organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1-phenyl­sulfonyl-1H-indole-3-carbaldehyde

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: crystallography2010@gmail.com

(Received 12 August 2011; accepted 1 September 2011; online 14 September 2011)

In the title compound, C16H13NO3S, the sulfonyl-bound phenyl ring forms a dihedral angle of 84.17 (6)° with the indole ring system. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure exhibits weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions between the five- and six-membered rings of the indole group [centroid–centroid distance = 3.6871 (9) Å].

Related literature

For the biological activities of indole compounds, see: Chai et al. (2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Prague), 45, 173-176.]); Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anti-Cancer Drug Des. 16, 167-174.]). For related structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.]); Ramathilagam et al. (2011[Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3S

  • Mr = 299.33

  • Monoclinic, P 21 /c

  • a = 11.6305 (5) Å

  • b = 8.4039 (4) Å

  • c = 14.3128 (8) Å

  • β = 93.126 (1)°

  • V = 1396.87 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.958

  • 18442 measured reflections

  • 4242 independent reflections

  • 3212 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.06

  • 4242 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.28 2.8723 (19) 121
C12—H12⋯O3i 0.93 2.48 3.1664 (19) 131
C16—H16⋯O2ii 0.93 2.48 3.388 (2) 167
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives are found in many natural products and these derivatives exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). In addition, certain indole derivatives exhibit anti-hepatitis B virus (Chai et al., 2006) activity.

The geometric parameters of the title molecule (Fig. 1) agree well with those observed in related structures (Chakkaravarthi et al., 2007, 2008; Ramathilagam et al., 2011). The dihedral angle between the benzene (C1–C6) and phenyl rings (C11–C16) is 83.81 (7)°. The sum of bond angles around N1 [359.9°] indicates sp2 hybridization.

The molecular structure is stabilized by a weak intramolecular C—H···O hydrogen bond and the crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds. The intramolecular C5—H5···O1 hydrogen bond generates an S(6) ring (Bernstein et al., 1995).

Related literature top

For the biological activities of indole compounds, see: Chai et al. (2006); Singh et al. (2000); Andreani et al. (2001). For related structures, see: Chakkaravarthi et al. (2007, 2008); Ramathilagam et al. (2011). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2-Methylindole-3-carboxaldehyde (5 g, 31.4 mmol) was dissolved in distilled benzene (100 ml). To this benzenesulfonylchloride (6.6 g, 4.8 ml, 37.7 mmol) and 60% aqueous NAOH (32g in 53ml) were added along with tetrabutyl ammonium hydrogensulfate (1.0 g). This two phase system was stirred at room temperature for 2h. It was then diluted with water (200 ml) and the organic layer was separated. The aqueous layer was extracted with benzene (2× 30 ml) and the combined organic extracts were dried (Na2SO4). The solvent was removed completely and the crude product was recrystallized from methanol (m.p 431–433 K).

Refinement top

H atoms were positioned geometrically and refined using riding model, with d(C–H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C–H and d(C–H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C–H.

Structure description top

Indole derivatives are found in many natural products and these derivatives exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). In addition, certain indole derivatives exhibit anti-hepatitis B virus (Chai et al., 2006) activity.

The geometric parameters of the title molecule (Fig. 1) agree well with those observed in related structures (Chakkaravarthi et al., 2007, 2008; Ramathilagam et al., 2011). The dihedral angle between the benzene (C1–C6) and phenyl rings (C11–C16) is 83.81 (7)°. The sum of bond angles around N1 [359.9°] indicates sp2 hybridization.

The molecular structure is stabilized by a weak intramolecular C—H···O hydrogen bond and the crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds. The intramolecular C5—H5···O1 hydrogen bond generates an S(6) ring (Bernstein et al., 1995).

For the biological activities of indole compounds, see: Chai et al. (2006); Singh et al. (2000); Andreani et al. (2001). For related structures, see: Chakkaravarthi et al. (2007, 2008); Ramathilagam et al. (2011). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
2-Methyl-1-phenylsulfonyl-1H-indole-3-carbaldehyde top
Crystal data top
C16H13NO3SF(000) = 624
Mr = 299.33Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2YbcCell parameters from 4242 reflections
a = 11.6305 (5) Åθ = 2.8–30.5°
b = 8.4039 (4) ŵ = 0.24 mm1
c = 14.3128 (8) ÅT = 295 K
β = 93.126 (1)°Block, colourless
V = 1396.87 (12) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4242 independent reflections
Radiation source: fine-focus sealed tube3212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 816
Tmin = 0.949, Tmax = 0.958k = 1111
18442 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.051P)2 + 0.3293P]
where P = (Fo2 + 2Fc2)/3
4242 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H13NO3SV = 1396.87 (12) Å3
Mr = 299.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6305 (5) ŵ = 0.24 mm1
b = 8.4039 (4) ÅT = 295 K
c = 14.3128 (8) Å0.22 × 0.20 × 0.18 mm
β = 93.126 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4242 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3212 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.958Rint = 0.024
18442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
4242 reflectionsΔρmin = 0.27 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51033 (11)1.03657 (16)0.11957 (9)0.0372 (3)
C20.62740 (13)1.0134 (2)0.14228 (11)0.0488 (3)
H20.67941.09680.13820.059*
C30.66431 (13)0.8654 (2)0.17072 (12)0.0541 (4)
H30.74200.84860.18630.065*
C40.58737 (14)0.7403 (2)0.17652 (11)0.0509 (4)
H40.61480.64120.19610.061*
C50.47145 (13)0.75842 (17)0.15415 (10)0.0442 (3)
H50.42030.67390.15810.053*
C60.43434 (11)0.90840 (16)0.12546 (9)0.0356 (3)
C70.33085 (13)1.12984 (17)0.07792 (10)0.0429 (3)
C80.44359 (12)1.17348 (17)0.08955 (9)0.0412 (3)
C90.22868 (16)1.2312 (2)0.05301 (14)0.0655 (5)
H9A0.25271.33990.04720.098*
H9B0.17471.22330.10120.098*
H9C0.19291.19580.00530.098*
C100.48781 (17)1.3321 (2)0.07368 (12)0.0559 (4)
H100.43551.41090.05450.067*
C110.13200 (11)0.92243 (17)0.19354 (9)0.0395 (3)
C120.18938 (12)0.90248 (19)0.27999 (10)0.0457 (3)
H120.26400.86240.28450.055*
C130.13415 (16)0.9431 (2)0.35933 (11)0.0569 (4)
H130.17170.93130.41800.068*
C140.02338 (16)1.0010 (2)0.35188 (13)0.0624 (4)
H140.01381.02700.40580.075*
C150.03304 (14)1.0211 (2)0.26584 (13)0.0613 (4)
H150.10781.06080.26180.074*
C160.02108 (12)0.9824 (2)0.18524 (11)0.0516 (4)
H160.01630.99640.12670.062*
N10.32271 (9)0.96653 (14)0.09734 (8)0.0411 (3)
O10.23308 (10)0.69878 (14)0.10309 (9)0.0575 (3)
O20.13304 (10)0.91043 (19)0.01249 (8)0.0667 (4)
O30.58819 (13)1.36833 (15)0.08380 (10)0.0742 (4)
S10.20015 (3)0.86138 (5)0.09314 (2)0.04468 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (6)0.0379 (7)0.0289 (6)0.0030 (5)0.0030 (5)0.0032 (5)
C20.0440 (7)0.0547 (9)0.0472 (8)0.0074 (6)0.0017 (6)0.0046 (7)
C30.0436 (7)0.0656 (11)0.0522 (9)0.0079 (7)0.0060 (6)0.0027 (8)
C40.0571 (8)0.0483 (9)0.0471 (8)0.0133 (7)0.0004 (6)0.0037 (7)
C50.0496 (7)0.0387 (7)0.0446 (7)0.0006 (6)0.0056 (6)0.0048 (6)
C60.0385 (6)0.0379 (7)0.0307 (6)0.0009 (5)0.0045 (5)0.0004 (5)
C70.0510 (7)0.0415 (7)0.0364 (7)0.0070 (6)0.0045 (6)0.0049 (6)
C80.0537 (8)0.0364 (7)0.0336 (6)0.0022 (6)0.0026 (5)0.0003 (5)
C90.0608 (10)0.0607 (11)0.0750 (12)0.0181 (8)0.0052 (9)0.0158 (9)
C100.0760 (11)0.0397 (8)0.0511 (9)0.0074 (7)0.0044 (8)0.0027 (7)
C110.0338 (6)0.0439 (7)0.0407 (7)0.0018 (5)0.0020 (5)0.0007 (6)
C120.0411 (7)0.0510 (8)0.0445 (8)0.0027 (6)0.0011 (6)0.0027 (6)
C130.0653 (10)0.0651 (11)0.0400 (8)0.0036 (8)0.0012 (7)0.0007 (7)
C140.0630 (10)0.0713 (12)0.0545 (10)0.0056 (9)0.0169 (8)0.0067 (9)
C150.0439 (8)0.0717 (12)0.0690 (11)0.0132 (8)0.0091 (7)0.0060 (9)
C160.0385 (7)0.0648 (10)0.0508 (8)0.0050 (6)0.0042 (6)0.0012 (7)
N10.0372 (5)0.0421 (7)0.0442 (6)0.0003 (4)0.0050 (4)0.0063 (5)
O10.0532 (6)0.0470 (6)0.0737 (8)0.0101 (5)0.0156 (5)0.0129 (6)
O20.0536 (6)0.1042 (11)0.0411 (6)0.0050 (7)0.0075 (5)0.0038 (6)
O30.0809 (9)0.0546 (8)0.0847 (10)0.0268 (7)0.0179 (7)0.0078 (7)
S10.03861 (17)0.0548 (2)0.0407 (2)0.00535 (14)0.00263 (13)0.00445 (15)
Geometric parameters (Å, º) top
C1—C21.3962 (19)C9—H9C0.96
C1—C61.3988 (18)C10—O31.207 (2)
C1—C81.4404 (19)C10—H100.93
C2—C31.370 (2)C11—C121.3835 (19)
C2—H20.93C11—C161.3841 (19)
C3—C41.386 (2)C11—S11.7552 (14)
C3—H30.93C12—C131.378 (2)
C4—C51.377 (2)C12—H120.93
C4—H40.93C13—C141.376 (2)
C5—C61.3871 (19)C13—H130.93
C5—H50.93C14—C151.374 (3)
C6—N11.4246 (16)C14—H140.93
C7—C81.363 (2)C15—C161.383 (2)
C7—N11.4046 (19)C15—H150.93
C7—C91.490 (2)C16—H160.93
C8—C101.451 (2)N1—S11.6753 (12)
C9—H9A0.96O1—S11.4242 (13)
C9—H9B0.96O2—S11.4190 (12)
C2—C1—C6119.32 (13)O3—C10—C8124.15 (17)
C2—C1—C8133.15 (13)O3—C10—H10117.9
C6—C1—C8107.53 (12)C8—C10—H10117.9
C3—C2—C1118.80 (14)C12—C11—C16121.52 (13)
C3—C2—H2120.6C12—C11—S1118.64 (10)
C1—C2—H2120.6C16—C11—S1119.77 (11)
C2—C3—C4120.88 (14)C13—C12—C11118.90 (14)
C2—C3—H3119.6C13—C12—H12120.6
C4—C3—H3119.6C11—C12—H12120.6
C5—C4—C3121.96 (15)C14—C13—C12120.02 (15)
C5—C4—H4119.0C14—C13—H13120.0
C3—C4—H4119.0C12—C13—H13120.0
C4—C5—C6117.02 (14)C15—C14—C13120.82 (15)
C4—C5—H5121.5C15—C14—H14119.6
C6—C5—H5121.5C13—C14—H14119.6
C5—C6—C1122.02 (12)C14—C15—C16120.14 (15)
C5—C6—N1131.25 (12)C14—C15—H15119.9
C1—C6—N1106.74 (12)C16—C15—H15119.9
C8—C7—N1108.28 (12)C15—C16—C11118.59 (14)
C8—C7—C9128.68 (14)C15—C16—H16120.7
N1—C7—C9123.01 (14)C11—C16—H16120.7
C7—C8—C1108.71 (12)C7—N1—C6108.71 (11)
C7—C8—C10125.09 (14)C7—N1—S1125.08 (10)
C1—C8—C10126.20 (14)C6—N1—S1126.14 (10)
C7—C9—H9A109.5O2—S1—O1119.54 (8)
C7—C9—H9B109.5O2—S1—N1107.77 (7)
H9A—C9—H9B109.5O1—S1—N1106.19 (6)
C7—C9—H9C109.5O2—S1—C11109.16 (7)
H9A—C9—H9C109.5O1—S1—C11109.24 (7)
H9B—C9—H9C109.5N1—S1—C11103.76 (6)
C6—C1—C2—C30.7 (2)C13—C14—C15—C160.2 (3)
C8—C1—C2—C3178.78 (15)C14—C15—C16—C110.5 (3)
C1—C2—C3—C40.3 (2)C12—C11—C16—C150.7 (2)
C2—C3—C4—C50.1 (2)S1—C11—C16—C15176.34 (13)
C3—C4—C5—C60.1 (2)C8—C7—N1—C62.23 (15)
C4—C5—C6—C10.2 (2)C9—C7—N1—C6175.57 (14)
C4—C5—C6—N1179.63 (14)C8—C7—N1—S1179.33 (10)
C2—C1—C6—C50.6 (2)C9—C7—N1—S11.5 (2)
C8—C1—C6—C5178.94 (12)C5—C6—N1—C7178.03 (14)
C2—C1—C6—N1179.26 (12)C1—C6—N1—C72.08 (14)
C8—C1—C6—N11.17 (14)C5—C6—N1—S11.0 (2)
N1—C7—C8—C11.48 (16)C1—C6—N1—S1179.15 (9)
C9—C7—C8—C1176.15 (15)C7—N1—S1—O241.89 (14)
N1—C7—C8—C10178.30 (13)C6—N1—S1—O2141.51 (11)
C9—C7—C8—C104.1 (3)C7—N1—S1—O1171.10 (11)
C2—C1—C8—C7179.31 (15)C6—N1—S1—O112.30 (13)
C6—C1—C8—C70.18 (15)C7—N1—S1—C1173.79 (13)
C2—C1—C8—C100.9 (2)C6—N1—S1—C11102.82 (12)
C6—C1—C8—C10179.60 (13)C12—C11—S1—O2172.81 (12)
C7—C8—C10—O3179.51 (16)C16—C11—S1—O210.03 (16)
C1—C8—C10—O30.2 (3)C12—C11—S1—O154.80 (13)
C16—C11—C12—C130.2 (2)C16—C11—S1—O1122.36 (13)
S1—C11—C12—C13176.90 (13)C12—C11—S1—N158.13 (13)
C11—C12—C13—C140.6 (3)C16—C11—S1—N1124.72 (13)
C12—C13—C14—C150.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.282.8723 (19)121
C12—H12···O3i0.932.483.1664 (19)131
C16—H16···O2ii0.932.483.388 (2)167
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H13NO3S
Mr299.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.6305 (5), 8.4039 (4), 14.3128 (8)
β (°) 93.126 (1)
V3)1396.87 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
18442, 4242, 3212
Rint0.024
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.06
No. of reflections4242
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.282.8723 (19)121
C12—H12···O3i0.932.483.1664 (19)131
C16—H16···O2ii0.932.483.388 (2)167
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+2, z.
 

Acknowledgements

CR wishes to acknowledge AMET University management, India, for their kind support.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anti-Cancer Drug Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Prague), 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds