organic compounds
1-Heptyl-1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecan-1-ium iodide
aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co
The title compound C14H29N4+·I− salt, was obtained by the reaction of cage adamanzane-type aminal 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane with heptyl iodide. In the cation, the bond lengths and angles are within normal ranges, except for one N—C(ring) bond distance of 1.542 (3) Å, which is unexpectedly long compared with related compounds. In the crystal, ions are linked through C—H⋯I hydrogen bonds. The crystal studied was a non-merohedral twin with a minor twin domain of 6.56 (5)%.
Related literature
For the preparation of the title compound, see: Rivera et al. (2011). For synthetic applications of quaternary ammonium salts, see: Starks (1971). For related structures, see: Betz & Klüfers (2007); Lee et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
https://doi.org/10.1107/S1600536811036403/bx2371sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811036403/bx2371Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811036403/bx2371Isup3.cml
The synthetic method has been described earlier (Rivera et al., 2011), except that heptyl idodide was used as alkylating agent. Single crystals suitable for X-ray analysis were obtained by crystallization from methanol solution. M.p. = 409–410 K. MS (ESI+): m/z 253.2441 [C7H14N4+C7H15].
Hydrogen atoms were placed to ideal positions and refined as riding with C–H distance 0.96 Å. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.2 (CH2) or 1.5 (CH3) times Ueq of the parent atom.
Quaternary ammonium salts are used as phase transfer catalysts for a wide range of organic reactions involving immiscible solvent systems (Starks, 1971). Therefore, we have decided to synthesize a new series of new N-alkylated quaternary ammonium salts, based on the Menschutkin reaction (Rivera et al., 2011) of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane with an alkyl halide. In the present work, the structure of a new compound, 1-heptyl-1,3,6,8-tretraazatricyclo[4.3.1.13,8]undeca-1-ium iodide, is described.
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymetric unit of title molecule, C14H29N4+.I-, contains a 1-heptyl-1,3,6,8-tretraazatricyclo[4.3.1.13,8]undeca-1-ium cation and one iodide anion. Bond lenghts and angles in the title compound are normal, however the bond length N1—C1 [1.542 (3) Å] in the quaternary nitrogen is longer than the corresponding values observed in related structure [1.527 (3) Å] (Betz & Klüfers, 2007). In the cation, the torsion angle on the ethylene bridge is slightly distorted from the exact D2 d symmetry [N2—C5—C6—N4 torsion angle = 7.2 (4)°]. In the crystal, ions are linked by C—H···I hydrogen bonds (Figure 2), which is shorter (Table 1) than the corresponding contacts in related structure (Lee, et al., 2011).The main conformational feature is that the torsion angles in the heptyl chain are further removed from the ideal all-trans conformation, notably in C11—C12—C13—C14 fragment, which differ in the relative orientations [C—C—C—C torsion angle = 67.8 (3)°].
For the preparation of the title compound, see: Rivera et al. (2011). For synthetic applications of quaternary ammonium salts, see: Starks (1971). For related structures, see: Betz & Klüfers (2007); Lee et al. (2011).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: Jana2006 (Petříček et al., 2006); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound view along a axis. |
C14H29N4+·I− | F(000) = 776 |
Mr = 380.3 | Dx = 1.518 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2yn | Cell parameters from 12607 reflections |
a = 8.8325 (2) Å | θ = 2.9–29.2° |
b = 15.3276 (3) Å | µ = 1.92 mm−1 |
c = 12.4792 (2) Å | T = 160 K |
β = 100.072 (2)° | Irregular shape, colourless |
V = 1663.41 (6) Å3 | 0.31 × 0.24 × 0.16 mm |
Z = 4 |
Agilent Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector | 4183 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3517 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 29.3°, θmin = 2.9° |
Rotation method data acquisition using ω scans | h = −11→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −20→19 |
Tmin = 0.871, Tmax = 1 | l = −16→16 |
22619 measured reflections |
Refinement on F2 | 116 constraints |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.065 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
S = 1.61 | (Δ/σ)max = 0.016 |
4183 reflections | Δρmax = 0.53 e Å−3 |
173 parameters | Δρmin = −0.48 e Å−3 |
0 restraints |
C14H29N4+·I− | V = 1663.41 (6) Å3 |
Mr = 380.3 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.8325 (2) Å | µ = 1.92 mm−1 |
b = 15.3276 (3) Å | T = 160 K |
c = 12.4792 (2) Å | 0.31 × 0.24 × 0.16 mm |
β = 100.072 (2)° |
Agilent Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector | 4183 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3517 reflections with I > 3σ(I) |
Tmin = 0.871, Tmax = 1 | Rint = 0.031 |
22619 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.61 | Δρmax = 0.53 e Å−3 |
4183 reflections | Δρmin = −0.48 e Å−3 |
173 parameters |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The crystal studied was a non-merohedral twin with a minor twin domain of 6.56 (5)%. The overlaps of reflection between the twin domains were calculated by Jana2006 software using the twinning matrix and user- defined treshold 0.15 degs for full overlap. Due to no support for twinning in the official CIF dictionary the twinning matrix has been saved in the CIF file using special _jana_cell_twin_matrix keyword. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.255234 (19) | 0.362795 (11) | 0.161798 (13) | 0.03611 (6) | |
N1 | 0.1652 (2) | 0.66563 (12) | 0.09078 (15) | 0.0265 (6) | |
N2 | 0.4475 (2) | 0.65925 (13) | 0.13273 (16) | 0.0299 (6) | |
N3 | 0.3065 (2) | 0.60189 (13) | −0.03990 (16) | 0.0314 (6) | |
C1 | 0.1645 (3) | 0.75253 (15) | 0.0285 (2) | 0.0343 (8) | |
C2 | 0.3103 (3) | 0.65513 (15) | 0.17770 (19) | 0.0285 (7) | |
C3 | 0.1707 (3) | 0.59276 (16) | 0.00795 (18) | 0.0304 (7) | |
C4 | 0.4444 (3) | 0.59596 (16) | 0.04572 (19) | 0.0321 (8) | |
C5 | 0.5050 (4) | 0.74388 (18) | 0.1150 (3) | 0.0570 (12) | |
C6 | 0.4250 (4) | 0.7963 (2) | 0.0231 (3) | 0.0625 (13) | |
N4 | 0.2865 (3) | 0.76063 (14) | −0.03149 (18) | 0.0417 (8) | |
C7 | 0.2995 (3) | 0.68432 (18) | −0.0992 (2) | 0.0406 (9) | |
C8 | 0.0209 (3) | 0.66349 (16) | 0.13859 (19) | 0.0318 (8) | |
C9 | 0.0031 (3) | 0.58651 (17) | 0.2112 (2) | 0.0362 (8) | |
C10 | −0.1575 (3) | 0.58205 (17) | 0.2378 (2) | 0.0361 (8) | |
C11 | −0.1784 (3) | 0.50740 (18) | 0.3136 (2) | 0.0376 (8) | |
C12 | −0.3416 (3) | 0.4983 (2) | 0.3350 (2) | 0.0490 (10) | |
C13 | −0.3676 (3) | 0.4201 (2) | 0.4036 (2) | 0.0543 (11) | |
C14 | −0.2874 (4) | 0.4242 (2) | 0.5197 (3) | 0.0644 (13) | |
H1a | 0.067925 | 0.759245 | −0.019773 | 0.0411* | |
H1b | 0.168363 | 0.800294 | 0.078623 | 0.0411* | |
H2a | 0.312341 | 0.699798 | 0.231869 | 0.0343* | |
H2b | 0.30621 | 0.600427 | 0.214549 | 0.0343* | |
H3a | 0.172331 | 0.537227 | 0.043705 | 0.0365* | |
H3b | 0.081192 | 0.596113 | −0.047999 | 0.0365* | |
H4a | 0.452199 | 0.538155 | 0.075802 | 0.0385* | |
H4b | 0.534905 | 0.602573 | 0.013598 | 0.0385* | |
H5a | 0.612201 | 0.739939 | 0.110647 | 0.0684* | |
H5b | 0.514452 | 0.777325 | 0.180856 | 0.0684* | |
H6a | 0.406609 | 0.853891 | 0.048084 | 0.075* | |
H6b | 0.492883 | 0.806321 | −0.02793 | 0.075* | |
H7a | 0.389014 | 0.689961 | −0.132646 | 0.0488* | |
H7b | 0.214378 | 0.683107 | −0.158738 | 0.0488* | |
H8a | 0.011991 | 0.716719 | 0.177567 | 0.0381* | |
H8b | −0.066861 | 0.666772 | 0.081196 | 0.0381* | |
H9a | 0.076657 | 0.591093 | 0.277414 | 0.0435* | |
H9b | 0.024842 | 0.533548 | 0.175699 | 0.0435* | |
H10a | −0.181244 | 0.636201 | 0.269808 | 0.0433* | |
H10b | −0.230927 | 0.576603 | 0.171639 | 0.0433* | |
H11a | −0.147264 | 0.453761 | 0.284218 | 0.0451* | |
H11b | −0.109258 | 0.514772 | 0.38146 | 0.0451* | |
H12a | −0.411644 | 0.496068 | 0.266936 | 0.0588* | |
H12b | −0.370287 | 0.550579 | 0.368846 | 0.0588* | |
H13a | −0.475937 | 0.412162 | 0.40143 | 0.0651* | |
H13b | −0.337479 | 0.367937 | 0.370327 | 0.0651* | |
H14a | −0.178217 | 0.42272 | 0.52221 | 0.0966* | |
H14b | −0.317757 | 0.375148 | 0.558892 | 0.0966* | |
H14c | −0.314979 | 0.477258 | 0.552303 | 0.0966* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.03178 (10) | 0.03586 (11) | 0.03959 (11) | −0.00013 (7) | 0.00324 (7) | 0.01196 (7) |
N1 | 0.0256 (10) | 0.0264 (10) | 0.0269 (10) | 0.0031 (8) | 0.0033 (8) | −0.0015 (8) |
N2 | 0.0258 (10) | 0.0313 (11) | 0.0314 (11) | 0.0012 (8) | 0.0019 (9) | −0.0028 (9) |
N3 | 0.0340 (11) | 0.0326 (11) | 0.0276 (10) | 0.0013 (9) | 0.0050 (9) | −0.0032 (9) |
C1 | 0.0380 (14) | 0.0266 (13) | 0.0377 (14) | 0.0063 (11) | 0.0052 (12) | 0.0061 (11) |
C2 | 0.0283 (12) | 0.0314 (13) | 0.0245 (11) | 0.0047 (10) | 0.0006 (10) | −0.0018 (9) |
C3 | 0.0320 (13) | 0.0281 (12) | 0.0297 (12) | −0.0004 (10) | 0.0013 (10) | −0.0054 (10) |
C4 | 0.0310 (13) | 0.0315 (13) | 0.0342 (13) | 0.0049 (11) | 0.0068 (11) | −0.0007 (11) |
C5 | 0.0535 (19) | 0.0419 (17) | 0.081 (2) | −0.0115 (15) | 0.0258 (18) | −0.0055 (16) |
C6 | 0.056 (2) | 0.057 (2) | 0.076 (2) | −0.0098 (17) | 0.0148 (18) | −0.0051 (18) |
N4 | 0.0476 (14) | 0.0321 (12) | 0.0487 (13) | 0.0000 (10) | 0.0170 (11) | 0.0071 (10) |
C7 | 0.0456 (16) | 0.0481 (16) | 0.0287 (13) | 0.0058 (13) | 0.0076 (12) | 0.0075 (12) |
C8 | 0.0272 (12) | 0.0331 (13) | 0.0348 (13) | 0.0050 (10) | 0.0049 (11) | −0.0008 (11) |
C9 | 0.0341 (13) | 0.0379 (14) | 0.0366 (13) | 0.0017 (12) | 0.0060 (11) | 0.0039 (11) |
C10 | 0.0304 (13) | 0.0367 (14) | 0.0409 (14) | 0.0003 (11) | 0.0055 (11) | 0.0015 (11) |
C11 | 0.0344 (14) | 0.0394 (15) | 0.0379 (14) | −0.0011 (11) | 0.0035 (12) | 0.0021 (11) |
C12 | 0.0326 (15) | 0.0578 (19) | 0.0547 (18) | −0.0084 (13) | 0.0026 (13) | 0.0159 (15) |
C13 | 0.0458 (18) | 0.059 (2) | 0.0562 (18) | −0.0162 (15) | 0.0040 (15) | 0.0130 (16) |
C14 | 0.058 (2) | 0.083 (3) | 0.0521 (19) | −0.0093 (19) | 0.0083 (17) | 0.0134 (18) |
N1—C1 | 1.542 (3) | N4—C7 | 1.459 (4) |
N1—C2 | 1.536 (3) | C7—H7a | 0.96 |
N1—C3 | 1.528 (3) | C7—H7b | 0.96 |
N1—C8 | 1.499 (3) | C8—C9 | 1.512 (4) |
N2—C2 | 1.424 (3) | C8—H8a | 0.96 |
N2—C4 | 1.453 (3) | C8—H8b | 0.96 |
N2—C5 | 1.424 (4) | C9—C10 | 1.514 (4) |
N3—C3 | 1.437 (3) | C9—H9a | 0.96 |
N3—C4 | 1.476 (3) | C9—H9b | 0.96 |
N3—C7 | 1.460 (3) | C10—C11 | 1.517 (4) |
C1—N4 | 1.421 (4) | C10—H10a | 0.96 |
C1—H1a | 0.96 | C10—H10b | 0.96 |
C1—H1b | 0.96 | C11—C12 | 1.517 (4) |
C2—H2a | 0.96 | C11—H11a | 0.96 |
C2—H2b | 0.96 | C11—H11b | 0.96 |
C3—H3a | 0.96 | C12—C13 | 1.515 (4) |
C3—H3b | 0.96 | C12—H12a | 0.96 |
C4—H4a | 0.96 | C12—H12b | 0.96 |
C4—H4b | 0.96 | C13—C14 | 1.498 (4) |
C5—C6 | 1.475 (4) | C13—H13a | 0.96 |
C5—H5a | 0.96 | C13—H13b | 0.96 |
C5—H5b | 0.96 | C14—H14a | 0.96 |
C6—N4 | 1.402 (4) | C14—H14b | 0.96 |
C6—H6a | 0.96 | C14—H14c | 0.96 |
C6—H6b | 0.96 | C14—C9i | 3.829 (4) |
C1—N1—C2 | 112.07 (17) | C6—N4—C7 | 116.3 (2) |
C1—N1—C3 | 106.73 (17) | N3—C7—N4 | 113.6 (2) |
C1—N1—C8 | 106.94 (18) | N3—C7—H7a | 109.4709 |
C2—N1—C3 | 106.25 (17) | N3—C7—H7b | 109.4704 |
C2—N1—C8 | 112.29 (18) | N4—C7—H7a | 109.472 |
C3—N1—C8 | 112.51 (18) | N4—C7—H7b | 109.4716 |
C2—N2—C4 | 111.04 (18) | H7a—C7—H7b | 105.0122 |
C2—N2—C5 | 116.9 (2) | N1—C8—C9 | 116.1 (2) |
C4—N2—C5 | 116.9 (2) | N1—C8—H8a | 109.4708 |
C3—N3—C4 | 109.67 (18) | N1—C8—H8b | 109.4713 |
C3—N3—C7 | 109.3 (2) | C9—C8—H8a | 109.4716 |
C4—N3—C7 | 112.12 (19) | C9—C8—H8b | 109.471 |
N1—C1—N4 | 113.9 (2) | H8a—C8—H8b | 101.9387 |
N1—C1—H1a | 109.4716 | C8—C9—C10 | 111.4 (2) |
N1—C1—H1b | 109.4717 | C8—C9—H9a | 109.4711 |
N4—C1—H1a | 109.4708 | C8—C9—H9b | 109.4714 |
N4—C1—H1b | 109.4711 | C10—C9—H9a | 109.4709 |
H1a—C1—H1b | 104.657 | C10—C9—H9b | 109.4708 |
N1—C2—N2 | 112.32 (19) | H9a—C9—H9b | 107.4338 |
N1—C2—H2a | 109.4714 | C9—C10—C11 | 113.1 (2) |
N1—C2—H2b | 109.4711 | C9—C10—H10a | 109.4709 |
N2—C2—H2a | 109.4715 | C9—C10—H10b | 109.4711 |
N2—C2—H2b | 109.4706 | C11—C10—H10a | 109.4712 |
H2a—C2—H2b | 106.4595 | C11—C10—H10b | 109.4712 |
N1—C3—N3 | 109.72 (19) | H10a—C10—H10b | 105.6299 |
N1—C3—H3a | 109.4716 | C10—C11—C12 | 113.7 (2) |
N1—C3—H3b | 109.4707 | C10—C11—H11a | 109.4711 |
N3—C3—H3a | 109.471 | C10—C11—H11b | 109.4709 |
N3—C3—H3b | 109.4713 | C12—C11—H11a | 109.4715 |
H3a—C3—H3b | 109.223 | C12—C11—H11b | 109.4715 |
N2—C4—N3 | 113.9 (2) | H11a—C11—H11b | 104.9043 |
N2—C4—H4a | 109.4712 | C11—C12—C13 | 114.5 (2) |
N2—C4—H4b | 109.4712 | C11—C12—H12a | 109.471 |
N3—C4—H4a | 109.4716 | C11—C12—H12b | 109.4716 |
N3—C4—H4b | 109.471 | C13—C12—H12a | 109.4711 |
H4a—C4—H4b | 104.6525 | C13—C12—H12b | 109.4712 |
N2—C5—C6 | 118.8 (3) | H12a—C12—H12b | 103.914 |
N2—C5—H5a | 109.4717 | C12—C13—C14 | 114.9 (3) |
N2—C5—H5b | 109.4715 | C12—C13—H13a | 109.4717 |
C6—C5—H5a | 109.4709 | C12—C13—H13b | 109.4715 |
C6—C5—H5b | 109.4709 | C14—C13—H13a | 109.4714 |
H5a—C5—H5b | 98.1968 | C14—C13—H13b | 109.4712 |
C5—C6—N4 | 115.1 (3) | H13a—C13—H13b | 103.4432 |
C5—C6—H6a | 109.4709 | C13—C14—H14a | 109.4716 |
C5—C6—H6b | 109.4718 | C13—C14—H14b | 109.4709 |
N4—C6—H6a | 109.4712 | C13—C14—H14c | 109.4713 |
N4—C6—H6b | 109.4714 | H14a—C14—H14b | 109.4705 |
H6a—C6—H6b | 103.2278 | H14a—C14—H14c | 109.4719 |
C1—N4—C6 | 117.1 (2) | H14b—C14—H14c | 109.4712 |
C1—N4—C7 | 112.3 (2) | ||
C11—C12—C13—C14 | 67.8 (4) | N2—C5—C6—N4 | 7.2 (4) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2a···I1ii | 0.96 | 2.94 | 3.858 (2) | 161 |
Symmetry code: (ii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H29N4+·I− |
Mr | 380.3 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 160 |
a, b, c (Å) | 8.8325 (2), 15.3276 (3), 12.4792 (2) |
β (°) | 100.072 (2) |
V (Å3) | 1663.41 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.92 |
Crystal size (mm) | 0.31 × 0.24 × 0.16 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.871, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 22619, 4183, 3517 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.688 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.065, 1.61 |
No. of reflections | 4183 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.48 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), Jana2006 (Petříček et al., 2006), Diamond (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2a···I1i | 0.96 | 2.94 | 3.858 (2) | 161 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic. JS-B acknowledges the Facultad de Ciencias de la Universidad Nacional de Colombia for a fellowship.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4279. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Lee, J.-D., Han, W.-S., Suh, I.-H. & Kang, S. O. (2011). Acta Cryst. E67, o2148. Web of Science CSD CrossRef IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011). Chem. Cent. J. Submitted. Google Scholar
Starks, C. M. (1971). J. Am. Chem. Soc. 93, 195–199. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quaternary ammonium salts are used as phase transfer catalysts for a wide range of organic reactions involving immiscible solvent systems (Starks, 1971). Therefore, we have decided to synthesize a new series of new N-alkylated quaternary ammonium salts, based on the Menschutkin reaction (Rivera et al., 2011) of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane with an alkyl halide. In the present work, the structure of a new compound, 1-heptyl-1,3,6,8-tretraazatricyclo[4.3.1.13,8]undeca-1-ium iodide, is described.
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymetric unit of title molecule, C14H29N4+.I-, contains a 1-heptyl-1,3,6,8-tretraazatricyclo[4.3.1.13,8]undeca-1-ium cation and one iodide anion. Bond lenghts and angles in the title compound are normal, however the bond length N1—C1 [1.542 (3) Å] in the quaternary nitrogen is longer than the corresponding values observed in related structure [1.527 (3) Å] (Betz & Klüfers, 2007). In the cation, the torsion angle on the ethylene bridge is slightly distorted from the exact D2 d symmetry [N2—C5—C6—N4 torsion angle = 7.2 (4)°]. In the crystal, ions are linked by C—H···I hydrogen bonds (Figure 2), which is shorter (Table 1) than the corresponding contacts in related structure (Lee, et al., 2011).The main conformational feature is that the torsion angles in the heptyl chain are further removed from the ideal all-trans conformation, notably in C11—C12—C13—C14 fragment, which differ in the relative orientations [C—C—C—C torsion angle = 67.8 (3)°].