metal-organic compounds
Poly[tris(μ3-2-aminoethanesulfonato)cobalt(II)potassium]
aPhysics and Chemistry Department, Jiangxi College of Traditional Chinese Medicine, Fuzhou, Jiangxi 344000, People's Republic of China, and bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China
*Correspondence e-mail: caizhou2006@126.com
The title compound, [CoK(C2H6NO3S)3]n, is isotypic with its NiII analogue. The CoII atom is chelated by the three taurinate ligands in a distorted octahedral geometry and in a facial manner. Each taurinate ligand bridges two K+ ions via its sulfonate group, forming a three-dimensional framework. Weak N—H⋯O hydrogen bonding is observed in the crystal structure.
Related literature
For the isotypic NiII structure, see: Jiang et al. (2005). For the applications of taurine in medicine and biochemistry, see: Bottari & Festa (1998); Jiang et al. (2003). For general background to taurine complexes and their derivatives, see: Zhang & Jiang (2002); Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b). For S–O(–Co) bond lengths in bridging sulfonate groups, see: Zeng et al. (2009); Yang et al. (2010b).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811039390/bx2374sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811039390/bx2374Isup2.hkl
A mixture of Co(CH3COO)2.7H2O (0.5 mmol, 152 mg), taurine (1.5 mmol 187 mg), KOH (1.5 mmol, 84 mg) and anhydrous methanol (15.0 ml) was placed in a Teflon-lined stainless steel vessel, and heated directly to 120 °C. After keeping at 120 °C for 4 days, it was cooled to room temperature at a rate for 10 °C/h. block red crystals of the complex were obtained.
H atoms were positioned geometrically (C–H = 0.97 Å and N–H = 0.90 Å) and included in the
in the riding model approximation, with Uiso(H) = 1.2Ueq(carrier atom).Taurine, an amino acid containing sulfur, is indispensable to human beings Because of its applications in medicine and biochemistry (Bottari & Festa,1998; Jiang et al.,2003). Several taurine complexes and their derivatives have recently been prepared (Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b)). we found that the taurine has manifold coordination modes. For the much less well study of the coordination modes of the sulfonate group, The title polymeric CoII complex,(I), has been prepared and its structure determined.
The coordinated modes of the title compound are similar to the previously reported Ni (II) structure (Jiang et al. (2005)). The molecular structure of (I) is shown in Fig. 1 and the important bond lengths are listed in Table 1. The
of (I) consists of one CoII atom, three taurinate ligands and one K+ ion. The cobalt is six-coordinate with three nitrogen atoms [N(1), N(2), N(3)] and three oxygen atoms [O(1), O(4), O(7)], thus giving an octahedral configuration. The Co atom forms six membered chelate rings (NiNC2SO) with each taurinate ligand. This is a facial isomer. Each sulfonate group of the taurinate ligand takes part in the formation of a hydrogen bond (Table 2) with the amino group of a neighbouring ligand in the complex. The most common coordination modes of the sulfonate group are monodentate and µ2-bridging, while µ3-bridging is very rare. The coordination mode of the sulfonate group in (I) is µ3-bridging, which makes the S–O(–Co) bonds [1.475 (2)–1.479 (2) Å] much longer than those previously reported [S–O(–Co) 1.464 (2) and 1.456 (3) Å; Yang et al., 2010b; Zeng et al., 2009]. The S=O(···K) bonds [1.443 (2)–1.453 (2) Å] are slightly longer than the uncoordinated S=O bond in taurine [1.446 (12)–1.457 (13) Å; Zhang & Jiang, 2002]. The K atom is surrounded by six O atoms from different taurinate ligands, The title complex forms a three-dimensional structure through the K···O linkage. The K···O distances are in the range 2.678 (2)–2.889 (2) Å, suggesting weak electrostatic interactions.For the isotypic NiII structure, see: Jiang et al. (2005). For the applications of taurine in medicine and biochemistry, see: Bottari & Festa (1998); Jiang et al. (2003). For general background to taurine complexes and their derivatives, see: Zhang & Jiang (2002); Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b). For S–O(–Co) bond lengths in bridging sulfonate groups, see: Zeng et al. (2009); Yang et al. (2010b).
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound.H atoms have been omitted for clarity. [Symmetry code: (i) x, y, z - 1; (ii) -x - 1/2, y - 1/2, z - 1/2; (iii) x - 1/2, -y + 3/2, z - 1; (iv) x - 1/2, -y + 3/2, z; (v) -x, -y + 1, z - 1/2.] | |
Fig. 2. View of a three-dimensional supramolecular structure. |
[CoK(C2H6NO3S)3] | F(000) = 964 |
Mr = 470.44 | Dx = 1.941 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 7233 reflections |
a = 10.6901 (19) Å | θ = 2.5–28.1° |
b = 15.669 (3) Å | µ = 1.76 mm−1 |
c = 9.6094 (17) Å | T = 296 K |
V = 1609.6 (5) Å3 | Block, red |
Z = 4 | 0.26 × 0.22 × 0.14 mm |
Bruker SMART CCD area-detector diffractometer | 3386 independent reflections |
Radiation source: fine-focus sealed tube | 3146 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 27.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −13→13 |
Tmin = 0.657, Tmax = 0.791 | k = −20→20 |
10792 measured reflections | l = −11→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0303P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3386 reflections | Δρmax = 0.22 e Å−3 |
208 parameters | Δρmin = −0.33 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1528 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.020 (13) |
[CoK(C2H6NO3S)3] | V = 1609.6 (5) Å3 |
Mr = 470.44 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 10.6901 (19) Å | µ = 1.76 mm−1 |
b = 15.669 (3) Å | T = 296 K |
c = 9.6094 (17) Å | 0.26 × 0.22 × 0.14 mm |
Bruker SMART CCD area-detector diffractometer | 3386 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 3146 reflections with I > 2σ(I) |
Tmin = 0.657, Tmax = 0.791 | Rint = 0.027 |
10792 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.058 | Δρmax = 0.22 e Å−3 |
S = 1.02 | Δρmin = −0.33 e Å−3 |
3386 reflections | Absolute structure: Flack (1983), 1528 Friedel pairs |
208 parameters | Absolute structure parameter: 0.020 (13) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.11671 (3) | 0.758726 (19) | 0.15941 (5) | 0.02649 (9) | |
S1 | 0.02451 (5) | 0.93821 (4) | 0.02671 (7) | 0.02606 (14) | |
S2 | 0.01351 (6) | 0.72499 (4) | 0.46938 (7) | 0.02860 (14) | |
S3 | 0.02648 (6) | 0.60549 (4) | −0.04504 (7) | 0.02819 (14) | |
O1 | −0.00760 (15) | 0.85153 (11) | 0.0747 (2) | 0.0323 (4) | |
O4 | −0.01485 (17) | 0.75606 (12) | 0.3275 (2) | 0.0354 (5) | |
C1 | 0.1093 (2) | 0.98601 (17) | 0.1650 (4) | 0.0370 (6) | |
H1A | 0.1248 | 1.0453 | 0.1416 | 0.044* | |
H1B | 0.0575 | 0.9852 | 0.2479 | 0.044* | |
O7 | −0.00597 (15) | 0.66745 (11) | 0.0653 (2) | 0.0341 (4) | |
N3 | 0.2342 (2) | 0.76329 (15) | −0.0215 (3) | 0.0352 (5) | |
H3A | 0.2121 | 0.8104 | −0.0691 | 0.042* | |
H3B | 0.3127 | 0.7721 | 0.0091 | 0.042* | |
O9 | −0.08429 (17) | 0.57634 (13) | −0.1176 (2) | 0.0405 (5) | |
O6 | −0.10014 (17) | 0.70601 (14) | 0.5464 (2) | 0.0435 (5) | |
O5 | 0.09764 (18) | 0.78116 (13) | 0.5428 (2) | 0.0410 (5) | |
N2 | 0.2285 (2) | 0.65745 (15) | 0.2430 (3) | 0.0353 (5) | |
H2A | 0.2123 | 0.6108 | 0.1915 | 0.042* | |
H2B | 0.3089 | 0.6714 | 0.2269 | 0.042* | |
N1 | 0.2190 (2) | 0.85854 (15) | 0.2622 (3) | 0.0406 (6) | |
H1C | 0.1828 | 0.8664 | 0.3458 | 0.049* | |
H1D | 0.2964 | 0.8383 | 0.2785 | 0.049* | |
O2 | 0.10597 (16) | 0.93593 (13) | −0.0947 (2) | 0.0335 (4) | |
O3 | −0.08694 (16) | 0.98967 (12) | 0.0079 (2) | 0.0372 (5) | |
O8 | 0.10532 (17) | 0.53775 (12) | 0.0077 (2) | 0.0400 (5) | |
C2 | 0.2341 (2) | 0.94364 (17) | 0.1992 (3) | 0.0358 (7) | |
H2C | 0.2828 | 0.9383 | 0.1144 | 0.043* | |
H2D | 0.2803 | 0.9799 | 0.2628 | 0.043* | |
C4 | 0.2203 (3) | 0.6309 (2) | 0.3918 (3) | 0.0405 (7) | |
H4A | 0.2601 | 0.5756 | 0.4027 | 0.049* | |
H4B | 0.2658 | 0.6716 | 0.4486 | 0.049* | |
C5 | 0.2410 (2) | 0.69305 (19) | −0.1240 (3) | 0.0388 (7) | |
H5A | 0.2858 | 0.6455 | −0.0830 | 0.047* | |
H5B | 0.2882 | 0.7122 | −0.2044 | 0.047* | |
C6 | 0.1144 (3) | 0.6630 (2) | −0.1711 (3) | 0.0400 (7) | |
H6A | 0.1253 | 0.6269 | −0.2522 | 0.048* | |
H6B | 0.0660 | 0.7123 | −0.1998 | 0.048* | |
C3 | 0.0887 (3) | 0.62542 (17) | 0.4424 (3) | 0.0391 (7) | |
H3C | 0.0881 | 0.5940 | 0.5294 | 0.047* | |
H3D | 0.0403 | 0.5929 | 0.3755 | 0.047* | |
K1 | −0.25179 (5) | 0.58729 (4) | −0.34300 (7) | 0.03377 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02482 (16) | 0.02763 (16) | 0.02701 (17) | −0.00158 (13) | −0.00214 (15) | 0.00258 (18) |
S1 | 0.0264 (3) | 0.0271 (3) | 0.0247 (3) | 0.0020 (2) | 0.0012 (3) | 0.0002 (3) |
S2 | 0.0305 (3) | 0.0299 (3) | 0.0255 (3) | −0.0029 (3) | −0.0005 (3) | 0.0035 (3) |
S3 | 0.0263 (3) | 0.0273 (3) | 0.0310 (3) | −0.0002 (2) | −0.0040 (3) | −0.0012 (3) |
O1 | 0.0275 (9) | 0.0322 (9) | 0.0373 (11) | −0.0025 (8) | −0.0026 (8) | 0.0060 (9) |
O4 | 0.0347 (10) | 0.0446 (12) | 0.0269 (10) | 0.0049 (9) | −0.0010 (8) | 0.0091 (9) |
C1 | 0.0433 (14) | 0.0354 (13) | 0.0324 (15) | 0.0022 (12) | −0.0045 (13) | −0.0100 (16) |
O7 | 0.0277 (9) | 0.0327 (10) | 0.0419 (12) | −0.0020 (8) | 0.0015 (8) | −0.0095 (9) |
N3 | 0.0294 (11) | 0.0359 (12) | 0.0403 (14) | −0.0045 (9) | 0.0053 (10) | 0.0031 (11) |
O9 | 0.0356 (11) | 0.0411 (11) | 0.0448 (13) | −0.0029 (9) | −0.0125 (9) | −0.0060 (10) |
O6 | 0.0357 (10) | 0.0525 (13) | 0.0424 (12) | −0.0065 (9) | 0.0102 (9) | 0.0090 (11) |
O5 | 0.0464 (11) | 0.0388 (11) | 0.0378 (12) | −0.0084 (9) | −0.0056 (9) | −0.0048 (10) |
N2 | 0.0315 (12) | 0.0382 (13) | 0.0362 (15) | 0.0055 (10) | −0.0006 (10) | 0.0017 (11) |
N1 | 0.0420 (13) | 0.0383 (13) | 0.0416 (14) | −0.0097 (11) | −0.0125 (11) | 0.0057 (12) |
O2 | 0.0372 (10) | 0.0369 (11) | 0.0262 (10) | 0.0008 (8) | 0.0059 (8) | 0.0018 (8) |
O3 | 0.0343 (10) | 0.0384 (11) | 0.0388 (12) | 0.0092 (8) | 0.0005 (8) | 0.0011 (9) |
O8 | 0.0388 (11) | 0.0319 (10) | 0.0492 (14) | 0.0076 (8) | −0.0064 (9) | 0.0028 (10) |
C2 | 0.0349 (15) | 0.0383 (15) | 0.0343 (16) | −0.0077 (12) | −0.0045 (11) | −0.0006 (12) |
C4 | 0.0419 (16) | 0.0382 (16) | 0.0414 (18) | 0.0080 (13) | −0.0072 (13) | 0.0039 (13) |
C5 | 0.0349 (15) | 0.0422 (17) | 0.0395 (17) | 0.0007 (13) | 0.0072 (12) | 0.0031 (14) |
C6 | 0.0484 (17) | 0.0439 (17) | 0.0277 (16) | −0.0019 (14) | −0.0015 (12) | −0.0001 (13) |
C3 | 0.0534 (18) | 0.0281 (14) | 0.0357 (17) | 0.0001 (12) | −0.0019 (14) | 0.0061 (13) |
K1 | 0.0351 (3) | 0.0354 (3) | 0.0309 (3) | −0.0048 (2) | −0.0014 (3) | 0.0009 (3) |
Co1—O1 | 2.1316 (18) | N2—C4 | 1.492 (4) |
Co1—O7 | 2.1411 (18) | N2—H2A | 0.9000 |
Co1—O4 | 2.142 (2) | N2—H2B | 0.9000 |
Co1—N2 | 2.143 (2) | N1—C2 | 1.473 (4) |
Co1—N3 | 2.146 (2) | N1—H1C | 0.9000 |
Co1—N1 | 2.149 (2) | N1—H1D | 0.9000 |
S1—O3 | 1.4500 (18) | O2—K1iii | 2.8522 (19) |
S1—O2 | 1.4567 (19) | O3—K1iv | 2.7140 (19) |
S1—O1 | 1.4748 (18) | O8—K1v | 2.8893 (19) |
S1—C1 | 1.775 (3) | C2—H2C | 0.9700 |
S2—O5 | 1.443 (2) | C2—H2D | 0.9700 |
S2—O6 | 1.4533 (19) | C4—C3 | 1.491 (4) |
S2—O4 | 1.479 (2) | C4—H4A | 0.9700 |
S2—C3 | 1.774 (3) | C4—H4B | 0.9700 |
S3—O8 | 1.4472 (19) | C5—C6 | 1.503 (4) |
S3—O9 | 1.4482 (19) | C5—H5A | 0.9700 |
S3—O7 | 1.479 (2) | C5—H5B | 0.9700 |
S3—C6 | 1.778 (3) | C6—H6A | 0.9700 |
C1—C2 | 1.525 (4) | C6—H6B | 0.9700 |
C1—H1A | 0.9700 | C3—H3C | 0.9700 |
C1—H1B | 0.9700 | C3—H3D | 0.9700 |
N3—C5 | 1.479 (4) | K1—O6vi | 2.687 (2) |
N3—H3A | 0.9000 | K1—O3vii | 2.7140 (19) |
N3—H3B | 0.9000 | K1—O5viii | 2.8361 (19) |
O9—K1 | 2.816 (2) | K1—O2ix | 2.8522 (19) |
O6—K1i | 2.687 (2) | K1—O8x | 2.8893 (19) |
O5—K1ii | 2.8361 (19) | K1—O9 | 2.816 (2) |
O1—Co1—O7 | 84.97 (7) | H2A—N2—H2B | 106.6 |
O1—Co1—O4 | 83.80 (7) | C2—N1—Co1 | 121.71 (18) |
O7—Co1—O4 | 84.46 (7) | C2—N1—H1C | 106.9 |
O1—Co1—N2 | 174.95 (8) | Co1—N1—H1C | 106.9 |
O7—Co1—N2 | 90.31 (8) | C2—N1—H1D | 106.9 |
O4—Co1—N2 | 93.97 (8) | Co1—N1—H1D | 106.9 |
O1—Co1—N3 | 91.86 (9) | H1C—N1—H1D | 106.7 |
O7—Co1—N3 | 92.19 (8) | S1—O2—K1iii | 172.74 (12) |
O4—Co1—N3 | 174.73 (8) | S1—O3—K1iv | 140.30 (12) |
N2—Co1—N3 | 90.11 (9) | S3—O8—K1v | 170.75 (13) |
O1—Co1—N1 | 89.78 (8) | N1—C2—C1 | 112.7 (2) |
O7—Co1—N1 | 172.81 (8) | N1—C2—H2C | 109.0 |
O4—Co1—N1 | 90.10 (9) | C1—C2—H2C | 109.0 |
N2—Co1—N1 | 94.76 (10) | N1—C2—H2D | 109.0 |
N3—Co1—N1 | 92.89 (9) | C1—C2—H2D | 109.0 |
O3—S1—O2 | 113.88 (12) | H2C—C2—H2D | 107.8 |
O3—S1—O1 | 111.10 (11) | C3—C4—N2 | 112.6 (2) |
O2—S1—O1 | 111.52 (12) | C3—C4—H4A | 109.1 |
O3—S1—C1 | 106.18 (12) | N2—C4—H4A | 109.1 |
O2—S1—C1 | 107.75 (13) | C3—C4—H4B | 109.1 |
O1—S1—C1 | 105.88 (13) | N2—C4—H4B | 109.1 |
O5—S2—O6 | 113.38 (13) | H4A—C4—H4B | 107.8 |
O5—S2—O4 | 112.20 (13) | N3—C5—C6 | 112.9 (2) |
O6—S2—O4 | 111.44 (12) | N3—C5—H5A | 109.0 |
O5—S2—C3 | 108.98 (13) | C6—C5—H5A | 109.0 |
O6—S2—C3 | 105.87 (13) | N3—C5—H5B | 109.0 |
O4—S2—C3 | 104.34 (14) | C6—C5—H5B | 109.0 |
O8—S3—O9 | 114.43 (12) | H5A—C5—H5B | 107.8 |
O8—S3—O7 | 111.54 (13) | C5—C6—S3 | 115.5 (2) |
O9—S3—O7 | 111.12 (12) | C5—C6—H6A | 108.4 |
O8—S3—C6 | 107.61 (13) | S3—C6—H6A | 108.4 |
O9—S3—C6 | 105.31 (14) | C5—C6—H6B | 108.4 |
O7—S3—C6 | 106.24 (13) | S3—C6—H6B | 108.4 |
S1—O1—Co1 | 127.05 (10) | H6A—C6—H6B | 107.5 |
S2—O4—Co1 | 124.53 (11) | C4—C3—S2 | 115.1 (2) |
C2—C1—S1 | 115.1 (2) | C4—C3—H3C | 108.5 |
C2—C1—H1A | 108.5 | S2—C3—H3C | 108.5 |
S1—C1—H1A | 108.5 | C4—C3—H3D | 108.5 |
C2—C1—H1B | 108.5 | S2—C3—H3D | 108.5 |
S1—C1—H1B | 108.5 | H3C—C3—H3D | 107.5 |
H1A—C1—H1B | 107.5 | O6vi—K1—O3vii | 124.38 (7) |
S3—O7—Co1 | 126.71 (10) | O6vi—K1—O9 | 87.87 (6) |
C5—N3—Co1 | 122.94 (17) | O3vii—K1—O9 | 140.88 (6) |
C5—N3—H3A | 106.6 | O6vi—K1—O5viii | 71.71 (6) |
Co1—N3—H3A | 106.6 | O3vii—K1—O5viii | 81.07 (6) |
C5—N3—H3B | 106.6 | O9—K1—O5viii | 134.66 (7) |
Co1—N3—H3B | 106.6 | O6vi—K1—O2ix | 137.80 (7) |
H3A—N3—H3B | 106.6 | O3vii—K1—O2ix | 91.78 (6) |
S3—O9—K1 | 150.60 (13) | O9—K1—O2ix | 71.81 (6) |
S2—O6—K1i | 147.95 (13) | O5viii—K1—O2ix | 96.53 (6) |
S2—O5—K1ii | 170.53 (14) | O6vi—K1—O8x | 86.91 (7) |
C4—N2—Co1 | 122.22 (18) | O3vii—K1—O8x | 72.54 (6) |
C4—N2—H2A | 106.8 | O9—K1—O8x | 89.77 (6) |
Co1—N2—H2A | 106.8 | O5viii—K1—O8x | 127.47 (7) |
C4—N2—H2B | 106.8 | O2ix—K1—O8x | 128.14 (6) |
Co1—N2—H2B | 106.8 | ||
O3—S1—O1—Co1 | −165.99 (13) | O4—S2—O5—K1ii | 24.0 (8) |
O2—S1—O1—Co1 | 65.79 (17) | C3—S2—O5—K1ii | 139.1 (8) |
C1—S1—O1—Co1 | −51.14 (17) | O1—Co1—N2—C4 | −81.5 (11) |
O7—Co1—O1—S1 | −148.59 (16) | O7—Co1—N2—C4 | −102.3 (2) |
O4—Co1—O1—S1 | 126.45 (16) | O4—Co1—N2—C4 | −17.8 (2) |
N2—Co1—O1—S1 | −169.5 (9) | N3—Co1—N2—C4 | 165.5 (2) |
N3—Co1—O1—S1 | −56.56 (16) | N1—Co1—N2—C4 | 72.6 (2) |
N1—Co1—O1—S1 | 36.33 (17) | O1—Co1—N1—C2 | −34.1 (2) |
O5—S2—O4—Co1 | 69.55 (17) | O7—Co1—N1—C2 | −77.2 (8) |
O6—S2—O4—Co1 | −162.09 (13) | O4—Co1—N1—C2 | −117.9 (2) |
C3—S2—O4—Co1 | −48.29 (17) | N2—Co1—N1—C2 | 148.1 (2) |
O1—Co1—O4—S2 | −159.21 (15) | N3—Co1—N1—C2 | 57.7 (2) |
O7—Co1—O4—S2 | 115.26 (15) | O3—S1—O2—K1iii | −91.5 (9) |
N2—Co1—O4—S2 | 25.34 (16) | O1—S1—O2—K1iii | 35.3 (9) |
N3—Co1—O4—S2 | 166.0 (8) | C1—S1—O2—K1iii | 151.0 (9) |
N1—Co1—O4—S2 | −69.44 (15) | O2—S1—O3—K1iv | −149.88 (15) |
O3—S1—C1—C2 | −177.7 (2) | O1—S1—O3—K1iv | 83.18 (19) |
O2—S1—C1—C2 | −55.3 (3) | C1—S1—O3—K1iv | −31.5 (2) |
O1—S1—C1—C2 | 64.1 (2) | O9—S3—O8—K1v | −114.2 (7) |
O8—S3—O7—Co1 | 71.69 (17) | O7—S3—O8—K1v | 13.0 (8) |
O9—S3—O7—Co1 | −159.33 (13) | C6—S3—O8—K1v | 129.1 (7) |
C6—S3—O7—Co1 | −45.30 (17) | Co1—N1—C2—C1 | 56.8 (3) |
O1—Co1—O7—S3 | 117.83 (15) | S1—C1—C2—N1 | −69.4 (3) |
O4—Co1—O7—S3 | −157.93 (15) | Co1—N2—C4—C3 | 43.5 (3) |
N2—Co1—O7—S3 | −63.97 (16) | Co1—N3—C5—C6 | 49.2 (3) |
N3—Co1—O7—S3 | 26.15 (16) | N3—C5—C6—S3 | −71.0 (3) |
N1—Co1—O7—S3 | 161.1 (7) | O8—S3—C6—C5 | −52.0 (3) |
O1—Co1—N3—C5 | −108.5 (2) | O9—S3—C6—C5 | −174.4 (2) |
O7—Co1—N3—C5 | −23.5 (2) | O7—S3—C6—C5 | 67.6 (2) |
O4—Co1—N3—C5 | −73.9 (9) | N2—C4—C3—S2 | −73.2 (3) |
N2—Co1—N3—C5 | 66.8 (2) | O5—S2—C3—C4 | −45.3 (3) |
N1—Co1—N3—C5 | 161.6 (2) | O6—S2—C3—C4 | −167.6 (2) |
O8—S3—O9—K1 | −136.5 (2) | O4—S2—C3—C4 | 74.7 (2) |
O7—S3—O9—K1 | 96.0 (3) | S3—O9—K1—O6vi | 4.6 (3) |
C6—S3—O9—K1 | −18.6 (3) | S3—O9—K1—O3vii | 152.8 (2) |
O5—S2—O6—K1i | −123.5 (2) | S3—O9—K1—O5viii | −56.8 (3) |
O4—S2—O6—K1i | 108.8 (2) | S3—O9—K1—O2ix | −137.8 (3) |
C3—S2—O6—K1i | −4.1 (3) | S3—O9—K1—O8x | 91.6 (3) |
O6—S2—O5—K1ii | −103.3 (8) |
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, −y+3/2, z+1; (iii) x+1/2, −y+3/2, z; (iv) −x−1/2, y+1/2, z+1/2; (v) −x, −y+1, z+1/2; (vi) x, y, z−1; (vii) −x−1/2, y−1/2, z−1/2; (viii) x−1/2, −y+3/2, z−1; (ix) x−1/2, −y+3/2, z; (x) −x, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O7iii | 0.90 | 2.22 | 3.097 (3) | 163 |
N2—H2B···O4iii | 0.90 | 2.40 | 3.166 (3) | 143 |
N2—H2B···O1iii | 0.90 | 2.47 | 3.255 (3) | 146 |
N1—H1D···O4iii | 0.90 | 2.55 | 3.423 (3) | 165 |
N3—H3A···O2 | 0.90 | 2.28 | 3.113 (3) | 153 |
N2—H2A···O8 | 0.90 | 2.39 | 3.219 (3) | 152 |
N1—H1C···O5 | 0.90 | 2.49 | 3.229 (3) | 140 |
Symmetry code: (iii) x+1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [CoK(C2H6NO3S)3] |
Mr | 470.44 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 10.6901 (19), 15.669 (3), 9.6094 (17) |
V (Å3) | 1609.6 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.76 |
Crystal size (mm) | 0.26 × 0.22 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.657, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10792, 3386, 3146 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.058, 1.02 |
No. of reflections | 3386 |
No. of parameters | 208 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.33 |
Absolute structure | Flack (1983), 1528 Friedel pairs |
Absolute structure parameter | 0.020 (13) |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co1—O1 | 2.1316 (18) | K1—O6i | 2.687 (2) |
Co1—O7 | 2.1411 (18) | K1—O3ii | 2.7140 (19) |
Co1—O4 | 2.142 (2) | K1—O5iii | 2.8361 (19) |
Co1—N2 | 2.143 (2) | K1—O2iv | 2.8522 (19) |
Co1—N3 | 2.146 (2) | K1—O8v | 2.8893 (19) |
Co1—N1 | 2.149 (2) | K1—O9 | 2.816 (2) |
Symmetry codes: (i) x, y, z−1; (ii) −x−1/2, y−1/2, z−1/2; (iii) x−1/2, −y+3/2, z−1; (iv) x−1/2, −y+3/2, z; (v) −x, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O7vi | 0.90 | 2.22 | 3.097 (3) | 163.2 |
N2—H2B···O4vi | 0.90 | 2.40 | 3.166 (3) | 142.5 |
N2—H2B···O1vi | 0.90 | 2.47 | 3.255 (3) | 145.5 |
N1—H1D···O4vi | 0.90 | 2.55 | 3.423 (3) | 165.0 |
N3—H3A···O2 | 0.90 | 2.28 | 3.113 (3) | 153.1 |
N2—H2A···O8 | 0.90 | 2.39 | 3.219 (3) | 152.3 |
N1—H1C···O5 | 0.90 | 2.49 | 3.229 (3) | 139.7 |
Symmetry code: (vi) x+1/2, −y+3/2, z. |
Acknowledgements
We are grateful to the Education Department Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (201012MS203) and the Start-up Foundation for Advanced Talents of Hechi University (No. 2008QS-N019)
References
Bottari, E. & Festa, M. R. (1998). Talanta, 46, 91–99. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059–m3061. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cai, J. H., Zhong, F. & Jiang, Y. M. (2011). Chin. J. Struct. Chem. 30, 743–747. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878–m880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jiang, Y. M., Zhang, S. H., Xu, Q. & Xiao, Y. (2003). Acta Chim. Sin. 61, 573–577. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, F., Liu, X.-H. & Zhao, C.-Q. (2010b). Acta Cryst. E66, m1343–m1344. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, F., Wu, Z.-H. & Cai, J.-H. (2010a). Acta Cryst. E66, m748. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeng, J.-L., Jiang, Y.-M., Sun, L.-X., Cao, Z. & Yang, D.-W. (2009). Acta Cryst. E65, m1067–m1068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497–500. CAS Google Scholar
Zhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559–602. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Taurine, an amino acid containing sulfur, is indispensable to human beings Because of its applications in medicine and biochemistry (Bottari & Festa,1998; Jiang et al.,2003). Several taurine complexes and their derivatives have recently been prepared (Zhong et al. (2003); Cai et al. (2004, 2006, 2011); Yang et al. (2010a,b)). we found that the taurine has manifold coordination modes. For the much less well study of the coordination modes of the sulfonate group, The title polymeric CoII complex,(I), has been prepared and its structure determined.
The coordinated modes of the title compound are similar to the previously reported Ni (II) structure (Jiang et al. (2005)). The molecular structure of (I) is shown in Fig. 1 and the important bond lengths are listed in Table 1. The asymmetric unit of (I) consists of one CoII atom, three taurinate ligands and one K+ ion. The cobalt is six-coordinate with three nitrogen atoms [N(1), N(2), N(3)] and three oxygen atoms [O(1), O(4), O(7)], thus giving an octahedral configuration. The Co atom forms six membered chelate rings (NiNC2SO) with each taurinate ligand. This is a facial isomer. Each sulfonate group of the taurinate ligand takes part in the formation of a hydrogen bond (Table 2) with the amino group of a neighbouring ligand in the complex. The most common coordination modes of the sulfonate group are monodentate and µ2-bridging, while µ3-bridging is very rare. The coordination mode of the sulfonate group in (I) is µ3-bridging, which makes the S–O(–Co) bonds [1.475 (2)–1.479 (2) Å] much longer than those previously reported [S–O(–Co) 1.464 (2) and 1.456 (3) Å; Yang et al., 2010b; Zeng et al., 2009]. The S=O(···K) bonds [1.443 (2)–1.453 (2) Å] are slightly longer than the uncoordinated S=O bond in taurine [1.446 (12)–1.457 (13) Å; Zhang & Jiang, 2002]. The K atom is surrounded by six O atoms from different taurinate ligands, The title complex forms a three-dimensional structure through the K···O linkage. The K···O distances are in the range 2.678 (2)–2.889 (2) Å, suggesting weak electrostatic interactions.