metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tris­­(μ3-2-amino­ethane­sulfonato)­cobalt(II)potassium]

aPhysics and Chemistry Department, Jiangxi College of Traditional Chinese Medicine, Fuzhou, Jiangxi 344000, People's Republic of China, and bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China
*Correspondence e-mail: caizhou2006@126.com

(Received 18 September 2011; accepted 26 September 2011; online 30 September 2011)

The title compound, [CoK(C2H6NO3S)3]n, is isotypic with its NiII analogue. The CoII atom is chelated by the three taurinate ligands in a distorted octa­hedral geometry and in a facial manner. Each taurinate ligand bridges two K+ ions via its sulfonate group, forming a three-dimensional framework. Weak N—H⋯O hydrogen bonding is observed in the crystal structure.

Related literature

For the isotypic NiII structure, see: Jiang et al. (2005[Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878-m880.]). For the applications of taurine in medicine and biochemistry, see: Bottari & Festa (1998[Bottari, E. & Festa, M. R. (1998). Talanta, 46, 91-99.]); Jiang et al. (2003[Jiang, Y. M., Zhang, S. H., Xu, Q. & Xiao, Y. (2003). Acta Chim. Sin. 61, 573-577.]). For general background to taurine complexes and their derivatives, see: Zhang & Jiang (2002[Zhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497-500.]); Zhong et al. (2003[Zhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559-602.]); Cai et al. (2004[Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659-m1661.], 2006[Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059-m3061.], 2011[Cai, J. H., Zhong, F. & Jiang, Y. M. (2011). Chin. J. Struct. Chem. 30, 743-747.]); Yang et al. (2010a[Yang, F., Wu, Z.-H. & Cai, J.-H. (2010a). Acta Cryst. E66, m748.],b[Yang, F., Liu, X.-H. & Zhao, C.-Q. (2010b). Acta Cryst. E66, m1343-m1344.]). For S–O(–Co) bond lengths in bridging sulfonate groups, see: Zeng et al. (2009[Zeng, J.-L., Jiang, Y.-M., Sun, L.-X., Cao, Z. & Yang, D.-W. (2009). Acta Cryst. E65, m1067-m1068.]); Yang et al. (2010b[Yang, F., Liu, X.-H. & Zhao, C.-Q. (2010b). Acta Cryst. E66, m1343-m1344.]).

[Scheme 1]

Experimental

Crystal data
  • [CoK(C2H6NO3S)3]

  • Mr = 470.44

  • Orthorhombic, P n a 21

  • a = 10.6901 (19) Å

  • b = 15.669 (3) Å

  • c = 9.6094 (17) Å

  • V = 1609.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.657, Tmax = 0.791

  • 10792 measured reflections

  • 3386 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.058

  • S = 1.02

  • 3386 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1528 Friedel pairs

  • Flack parameter: 0.020 (13)

Table 1
Selected bond lengths (Å)

Co1—O1 2.1316 (18)
Co1—O7 2.1411 (18)
Co1—O4 2.142 (2)
Co1—N2 2.143 (2)
Co1—N3 2.146 (2)
Co1—N1 2.149 (2)
K1—O6i 2.687 (2)
K1—O3ii 2.7140 (19)
K1—O5iii 2.8361 (19)
K1—O2iv 2.8522 (19)
K1—O8v 2.8893 (19)
K1—O9 2.816 (2)
Symmetry codes: (i) x, y, z-1; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [-x, -y+1, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O7vi 0.90 2.22 3.097 (3) 163
N2—H2B⋯O4vi 0.90 2.40 3.166 (3) 143
N2—H2B⋯O1vi 0.90 2.47 3.255 (3) 146
N1—H1D⋯O4vi 0.90 2.55 3.423 (3) 165
N3—H3A⋯O2 0.90 2.28 3.113 (3) 153
N2—H2A⋯O8 0.90 2.39 3.219 (3) 152
N1—H1C⋯O5 0.90 2.49 3.229 (3) 140
Symmetry code: (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Taurine, an amino acid containing sulfur, is indispensable to human beings Because of its applications in medicine and biochemistry (Bottari & Festa,1998; Jiang et al.,2003). Several taurine complexes and their derivatives have recently been prepared (Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b)). we found that the taurine has manifold coordination modes. For the much less well study of the coordination modes of the sulfonate group, The title polymeric CoII complex,(I), has been prepared and its structure determined.

The coordinated modes of the title compound are similar to the previously reported Ni (II) structure (Jiang et al. (2005)). The molecular structure of (I) is shown in Fig. 1 and the important bond lengths are listed in Table 1. The asymmetric unit of (I) consists of one CoII atom, three taurinate ligands and one K+ ion. The cobalt is six-coordinate with three nitrogen atoms [N(1), N(2), N(3)] and three oxygen atoms [O(1), O(4), O(7)], thus giving an octahedral configuration. The Co atom forms six membered chelate rings (NiNC2SO) with each taurinate ligand. This is a facial isomer. Each sulfonate group of the taurinate ligand takes part in the formation of a hydrogen bond (Table 2) with the amino group of a neighbouring ligand in the complex. The most common coordination modes of the sulfonate group are monodentate and µ2-bridging, while µ3-bridging is very rare. The coordination mode of the sulfonate group in (I) is µ3-bridging, which makes the S–O(–Co) bonds [1.475 (2)–1.479 (2) Å] much longer than those previously reported [S–O(–Co) 1.464 (2) and 1.456 (3) Å; Yang et al., 2010b; Zeng et al., 2009]. The S=O(···K) bonds [1.443 (2)–1.453 (2) Å] are slightly longer than the uncoordinated S=O bond in taurine [1.446 (12)–1.457 (13) Å; Zhang & Jiang, 2002]. The K atom is surrounded by six O atoms from different taurinate ligands, The title complex forms a three-dimensional structure through the K···O linkage. The K···O distances are in the range 2.678 (2)–2.889 (2) Å, suggesting weak electrostatic interactions.

Related literature top

For the isotypic NiII structure, see: Jiang et al. (2005). For the applications of taurine in medicine and biochemistry, see: Bottari & Festa (1998); Jiang et al. (2003). For general background to taurine complexes and their derivatives, see: Zhang & Jiang (2002); Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b). For S–O(–Co) bond lengths in bridging sulfonate groups, see: Zeng et al. (2009); Yang et al. (2010b).

Experimental top

A mixture of Co(CH3COO)2.7H2O (0.5 mmol, 152 mg), taurine (1.5 mmol 187 mg), KOH (1.5 mmol, 84 mg) and anhydrous methanol (15.0 ml) was placed in a Teflon-lined stainless steel vessel, and heated directly to 120 °C. After keeping at 120 °C for 4 days, it was cooled to room temperature at a rate for 10 °C/h. block red crystals of the complex were obtained.

Refinement top

H atoms were positioned geometrically (C–H = 0.97 Å and N–H = 0.90 Å) and included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(carrier atom).

Structure description top

Taurine, an amino acid containing sulfur, is indispensable to human beings Because of its applications in medicine and biochemistry (Bottari & Festa,1998; Jiang et al.,2003). Several taurine complexes and their derivatives have recently been prepared (Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b)). we found that the taurine has manifold coordination modes. For the much less well study of the coordination modes of the sulfonate group, The title polymeric CoII complex,(I), has been prepared and its structure determined.

The coordinated modes of the title compound are similar to the previously reported Ni (II) structure (Jiang et al. (2005)). The molecular structure of (I) is shown in Fig. 1 and the important bond lengths are listed in Table 1. The asymmetric unit of (I) consists of one CoII atom, three taurinate ligands and one K+ ion. The cobalt is six-coordinate with three nitrogen atoms [N(1), N(2), N(3)] and three oxygen atoms [O(1), O(4), O(7)], thus giving an octahedral configuration. The Co atom forms six membered chelate rings (NiNC2SO) with each taurinate ligand. This is a facial isomer. Each sulfonate group of the taurinate ligand takes part in the formation of a hydrogen bond (Table 2) with the amino group of a neighbouring ligand in the complex. The most common coordination modes of the sulfonate group are monodentate and µ2-bridging, while µ3-bridging is very rare. The coordination mode of the sulfonate group in (I) is µ3-bridging, which makes the S–O(–Co) bonds [1.475 (2)–1.479 (2) Å] much longer than those previously reported [S–O(–Co) 1.464 (2) and 1.456 (3) Å; Yang et al., 2010b; Zeng et al., 2009]. The S=O(···K) bonds [1.443 (2)–1.453 (2) Å] are slightly longer than the uncoordinated S=O bond in taurine [1.446 (12)–1.457 (13) Å; Zhang & Jiang, 2002]. The K atom is surrounded by six O atoms from different taurinate ligands, The title complex forms a three-dimensional structure through the K···O linkage. The K···O distances are in the range 2.678 (2)–2.889 (2) Å, suggesting weak electrostatic interactions.

For the isotypic NiII structure, see: Jiang et al. (2005). For the applications of taurine in medicine and biochemistry, see: Bottari & Festa (1998); Jiang et al. (2003). For general background to taurine complexes and their derivatives, see: Zhang & Jiang (2002); Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b). For S–O(–Co) bond lengths in bridging sulfonate groups, see: Zeng et al. (2009); Yang et al. (2010b).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound.H atoms have been omitted for clarity. [Symmetry code: (i) x, y, z - 1; (ii) -x - 1/2, y - 1/2, z - 1/2; (iii) x - 1/2, -y + 3/2, z - 1; (iv) x - 1/2, -y + 3/2, z; (v) -x, -y + 1, z - 1/2.]
[Figure 2] Fig. 2. View of a three-dimensional supramolecular structure.
Poly[tris(µ3-2-aminoethanesulfonato)cobalt(II)potassium] top
Crystal data top
[CoK(C2H6NO3S)3]F(000) = 964
Mr = 470.44Dx = 1.941 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7233 reflections
a = 10.6901 (19) Åθ = 2.5–28.1°
b = 15.669 (3) ŵ = 1.76 mm1
c = 9.6094 (17) ÅT = 296 K
V = 1609.6 (5) Å3Block, red
Z = 40.26 × 0.22 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3386 independent reflections
Radiation source: fine-focus sealed tube3146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1313
Tmin = 0.657, Tmax = 0.791k = 2020
10792 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3386 reflectionsΔρmax = 0.22 e Å3
208 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 1528 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (13)
Crystal data top
[CoK(C2H6NO3S)3]V = 1609.6 (5) Å3
Mr = 470.44Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.6901 (19) ŵ = 1.76 mm1
b = 15.669 (3) ÅT = 296 K
c = 9.6094 (17) Å0.26 × 0.22 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3386 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3146 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.791Rint = 0.027
10792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.22 e Å3
S = 1.02Δρmin = 0.33 e Å3
3386 reflectionsAbsolute structure: Flack (1983), 1528 Friedel pairs
208 parametersAbsolute structure parameter: 0.020 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.11671 (3)0.758726 (19)0.15941 (5)0.02649 (9)
S10.02451 (5)0.93821 (4)0.02671 (7)0.02606 (14)
S20.01351 (6)0.72499 (4)0.46938 (7)0.02860 (14)
S30.02648 (6)0.60549 (4)0.04504 (7)0.02819 (14)
O10.00760 (15)0.85153 (11)0.0747 (2)0.0323 (4)
O40.01485 (17)0.75606 (12)0.3275 (2)0.0354 (5)
C10.1093 (2)0.98601 (17)0.1650 (4)0.0370 (6)
H1A0.12481.04530.14160.044*
H1B0.05750.98520.24790.044*
O70.00597 (15)0.66745 (11)0.0653 (2)0.0341 (4)
N30.2342 (2)0.76329 (15)0.0215 (3)0.0352 (5)
H3A0.21210.81040.06910.042*
H3B0.31270.77210.00910.042*
O90.08429 (17)0.57634 (13)0.1176 (2)0.0405 (5)
O60.10014 (17)0.70601 (14)0.5464 (2)0.0435 (5)
O50.09764 (18)0.78116 (13)0.5428 (2)0.0410 (5)
N20.2285 (2)0.65745 (15)0.2430 (3)0.0353 (5)
H2A0.21230.61080.19150.042*
H2B0.30890.67140.22690.042*
N10.2190 (2)0.85854 (15)0.2622 (3)0.0406 (6)
H1C0.18280.86640.34580.049*
H1D0.29640.83830.27850.049*
O20.10597 (16)0.93593 (13)0.0947 (2)0.0335 (4)
O30.08694 (16)0.98967 (12)0.0079 (2)0.0372 (5)
O80.10532 (17)0.53775 (12)0.0077 (2)0.0400 (5)
C20.2341 (2)0.94364 (17)0.1992 (3)0.0358 (7)
H2C0.28280.93830.11440.043*
H2D0.28030.97990.26280.043*
C40.2203 (3)0.6309 (2)0.3918 (3)0.0405 (7)
H4A0.26010.57560.40270.049*
H4B0.26580.67160.44860.049*
C50.2410 (2)0.69305 (19)0.1240 (3)0.0388 (7)
H5A0.28580.64550.08300.047*
H5B0.28820.71220.20440.047*
C60.1144 (3)0.6630 (2)0.1711 (3)0.0400 (7)
H6A0.12530.62690.25220.048*
H6B0.06600.71230.19980.048*
C30.0887 (3)0.62542 (17)0.4424 (3)0.0391 (7)
H3C0.08810.59400.52940.047*
H3D0.04030.59290.37550.047*
K10.25179 (5)0.58729 (4)0.34300 (7)0.03377 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02482 (16)0.02763 (16)0.02701 (17)0.00158 (13)0.00214 (15)0.00258 (18)
S10.0264 (3)0.0271 (3)0.0247 (3)0.0020 (2)0.0012 (3)0.0002 (3)
S20.0305 (3)0.0299 (3)0.0255 (3)0.0029 (3)0.0005 (3)0.0035 (3)
S30.0263 (3)0.0273 (3)0.0310 (3)0.0002 (2)0.0040 (3)0.0012 (3)
O10.0275 (9)0.0322 (9)0.0373 (11)0.0025 (8)0.0026 (8)0.0060 (9)
O40.0347 (10)0.0446 (12)0.0269 (10)0.0049 (9)0.0010 (8)0.0091 (9)
C10.0433 (14)0.0354 (13)0.0324 (15)0.0022 (12)0.0045 (13)0.0100 (16)
O70.0277 (9)0.0327 (10)0.0419 (12)0.0020 (8)0.0015 (8)0.0095 (9)
N30.0294 (11)0.0359 (12)0.0403 (14)0.0045 (9)0.0053 (10)0.0031 (11)
O90.0356 (11)0.0411 (11)0.0448 (13)0.0029 (9)0.0125 (9)0.0060 (10)
O60.0357 (10)0.0525 (13)0.0424 (12)0.0065 (9)0.0102 (9)0.0090 (11)
O50.0464 (11)0.0388 (11)0.0378 (12)0.0084 (9)0.0056 (9)0.0048 (10)
N20.0315 (12)0.0382 (13)0.0362 (15)0.0055 (10)0.0006 (10)0.0017 (11)
N10.0420 (13)0.0383 (13)0.0416 (14)0.0097 (11)0.0125 (11)0.0057 (12)
O20.0372 (10)0.0369 (11)0.0262 (10)0.0008 (8)0.0059 (8)0.0018 (8)
O30.0343 (10)0.0384 (11)0.0388 (12)0.0092 (8)0.0005 (8)0.0011 (9)
O80.0388 (11)0.0319 (10)0.0492 (14)0.0076 (8)0.0064 (9)0.0028 (10)
C20.0349 (15)0.0383 (15)0.0343 (16)0.0077 (12)0.0045 (11)0.0006 (12)
C40.0419 (16)0.0382 (16)0.0414 (18)0.0080 (13)0.0072 (13)0.0039 (13)
C50.0349 (15)0.0422 (17)0.0395 (17)0.0007 (13)0.0072 (12)0.0031 (14)
C60.0484 (17)0.0439 (17)0.0277 (16)0.0019 (14)0.0015 (12)0.0001 (13)
C30.0534 (18)0.0281 (14)0.0357 (17)0.0001 (12)0.0019 (14)0.0061 (13)
K10.0351 (3)0.0354 (3)0.0309 (3)0.0048 (2)0.0014 (3)0.0009 (3)
Geometric parameters (Å, º) top
Co1—O12.1316 (18)N2—C41.492 (4)
Co1—O72.1411 (18)N2—H2A0.9000
Co1—O42.142 (2)N2—H2B0.9000
Co1—N22.143 (2)N1—C21.473 (4)
Co1—N32.146 (2)N1—H1C0.9000
Co1—N12.149 (2)N1—H1D0.9000
S1—O31.4500 (18)O2—K1iii2.8522 (19)
S1—O21.4567 (19)O3—K1iv2.7140 (19)
S1—O11.4748 (18)O8—K1v2.8893 (19)
S1—C11.775 (3)C2—H2C0.9700
S2—O51.443 (2)C2—H2D0.9700
S2—O61.4533 (19)C4—C31.491 (4)
S2—O41.479 (2)C4—H4A0.9700
S2—C31.774 (3)C4—H4B0.9700
S3—O81.4472 (19)C5—C61.503 (4)
S3—O91.4482 (19)C5—H5A0.9700
S3—O71.479 (2)C5—H5B0.9700
S3—C61.778 (3)C6—H6A0.9700
C1—C21.525 (4)C6—H6B0.9700
C1—H1A0.9700C3—H3C0.9700
C1—H1B0.9700C3—H3D0.9700
N3—C51.479 (4)K1—O6vi2.687 (2)
N3—H3A0.9000K1—O3vii2.7140 (19)
N3—H3B0.9000K1—O5viii2.8361 (19)
O9—K12.816 (2)K1—O2ix2.8522 (19)
O6—K1i2.687 (2)K1—O8x2.8893 (19)
O5—K1ii2.8361 (19)K1—O92.816 (2)
O1—Co1—O784.97 (7)H2A—N2—H2B106.6
O1—Co1—O483.80 (7)C2—N1—Co1121.71 (18)
O7—Co1—O484.46 (7)C2—N1—H1C106.9
O1—Co1—N2174.95 (8)Co1—N1—H1C106.9
O7—Co1—N290.31 (8)C2—N1—H1D106.9
O4—Co1—N293.97 (8)Co1—N1—H1D106.9
O1—Co1—N391.86 (9)H1C—N1—H1D106.7
O7—Co1—N392.19 (8)S1—O2—K1iii172.74 (12)
O4—Co1—N3174.73 (8)S1—O3—K1iv140.30 (12)
N2—Co1—N390.11 (9)S3—O8—K1v170.75 (13)
O1—Co1—N189.78 (8)N1—C2—C1112.7 (2)
O7—Co1—N1172.81 (8)N1—C2—H2C109.0
O4—Co1—N190.10 (9)C1—C2—H2C109.0
N2—Co1—N194.76 (10)N1—C2—H2D109.0
N3—Co1—N192.89 (9)C1—C2—H2D109.0
O3—S1—O2113.88 (12)H2C—C2—H2D107.8
O3—S1—O1111.10 (11)C3—C4—N2112.6 (2)
O2—S1—O1111.52 (12)C3—C4—H4A109.1
O3—S1—C1106.18 (12)N2—C4—H4A109.1
O2—S1—C1107.75 (13)C3—C4—H4B109.1
O1—S1—C1105.88 (13)N2—C4—H4B109.1
O5—S2—O6113.38 (13)H4A—C4—H4B107.8
O5—S2—O4112.20 (13)N3—C5—C6112.9 (2)
O6—S2—O4111.44 (12)N3—C5—H5A109.0
O5—S2—C3108.98 (13)C6—C5—H5A109.0
O6—S2—C3105.87 (13)N3—C5—H5B109.0
O4—S2—C3104.34 (14)C6—C5—H5B109.0
O8—S3—O9114.43 (12)H5A—C5—H5B107.8
O8—S3—O7111.54 (13)C5—C6—S3115.5 (2)
O9—S3—O7111.12 (12)C5—C6—H6A108.4
O8—S3—C6107.61 (13)S3—C6—H6A108.4
O9—S3—C6105.31 (14)C5—C6—H6B108.4
O7—S3—C6106.24 (13)S3—C6—H6B108.4
S1—O1—Co1127.05 (10)H6A—C6—H6B107.5
S2—O4—Co1124.53 (11)C4—C3—S2115.1 (2)
C2—C1—S1115.1 (2)C4—C3—H3C108.5
C2—C1—H1A108.5S2—C3—H3C108.5
S1—C1—H1A108.5C4—C3—H3D108.5
C2—C1—H1B108.5S2—C3—H3D108.5
S1—C1—H1B108.5H3C—C3—H3D107.5
H1A—C1—H1B107.5O6vi—K1—O3vii124.38 (7)
S3—O7—Co1126.71 (10)O6vi—K1—O987.87 (6)
C5—N3—Co1122.94 (17)O3vii—K1—O9140.88 (6)
C5—N3—H3A106.6O6vi—K1—O5viii71.71 (6)
Co1—N3—H3A106.6O3vii—K1—O5viii81.07 (6)
C5—N3—H3B106.6O9—K1—O5viii134.66 (7)
Co1—N3—H3B106.6O6vi—K1—O2ix137.80 (7)
H3A—N3—H3B106.6O3vii—K1—O2ix91.78 (6)
S3—O9—K1150.60 (13)O9—K1—O2ix71.81 (6)
S2—O6—K1i147.95 (13)O5viii—K1—O2ix96.53 (6)
S2—O5—K1ii170.53 (14)O6vi—K1—O8x86.91 (7)
C4—N2—Co1122.22 (18)O3vii—K1—O8x72.54 (6)
C4—N2—H2A106.8O9—K1—O8x89.77 (6)
Co1—N2—H2A106.8O5viii—K1—O8x127.47 (7)
C4—N2—H2B106.8O2ix—K1—O8x128.14 (6)
Co1—N2—H2B106.8
O3—S1—O1—Co1165.99 (13)O4—S2—O5—K1ii24.0 (8)
O2—S1—O1—Co165.79 (17)C3—S2—O5—K1ii139.1 (8)
C1—S1—O1—Co151.14 (17)O1—Co1—N2—C481.5 (11)
O7—Co1—O1—S1148.59 (16)O7—Co1—N2—C4102.3 (2)
O4—Co1—O1—S1126.45 (16)O4—Co1—N2—C417.8 (2)
N2—Co1—O1—S1169.5 (9)N3—Co1—N2—C4165.5 (2)
N3—Co1—O1—S156.56 (16)N1—Co1—N2—C472.6 (2)
N1—Co1—O1—S136.33 (17)O1—Co1—N1—C234.1 (2)
O5—S2—O4—Co169.55 (17)O7—Co1—N1—C277.2 (8)
O6—S2—O4—Co1162.09 (13)O4—Co1—N1—C2117.9 (2)
C3—S2—O4—Co148.29 (17)N2—Co1—N1—C2148.1 (2)
O1—Co1—O4—S2159.21 (15)N3—Co1—N1—C257.7 (2)
O7—Co1—O4—S2115.26 (15)O3—S1—O2—K1iii91.5 (9)
N2—Co1—O4—S225.34 (16)O1—S1—O2—K1iii35.3 (9)
N3—Co1—O4—S2166.0 (8)C1—S1—O2—K1iii151.0 (9)
N1—Co1—O4—S269.44 (15)O2—S1—O3—K1iv149.88 (15)
O3—S1—C1—C2177.7 (2)O1—S1—O3—K1iv83.18 (19)
O2—S1—C1—C255.3 (3)C1—S1—O3—K1iv31.5 (2)
O1—S1—C1—C264.1 (2)O9—S3—O8—K1v114.2 (7)
O8—S3—O7—Co171.69 (17)O7—S3—O8—K1v13.0 (8)
O9—S3—O7—Co1159.33 (13)C6—S3—O8—K1v129.1 (7)
C6—S3—O7—Co145.30 (17)Co1—N1—C2—C156.8 (3)
O1—Co1—O7—S3117.83 (15)S1—C1—C2—N169.4 (3)
O4—Co1—O7—S3157.93 (15)Co1—N2—C4—C343.5 (3)
N2—Co1—O7—S363.97 (16)Co1—N3—C5—C649.2 (3)
N3—Co1—O7—S326.15 (16)N3—C5—C6—S371.0 (3)
N1—Co1—O7—S3161.1 (7)O8—S3—C6—C552.0 (3)
O1—Co1—N3—C5108.5 (2)O9—S3—C6—C5174.4 (2)
O7—Co1—N3—C523.5 (2)O7—S3—C6—C567.6 (2)
O4—Co1—N3—C573.9 (9)N2—C4—C3—S273.2 (3)
N2—Co1—N3—C566.8 (2)O5—S2—C3—C445.3 (3)
N1—Co1—N3—C5161.6 (2)O6—S2—C3—C4167.6 (2)
O8—S3—O9—K1136.5 (2)O4—S2—C3—C474.7 (2)
O7—S3—O9—K196.0 (3)S3—O9—K1—O6vi4.6 (3)
C6—S3—O9—K118.6 (3)S3—O9—K1—O3vii152.8 (2)
O5—S2—O6—K1i123.5 (2)S3—O9—K1—O5viii56.8 (3)
O4—S2—O6—K1i108.8 (2)S3—O9—K1—O2ix137.8 (3)
C3—S2—O6—K1i4.1 (3)S3—O9—K1—O8x91.6 (3)
O6—S2—O5—K1ii103.3 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z; (iv) x1/2, y+1/2, z+1/2; (v) x, y+1, z+1/2; (vi) x, y, z1; (vii) x1/2, y1/2, z1/2; (viii) x1/2, y+3/2, z1; (ix) x1/2, y+3/2, z; (x) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O7iii0.902.223.097 (3)163
N2—H2B···O4iii0.902.403.166 (3)143
N2—H2B···O1iii0.902.473.255 (3)146
N1—H1D···O4iii0.902.553.423 (3)165
N3—H3A···O20.902.283.113 (3)153
N2—H2A···O80.902.393.219 (3)152
N1—H1C···O50.902.493.229 (3)140
Symmetry code: (iii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[CoK(C2H6NO3S)3]
Mr470.44
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)10.6901 (19), 15.669 (3), 9.6094 (17)
V3)1609.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.26 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.657, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
10792, 3386, 3146
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.02
No. of reflections3386
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.33
Absolute structureFlack (1983), 1528 Friedel pairs
Absolute structure parameter0.020 (13)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.1316 (18)K1—O6i2.687 (2)
Co1—O72.1411 (18)K1—O3ii2.7140 (19)
Co1—O42.142 (2)K1—O5iii2.8361 (19)
Co1—N22.143 (2)K1—O2iv2.8522 (19)
Co1—N32.146 (2)K1—O8v2.8893 (19)
Co1—N12.149 (2)K1—O92.816 (2)
Symmetry codes: (i) x, y, z1; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+3/2, z1; (iv) x1/2, y+3/2, z; (v) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O7vi0.902.223.097 (3)163.2
N2—H2B···O4vi0.902.403.166 (3)142.5
N2—H2B···O1vi0.902.473.255 (3)145.5
N1—H1D···O4vi0.902.553.423 (3)165.0
N3—H3A···O20.902.283.113 (3)153.1
N2—H2A···O80.902.393.219 (3)152.3
N1—H1C···O50.902.493.229 (3)139.7
Symmetry code: (vi) x+1/2, y+3/2, z.
 

Acknowledgements

We are grateful to the Education Department Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (201012MS203) and the Start-up Foundation for Advanced Talents of Hechi University (No. 2008QS-N019)

References

First citationBottari, E. & Festa, M. R. (1998). Talanta, 46, 91–99.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059–m3061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCai, J. H., Zhong, F. & Jiang, Y. M. (2011). Chin. J. Struct. Chem. 30, 743–747.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878–m880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y. M., Zhang, S. H., Xu, Q. & Xiao, Y. (2003). Acta Chim. Sin. 61, 573–577.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F., Liu, X.-H. & Zhao, C.-Q. (2010b). Acta Cryst. E66, m1343–m1344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, F., Wu, Z.-H. & Cai, J.-H. (2010a). Acta Cryst. E66, m748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, J.-L., Jiang, Y.-M., Sun, L.-X., Cao, Z. & Yang, D.-W. (2009). Acta Cryst. E65, m1067–m1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497–500.  CAS Google Scholar
First citationZhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559–602.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds