)C8—C14—H14118.8
C13—O4—C18115.97 (15)C16—C15—C7110.79 (12)
O1—C1—C6119.65 (12)C16—C15—H15A109.5
O1—C1—C2118.96 (12)C7—C15—H15A109.5
C6—C1—C2120.95 (13)C16—C15—H15B109.5
O2—C2—C3123.84 (14)C7—C15—H15B109.5
O2—C2—C1116.36 (13)H15A—C15—H15B108.1
C3—C2—C1119.75 (13)N1—C16—C15111.43 (12)
C4—C3—C2119.21 (13)N1—C16—H16A109.3
C4—C3—H3A120.4C15—C16—H16A109.3
C2—C3—H3A120.4N1—C16—H16B109.3
C3—C4—C5121.95 (13)C15—C16—H16B109.3
C3—C4—H4119.0H16A—C16—H16B108.0
C5—C4—H4119.0O2—C17—H17A111.8 (14)
C4—C5—C6119.53 (13)O2—C17—H17B110.5 (12)
C4—C5—C10118.27 (13)H17A—C17—H17B110.3 (19)
C6—C5—C10122.12 (12)O2—C17—H17C106.3 (14)
C1—C6—C5118.22 (13)H17A—C17—H17C107 (2)
C1—C6—C7121.07 (12)H17B—C17—H17C110.8 (19)
C5—C6—C7119.75 (13)O4—C18—H18A105.7 (16)
C11—C7—C6115.92 (13)O4—C18—H18B110.4 (13)
C11—C7—C8105.00 (12)H18A—C18—H18B105 (2)
C6—C7—C8112.20 (11)O4—C18—H18C111.8 (13)
C11—C7—C15112.20 (12)H18A—C18—H18C112 (2)
C6—C7—C15105.79 (12)H18B—C18—H18C112 (2)
C8—C7—C15105.35 (12)N1—C19—H19A112.3 (14)
C14—C8—C9112.17 (12)N1—C19—H19B107.5 (14)
C14—C8—C7113.37 (12)H19A—C19—H19B104.5 (19)
C9—C8—C7110.21 (12)N1—C19—H19C111.7 (14)
C14—C8—H8106.9H19A—C19—H19C107.0 (18)
C9—C8—H8106.9H19B—C19—H19C113.6 (19)
C7—C8—H8106.9O1—C20—C21108.89 (12)
N1—C9—C8108.56 (11)O1—C20—H20A109.9
N1—C9—C10117.45 (12)C21—C20—H20A109.9
C8—C9—C10107.64 (13)O1—C20—H20B109.9
N1—C9—H9107.6C21—C20—H20B109.9
C8—C9—H9107.6H20A—C20—H20B108.3
C10—C9—H9107.6C22—C21—C26118.78 (15)
C5—C10—C9114.41 (12)C22—C21—C20121.23 (16)
C5—C10—H10A108.7C26—C21—C20119.93 (16)
C9—C10—H10A108.7C21—C22—C23120.44 (17)
C5—C10—H10B108.7C21—C22—H22119.8
C9—C10—H10B108.7C23—C22—H22119.8
H10A—C10—H10B107.6C22—C23—C24120.23 (16)
C12—C11—C7114.76 (12)C22—C23—H23119.9
C12—C11—H11A108.6C24—C23—H23119.9
C7—C11—H11A108.6C25—C24—C23119.55 (16)
C12—C11—H11B108.6C25—C24—H24120.2
C7—C11—H11B108.6C23—C24—H24120.2
H11A—C11—H11B107.6C26—C25—C24119.99 (19)
O3—C12—C13112.56 (13)C26—C25—H25120.0
O3—C12—C11109.93 (13)C24—C25—H25120.0
C13—C12—C11111.95 (14)C25—C26—C21120.97 (17)
O3—C12—H12107.4C25—C26—H26119.5
C13—C12—H12107.4C21—C26—H26119.5
C11—C12—H12107.4
C20—O1—C1—C6120.66 (16)C14—C8—C9—C1061.20 (15)
C20—O1—C1—C266.93 (18)C7—C8—C9—C1066.14 (15)
C17—O2—C2—C36.7 (3)C4—C5—C10—C9159.57 (14)
C17—O2—C2—C1170.72 (17)C6—C5—C10—C917.2 (2)
O1—C1—C2—O22.7 (2)N1—C9—C10—C574.44 (17)
C6—C1—C2—O2175.01 (16)C8—C9—C10—C548.35 (16)
O1—C1—C2—C3174.81 (16)C6—C7—C11—C1263.95 (17)
C6—C1—C2—C32.5 (2)C8—C7—C11—C1260.46 (16)
O2—C2—C3—C4171.90 (16)C15—C7—C11—C12174.37 (12)
C1—C2—C3—C45.4 (2)C7—C11—C12—O387.15 (16)
C2—C3—C4—C52.6 (2)C7—C11—C12—C1338.74 (17)
C3—C4—C5—C63.2 (2)C18—O4—C13—C143.6 (2)
C3—C4—C5—C10173.62 (15)C18—O4—C13—C12174.42 (14)
O1—C1—C6—C5169.01 (14)O3—C12—C13—C14118.18 (17)
C2—C1—C6—C53.2 (2)C11—C12—C13—C146.3 (2)
O1—C1—C6—C70.3 (2)O3—C12—C13—O463.72 (17)
C2—C1—C6—C7171.99 (15)C11—C12—C13—O4171.84 (12)
C4—C5—C6—C16.0 (2)O4—C13—C14—C8178.32 (14)
C10—C5—C6—C1170.68 (14)C12—C13—C14—C80.5 (2)
C4—C5—C6—C7174.93 (13)C9—C8—C14—C13149.84 (14)
C10—C5—C6—C71.8 (2)C7—C8—C14—C1324.21 (19)
C1—C6—C7—C1152.12 (19)C11—C7—C15—C16172.80 (12)
C5—C6—C7—C11139.31 (14)C6—C7—C15—C1659.89 (15)
C1—C6—C7—C8172.72 (14)C8—C7—C15—C1659.11 (14)
C5—C6—C7—C818.7 (2)C19—N1—C16—C15178.44 (13)
C1—C6—C7—C1572.91 (18)C9—N1—C16—C1553.76 (16)
C5—C6—C7—C1595.66 (15)C7—C15—C16—N155.26 (16)
C11—C7—C8—C1451.48 (15)C1—O1—C20—C21175.36 (14)
C6—C7—C8—C1475.26 (16)O1—C20—C21—C2269.19 (19)
C15—C7—C8—C14170.11 (12)O1—C20—C21—C26113.59 (17)
C11—C7—C8—C9178.15 (12)C26—C21—C22—C231.7 (3)
C6—C7—C8—C951.41 (17)C20—C21—C22—C23175.59 (15)
C15—C7—C8—C963.22 (14)C21—C22—C23—C240.2 (3)
C19—N1—C9—C8176.79 (13)C22—C23—C24—C251.0 (3)
C16—N1—C9—C856.45 (15)C23—C24—C25—C260.8 (3)
C19—N1—C9—C1060.90 (18)C24—C25—C26—C210.6 (3)
C16—N1—C9—C1065.86 (16)C22—C21—C26—C251.9 (3)
C14—C8—C9—N1170.71 (11)C20—C21—C26—C25175.41 (18)
C7—C8—C9—N161.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.81 (3)2.20 (3)2.8966 (17)145 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H31NO4
Mr421.52
Crystal system, space groupTriclinic, P1
Temperature (K)133
a, b, c (Å)7.7191 (2), 8.5100 (2), 9.9630 (2)
α, β, γ (°)79.971 (1), 67.663 (1), 64.605 (1)
V3)546.81 (2)
Z1
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.864, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
9789, 2925, 2918
Rint0.020
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.07
No. of reflections2925
No. of parameters320
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.21
Absolute structureFlack (1983), 1075 Friedel pairs
Absolute structure parameter0.09 (14)

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.81 (3)2.20 (3)2.8966 (17)145 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 20976017) and the Scientific Research Fund of Hunan Provincial Science and Technology Department of China (No. 2009 C K3070).

References

First citationBatterham, T. J., Bell, K. H. & Weis, U. (1965). Aust. J. Chem. 18, 1799–1806.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHitotsuyanagi, Y., Nishimura, K., Ikuta, H., Takeya, K. & Hideji Itokawa, H. (1995). J. Org. Chem. 60, 4549–4558.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y.-F., Qian, Y., Yin, L.-H., Lv, R. & Zhu, H.-J. (2009). Acta Cryst. E65, o689.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, L., Buchner, E., Beitze, D., Schmidt-Weber, C. B., Kaever, V. & Emmricinne, R. W. (1996). Int. J. Immunopharmacol. 18, 529–543.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, L., Riese, J., Resch, K. & Kaever, V. (1994). Arzneim. Forsch. 44, 1223–1226.  CAS Google Scholar
First citationLiu, Q., Zhou, L. L. & Li, R. (1997). Chin. Trad. Herb. Drugs, 28, 247–249.  Google Scholar
First citationMark, W., Schneeberger, S., Seiler, R., Stroka, D. M., Amberger, A., Offner, F., Candinas, D. & Margreiter, R. (2003). Transplantation, 75, 940–945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, X. R., Yan, K. X., Wu, K. M., Feng, X. Z., Huang, Y. M. & Qiu, P. (2004). Acta Pharmacol. Sin. 39, 180–183.  CAS Google Scholar
First citationZheng, X.-L., Chen, S.-J., Jiang, N.-F. & Zhan, S.-H. (2011). Acta Cryst. E67, o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, X.-L. & Jiang, N.-F. (2010). Acta Cryst. E66, o2817.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds