organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-3,5-Di­benzyl­­idene-1-phenethyl­piperidin-4-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, bSchool of Physical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, cDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 August 2011; accepted 2 September 2011; online 14 September 2011)

In the title compound, C27H25NO, the piperidine ring adopts an envelope conformation with the N atom at the flap position. The two benzylidene-benzene rings are oriented at a dihedral angle of 8.5 (1)°. In the crystal, the mol­ecules are linked into centrosymmetric dimers by pairs of inter­molecular C—H⋯O hydrogen bonds. The dimers are connected via C—H⋯π inter­actions involving the phenyl rings.

Related literature

For the biological activity of piperidine compounds, see: Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Scriabine (1980[Scriabine, A. P. (1980). Editor. Pharmacology of Antihypertensive Drugs, p. 43. New York: Raven Press.]); Watson et al. (2000[Watson, P. S., Jiang, B. & Scott, B. A. (2000). Org. Lett. 2, 3679-3681.]); Risi (2008[Risi, C. D. (2008). Tetrahedron Asymmetry, 19, 131-155.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H25NO

  • Mr = 379.48

  • Monoclinic, P 21 /c

  • a = 11.4785 (2) Å

  • b = 5.8396 (1) Å

  • c = 30.9591 (5) Å

  • β = 106.412 (1)°

  • V = 1990.63 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.11 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.973, Tmax = 0.992

  • 21942 measured reflections

  • 5877 independent reflections

  • 4370 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.173

  • S = 1.08

  • 5877 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are centroids of the C1–C6, C14–C19 and C22–C27 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.95 2.54 3.425 (3) 155
C15—H15A⋯O1i 0.95 2.49 3.345 (3) 150
C2—H2ACg3ii 0.95 2.88 3.579 (2) 131
C23—H23ACg1iii 0.95 2.99 3.640 (2) 127
C26—H26ACg2iv 0.95 2.89 3.556 (2) 128
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y-1, -z; (iii) -x+1, -y, -z; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidines are very important compounds because of their presence in numerous alkaloids, pharmaceuticals, agrochemical and as synthetic intermediates. Biologically active alkaloids of the substituted piperidine ring system have been targeted for their total or partial synthesis. During a fairly recent 10-year period, several thousand piperidine compounds have been mentioned in clinical and preclinical studies (Watson et al., 2000). Selective inhibition of a number of enzymes involved in the binding and processing of glycoproteins has rendered piperidine alkaloids as important tools in the study of biochemical pathways (Asano et al., 2000). Piperidine derivatives are found to possess pharmacological activity and form an essential part of the molecular structures of important drugs such as raloxifene and minoxidil (Risi, 2008). A new neuroleptics has found that the piperidine derivatives have high affinity for CNS (Scriabine, 1980).

In the title compound (Fig. 1), the piperidine (N1/C8–C12) ring is attached to three benzene (C1–C6), (C14–C19) and (C22–C27) rings via butane (C6–C8) and prop-1-ene (C20–C22) groups. The piperidine ring adopts an envelope conformation (Cremer & Pople, 1975) with puckering parameters of Q = 0.556 (2) Å, Θ = 60.3 (2)° and φ = 357.5 (2)°. Atom N1 deviates from the C8-C12 plane by 0.738 (2) Å. The two benzyl phenyl rings are oriented at a dihedral angle of 8.5 (1)°. The bond lengths (Allen et al.,1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), intermolecular C15—H15A···O1 and C13—H13A···O1 hydrogen bonds link the molecules into centrosymmetric dimers each containing two R12(6) ring motifs. In addition, the crystal structure is stabilized by C—H···π interactions (Table 1).

Related literature top

For the biological activity of piperidine compounds, see: Asano et al. (2000); Scriabine (1980); Watson et al. (2000); Risi (2008). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-phenethyl-4-piperonidone (0.001 mmol) and benzaldehyde (0.002 mmol) were dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added. The mixture was stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice and then was neutralized with conentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to obtain the title compound as light yellow crystals.

Refinement top

H atoms were positioned geometrically [C–H = 0.95 or 0.99 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Piperidines are very important compounds because of their presence in numerous alkaloids, pharmaceuticals, agrochemical and as synthetic intermediates. Biologically active alkaloids of the substituted piperidine ring system have been targeted for their total or partial synthesis. During a fairly recent 10-year period, several thousand piperidine compounds have been mentioned in clinical and preclinical studies (Watson et al., 2000). Selective inhibition of a number of enzymes involved in the binding and processing of glycoproteins has rendered piperidine alkaloids as important tools in the study of biochemical pathways (Asano et al., 2000). Piperidine derivatives are found to possess pharmacological activity and form an essential part of the molecular structures of important drugs such as raloxifene and minoxidil (Risi, 2008). A new neuroleptics has found that the piperidine derivatives have high affinity for CNS (Scriabine, 1980).

In the title compound (Fig. 1), the piperidine (N1/C8–C12) ring is attached to three benzene (C1–C6), (C14–C19) and (C22–C27) rings via butane (C6–C8) and prop-1-ene (C20–C22) groups. The piperidine ring adopts an envelope conformation (Cremer & Pople, 1975) with puckering parameters of Q = 0.556 (2) Å, Θ = 60.3 (2)° and φ = 357.5 (2)°. Atom N1 deviates from the C8-C12 plane by 0.738 (2) Å. The two benzyl phenyl rings are oriented at a dihedral angle of 8.5 (1)°. The bond lengths (Allen et al.,1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), intermolecular C15—H15A···O1 and C13—H13A···O1 hydrogen bonds link the molecules into centrosymmetric dimers each containing two R12(6) ring motifs. In addition, the crystal structure is stabilized by C—H···π interactions (Table 1).

For the biological activity of piperidine compounds, see: Asano et al. (2000); Scriabine (1980); Watson et al. (2000); Risi (2008). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
(3E,5E)-3,5-Dibenzylidene-1-phenethylpiperidin-4-one top
Crystal data top
C27H25NOF(000) = 808
Mr = 379.48Dx = 1.266 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5149 reflections
a = 11.4785 (2) Åθ = 2.7–30.1°
b = 5.8396 (1) ŵ = 0.08 mm1
c = 30.9591 (5) ÅT = 296 K
β = 106.412 (1)°Plate, light yellow
V = 1990.63 (6) Å30.36 × 0.30 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5877 independent reflections
Radiation source: fine-focus sealed tube4370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.973, Tmax = 0.992k = 88
21942 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0585P)2 + 1.7928P]
where P = (Fo2 + 2Fc2)/3
5877 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C27H25NOV = 1990.63 (6) Å3
Mr = 379.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4785 (2) ŵ = 0.08 mm1
b = 5.8396 (1) ÅT = 296 K
c = 30.9591 (5) Å0.36 × 0.30 × 0.11 mm
β = 106.412 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5877 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4370 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.992Rint = 0.048
21942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
5877 reflectionsΔρmin = 0.28 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94565 (15)0.2948 (3)0.03565 (5)0.0356 (4)
N10.66007 (14)0.1134 (3)0.01094 (5)0.0206 (3)
C10.82777 (17)0.3600 (4)0.13159 (7)0.0236 (4)
H1A0.80690.44000.10370.028*
C20.80770 (18)0.4622 (4)0.16937 (7)0.0279 (4)
H2A0.77100.60920.16700.033*
C30.84119 (18)0.3500 (4)0.21060 (7)0.0293 (5)
H3A0.82610.41880.23630.035*
C40.89693 (18)0.1369 (4)0.21413 (7)0.0272 (4)
H4A0.92210.06140.24240.033*
C50.91570 (17)0.0350 (4)0.17640 (6)0.0235 (4)
H5A0.95480.10990.17930.028*
C60.87861 (16)0.1397 (3)0.13407 (6)0.0204 (4)
C70.89514 (16)0.0098 (3)0.09573 (6)0.0205 (4)
H7A0.95430.10830.10350.025*
C80.84016 (16)0.0302 (3)0.05124 (6)0.0196 (4)
C90.87531 (17)0.1378 (4)0.02060 (6)0.0222 (4)
C100.82163 (16)0.1054 (3)0.02901 (6)0.0195 (4)
C110.72482 (17)0.0742 (3)0.04479 (6)0.0212 (4)
H11A0.66660.02400.07330.025*
H11B0.76260.21910.05060.025*
C120.74518 (17)0.2049 (3)0.03011 (6)0.0210 (4)
H12A0.78490.34400.02260.025*
H12B0.70010.24860.05180.025*
C130.86363 (16)0.2420 (3)0.05619 (6)0.0207 (4)
H13A0.92250.35110.04110.025*
C140.83292 (16)0.2494 (3)0.10568 (6)0.0196 (4)
C150.86569 (17)0.4483 (4)0.12484 (6)0.0215 (4)
H15A0.90450.56990.10580.026*
C160.84249 (17)0.4707 (4)0.17115 (6)0.0236 (4)
H16A0.86450.60750.18350.028*
C170.78731 (17)0.2938 (4)0.19943 (6)0.0236 (4)
H17A0.77170.30880.23110.028*
C180.75506 (17)0.0949 (4)0.18125 (7)0.0238 (4)
H18A0.71740.02660.20060.029*
C190.77752 (16)0.0719 (3)0.13486 (6)0.0213 (4)
H19A0.75510.06540.12280.026*
C200.55955 (17)0.2752 (4)0.02625 (6)0.0257 (4)
H20A0.52550.30810.00090.031*
H20B0.59180.42070.03460.031*
C210.45702 (17)0.1920 (4)0.06630 (6)0.0279 (5)
H21A0.38150.27030.06510.034*
H21B0.44540.02640.06200.034*
C220.47052 (16)0.2249 (4)0.11326 (6)0.0219 (4)
C230.42776 (17)0.0546 (4)0.14575 (7)0.0250 (4)
H23A0.39510.08290.13760.030*
C240.43255 (18)0.0842 (4)0.18977 (7)0.0301 (5)
H24A0.40270.03200.21160.036*
C250.48105 (19)0.2839 (4)0.20181 (7)0.0321 (5)
H25A0.48440.30460.23190.039*
C260.52451 (18)0.4527 (4)0.17005 (7)0.0297 (5)
H26A0.55840.58880.17820.036*
C270.51871 (17)0.4237 (4)0.12612 (7)0.0254 (4)
H27A0.54810.54130.10460.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (9)0.0320 (9)0.0238 (7)0.0209 (8)0.0005 (6)0.0003 (7)
N10.0206 (7)0.0229 (8)0.0171 (7)0.0057 (7)0.0032 (6)0.0018 (6)
C10.0203 (8)0.0207 (10)0.0258 (9)0.0000 (8)0.0002 (7)0.0029 (8)
C20.0223 (9)0.0249 (10)0.0328 (10)0.0009 (8)0.0017 (8)0.0097 (9)
C30.0247 (9)0.0348 (12)0.0289 (10)0.0011 (9)0.0083 (8)0.0088 (9)
C40.0256 (9)0.0329 (12)0.0231 (9)0.0019 (9)0.0068 (8)0.0004 (9)
C50.0209 (8)0.0227 (10)0.0261 (9)0.0000 (8)0.0053 (7)0.0011 (8)
C60.0164 (8)0.0202 (9)0.0230 (9)0.0015 (7)0.0030 (7)0.0027 (8)
C70.0203 (8)0.0175 (9)0.0230 (9)0.0006 (7)0.0050 (7)0.0022 (7)
C80.0202 (8)0.0152 (9)0.0222 (8)0.0015 (7)0.0038 (7)0.0004 (7)
C90.0221 (8)0.0213 (10)0.0210 (9)0.0039 (8)0.0027 (7)0.0001 (8)
C100.0189 (8)0.0195 (9)0.0190 (8)0.0022 (7)0.0034 (6)0.0019 (7)
C110.0213 (8)0.0213 (10)0.0206 (8)0.0056 (7)0.0054 (7)0.0017 (7)
C120.0222 (8)0.0197 (9)0.0195 (8)0.0019 (7)0.0032 (7)0.0004 (7)
C130.0204 (8)0.0197 (9)0.0210 (8)0.0035 (7)0.0039 (7)0.0024 (7)
C140.0169 (8)0.0211 (9)0.0215 (8)0.0014 (7)0.0066 (6)0.0001 (7)
C150.0212 (8)0.0208 (9)0.0226 (9)0.0043 (7)0.0061 (7)0.0012 (8)
C160.0240 (9)0.0224 (10)0.0253 (9)0.0009 (8)0.0085 (7)0.0027 (8)
C170.0218 (8)0.0286 (11)0.0212 (8)0.0009 (8)0.0076 (7)0.0009 (8)
C180.0235 (9)0.0231 (10)0.0258 (9)0.0011 (8)0.0082 (7)0.0052 (8)
C190.0221 (8)0.0186 (9)0.0246 (9)0.0023 (7)0.0089 (7)0.0013 (8)
C200.0242 (9)0.0311 (11)0.0215 (9)0.0114 (9)0.0056 (7)0.0004 (8)
C210.0216 (9)0.0379 (12)0.0242 (9)0.0059 (9)0.0062 (7)0.0072 (9)
C220.0156 (8)0.0251 (10)0.0232 (9)0.0034 (7)0.0026 (7)0.0033 (8)
C230.0189 (8)0.0236 (10)0.0309 (10)0.0015 (8)0.0045 (7)0.0038 (8)
C240.0257 (9)0.0349 (13)0.0272 (10)0.0036 (9)0.0034 (8)0.0050 (9)
C250.0258 (10)0.0464 (14)0.0246 (10)0.0071 (10)0.0079 (8)0.0083 (10)
C260.0216 (9)0.0324 (12)0.0347 (11)0.0006 (9)0.0073 (8)0.0113 (10)
C270.0204 (8)0.0242 (10)0.0287 (10)0.0007 (8)0.0022 (7)0.0020 (8)
Geometric parameters (Å, º) top
O1—C91.223 (2)C14—C151.403 (3)
N1—C201.463 (2)C14—C191.404 (3)
N1—C111.464 (2)C15—C161.388 (3)
N1—C121.467 (2)C15—H15A0.95
C1—C21.389 (3)C16—C171.386 (3)
C1—C61.406 (3)C16—H16A0.95
C1—H1A0.95C17—C181.386 (3)
C2—C31.389 (3)C17—H17A0.95
C2—H2A0.95C18—C191.392 (3)
C3—C41.390 (3)C18—H18A0.95
C3—H3A0.95C19—H19A0.95
C4—C51.381 (3)C20—C211.528 (3)
C4—H4A0.95C20—H20A0.99
C5—C61.399 (3)C20—H20B0.99
C5—H5A0.95C21—C221.517 (3)
C6—C71.466 (3)C21—H21A0.99
C7—C81.348 (2)C21—H21B0.99
C7—H7A0.95C22—C271.392 (3)
C8—C91.497 (3)C22—C231.401 (3)
C8—C121.501 (3)C23—C241.390 (3)
C9—C101.497 (3)C23—H23A0.95
C10—C131.344 (3)C24—C251.388 (3)
C10—C111.506 (3)C24—H24A0.95
C11—H11A0.99C25—C261.382 (3)
C11—H11B0.99C25—H25A0.95
C12—H12A0.99C26—C271.391 (3)
C12—H12B0.99C26—H26A0.95
C13—C141.473 (3)C27—H27A0.95
C13—H13A0.95
C20—N1—C11112.49 (15)C15—C14—C19117.78 (17)
C20—N1—C12108.47 (15)C15—C14—C13116.76 (17)
C11—N1—C12109.18 (14)C19—C14—C13125.42 (18)
C2—C1—C6120.81 (19)C16—C15—C14121.22 (18)
C2—C1—H1A119.6C16—C15—H15A119.4
C6—C1—H1A119.6C14—C15—H15A119.4
C3—C2—C1120.2 (2)C17—C16—C15120.15 (19)
C3—C2—H2A119.9C17—C16—H16A119.9
C1—C2—H2A119.9C15—C16—H16A119.9
C2—C3—C4119.76 (19)C18—C17—C16119.66 (18)
C2—C3—H3A120.1C18—C17—H17A120.2
C4—C3—H3A120.1C16—C17—H17A120.2
C5—C4—C3119.9 (2)C17—C18—C19120.45 (19)
C5—C4—H4A120.1C17—C18—H18A119.8
C3—C4—H4A120.1C19—C18—H18A119.8
C4—C5—C6121.7 (2)C18—C19—C14120.73 (18)
C4—C5—H5A119.2C18—C19—H19A119.6
C6—C5—H5A119.2C14—C19—H19A119.6
C5—C6—C1117.59 (18)N1—C20—C21114.45 (18)
C5—C6—C7117.23 (18)N1—C20—H20A108.6
C1—C6—C7125.18 (18)C21—C20—H20A108.6
C8—C7—C6130.63 (18)N1—C20—H20B108.6
C8—C7—H7A114.7C21—C20—H20B108.6
C6—C7—H7A114.7H20A—C20—H20B107.6
C7—C8—C9117.20 (17)C22—C21—C20118.26 (17)
C7—C8—C12125.30 (17)C22—C21—H21A107.7
C9—C8—C12117.49 (16)C20—C21—H21A107.7
O1—C9—C10121.46 (17)C22—C21—H21B107.7
O1—C9—C8121.10 (17)C20—C21—H21B107.7
C10—C9—C8117.44 (16)H21A—C21—H21B107.1
C13—C10—C9116.80 (17)C27—C22—C23118.27 (18)
C13—C10—C11124.95 (17)C27—C22—C21122.41 (19)
C9—C10—C11118.25 (16)C23—C22—C21119.24 (19)
N1—C11—C10110.74 (15)C24—C23—C22120.8 (2)
N1—C11—H11A109.5C24—C23—H23A119.6
C10—C11—H11A109.5C22—C23—H23A119.6
N1—C11—H11B109.5C25—C24—C23119.9 (2)
C10—C11—H11B109.5C25—C24—H24A120.1
H11A—C11—H11B108.1C23—C24—H24A120.1
N1—C12—C8110.72 (16)C26—C25—C24119.97 (19)
N1—C12—H12A109.5C26—C25—H25A120.0
C8—C12—H12A109.5C24—C25—H25A120.0
N1—C12—H12B109.5C25—C26—C27120.1 (2)
C8—C12—H12B109.5C25—C26—H26A119.9
H12A—C12—H12B108.1C27—C26—H26A119.9
C10—C13—C14130.25 (18)C26—C27—C22120.9 (2)
C10—C13—H13A114.9C26—C27—H27A119.5
C14—C13—H13A114.9C22—C27—H27A119.5
C6—C1—C2—C31.9 (3)C9—C8—C12—N130.1 (2)
C1—C2—C3—C41.2 (3)C9—C10—C13—C14178.07 (19)
C2—C3—C4—C51.8 (3)C11—C10—C13—C142.5 (3)
C3—C4—C5—C60.8 (3)C10—C13—C14—C15163.0 (2)
C4—C5—C6—C13.8 (3)C10—C13—C14—C1919.2 (3)
C4—C5—C6—C7175.79 (18)C19—C14—C15—C161.0 (3)
C2—C1—C6—C54.3 (3)C13—C14—C15—C16178.98 (17)
C2—C1—C6—C7175.19 (18)C14—C15—C16—C170.8 (3)
C5—C6—C7—C8158.6 (2)C15—C16—C17—C180.2 (3)
C1—C6—C7—C820.9 (3)C16—C17—C18—C190.1 (3)
C6—C7—C8—C9177.81 (19)C17—C18—C19—C140.1 (3)
C6—C7—C8—C121.1 (3)C15—C14—C19—C180.6 (3)
C7—C8—C9—O14.1 (3)C13—C14—C19—C18178.45 (18)
C12—C8—C9—O1174.81 (19)C11—N1—C20—C2164.8 (2)
C7—C8—C9—C10175.55 (17)C12—N1—C20—C21174.35 (16)
C12—C8—C9—C105.5 (3)N1—C20—C21—C2283.7 (2)
O1—C9—C10—C136.6 (3)C20—C21—C22—C2740.6 (3)
C8—C9—C10—C13173.14 (17)C20—C21—C22—C23142.6 (2)
O1—C9—C10—C11172.94 (19)C27—C22—C23—C240.5 (3)
C8—C9—C10—C117.4 (3)C21—C22—C23—C24176.47 (18)
C20—N1—C11—C10175.99 (16)C22—C23—C24—C250.5 (3)
C12—N1—C11—C1063.6 (2)C23—C24—C25—C260.0 (3)
C13—C10—C11—N1152.95 (19)C24—C25—C26—C270.6 (3)
C9—C10—C11—N126.5 (2)C25—C26—C27—C220.6 (3)
C20—N1—C12—C8171.40 (16)C23—C22—C27—C260.1 (3)
C11—N1—C12—C865.7 (2)C21—C22—C27—C26176.92 (18)
C7—C8—C12—N1148.79 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are centroids of the C1–C6, C14–C19 and C22–C27 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.952.543.425 (3)155
C15—H15A···O1i0.952.493.345 (3)150
C2—H2A···Cg3ii0.952.883.579 (2)131
C23—H23A···Cg1iii0.952.993.640 (2)127
C26—H26A···Cg2iv0.952.893.556 (2)128
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H25NO
Mr379.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4785 (2), 5.8396 (1), 30.9591 (5)
β (°) 106.412 (1)
V3)1990.63 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.30 × 0.11
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
21942, 5877, 4370
Rint0.048
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.173, 1.08
No. of reflections5877
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are centroids of the C1–C6, C14–C19 and C22–C27 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.952.543.425 (3)155
C15—H15A···O1i0.952.493.345 (3)150
C2—H2A···Cg3ii0.952.883.579 (2)131
C23—H23A···Cg1iii0.952.993.640 (2)127
C26—H26A···Cg2iv0.952.893.556 (2)128
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationRisi, C. D. (2008). Tetrahedron Asymmetry, 19, 131–155.  Google Scholar
First citationScriabine, A. P. (1980). Editor. Pharmacology of Antihypertensive Drugs, p. 43. New York: Raven Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, P. S., Jiang, B. & Scott, B. A. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds