organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-[(2E)-1-(2-hy­dr­oxy-6-oxo­cyclo­hex-1-en-1-yl)-3-(2-meth­­oxy­phen­yl)prop-2-en-1-yl]cyclo­hex-2-en-1-one

aAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro, 14-gil, Seongbuk-gu, Seoul, 136-791, South Korea, and bCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul, 136-791, South Korea
*Correspondence e-mail: j9601@kist.re.kr

(Received 26 August 2011; accepted 19 September 2011; online 30 September 2011)

In the title compound, C22H24O5, each of the cyclo­hexenone rings adopts a half-chair conformation. The hy­droxy and carbonyl O atoms face each other and are orientated to allow for the formation of the two intra­molecular O—H⋯O hydrogen bonds which are typical of xanthene derivatives. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into layers parallel to the ab plane.

Related literature

For the biological activity of xanthenes and their derivatives, see: Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]); Delfourne et al. (2000[Delfourne, E., Roubin, C. & Bastide, J. (2000). J. Org. Chem. 65, 5476-5479.]); Koeller et al. (2003[Koeller, K. M., Haggarty, S. J., Perkins, S. D., Leykin, I., Wang, J. C., Kao, M. C. J. & Schreiber, S. L. (2003). Chem. Biol. 10, 397-410.]); For related xanthene structures, see: Bolte et al. (2001[Bolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 446-451.]); Palakshi Reddy et al. (2010[Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806-o2807.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24O5

  • Mr = 368.43

  • Monoclinic, P 21 /n

  • a = 10.7988 (8) Å

  • b = 12.0509 (8) Å

  • c = 15.0238 (10) Å

  • β = 104.536 (2)°

  • V = 1892.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.715, Tmax = 0.982

  • 18125 measured reflections

  • 4304 independent reflections

  • 2465 reflections with F2 > 2.0σ(F2)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.119

  • S = 1.05

  • 4304 reflections

  • 255 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5 0.82 1.85 2.644 (3) 163
O4—H4A⋯O2 0.82 1.80 2.594 (3) 162
C19—H19A⋯O4i 0.97 2.49 3.272 (3) 137
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: IL MILIONE (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Xanthenes constitute an important class of organic compounds that have attracted strong interest due to their useful biological and pharmacological properties, such as antibacterial, antiviral and antiinflammatory activities (Jonathan et al., 1988). They also constitute a structural unit of a series of natural products (Delfourne et al., 2000). Also they are being developed to act as new clinical agents in cancer therapy (Koeller et al., 2003). Herewith we present the crystal structure of the title compound (I) (Fig. 1), which is a Xanthene derivative.

The molecular structure of xanthenedione features two cyclohexene rings, each has a half-chair conformation and lie above the respective least-squares plane through the remaining five carbon atoms (Palakshi Reddy et al., 2010). Bolte and colleagues determined the crystal structures of bis-dimedone derivatives which showed nearly the same packing pattern irrespective of the different substituent in the para position of the aromatic ring (Bolte et al., 2001). Two cyclohexenone rings in (I) display envelope conformation, and atoms C14 and C19 are directed towards the aromatic ring. The hydroxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1) typical for Xanthene derivative.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) links the molecules into layers parallel to ab plane.

Related literature top

For the biological activity of xanthenes and their derivatives, see: Jonathan et al. (1988); Delfourne et al. (2000); Koeller et al. (2003); For related xanthene structures, see: Bolte et al. (2001); Palakshi Reddy et al. (2010).

Experimental top

To solution of 1,3-cyclohexanedione (4.68 mmol), 2-methoxycinnamaldehyde (1.87 mmol) and 4Å MS was added catalytic amounts of L-proline (0.47 mmol) in under nitrogen atmosphere. After stirring for 5 h, the anhydrous ethyl acetate (0.5 ml) was added to a reaction mixture and the solution was stirred for 2 days. The reaction mixture was filtered through pad of celite to remove MS and concentrated. The residue oil was purified by flash column chromatography to afford product which was recrystallized from ethanol to give crystals suitable for X-ray analysis.

Refinement top

Atoms H8 and H9 were located on a difference map and isotropically refined. All the rest H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group model was applied for the methyl groups.

Structure description top

Xanthenes constitute an important class of organic compounds that have attracted strong interest due to their useful biological and pharmacological properties, such as antibacterial, antiviral and antiinflammatory activities (Jonathan et al., 1988). They also constitute a structural unit of a series of natural products (Delfourne et al., 2000). Also they are being developed to act as new clinical agents in cancer therapy (Koeller et al., 2003). Herewith we present the crystal structure of the title compound (I) (Fig. 1), which is a Xanthene derivative.

The molecular structure of xanthenedione features two cyclohexene rings, each has a half-chair conformation and lie above the respective least-squares plane through the remaining five carbon atoms (Palakshi Reddy et al., 2010). Bolte and colleagues determined the crystal structures of bis-dimedone derivatives which showed nearly the same packing pattern irrespective of the different substituent in the para position of the aromatic ring (Bolte et al., 2001). Two cyclohexenone rings in (I) display envelope conformation, and atoms C14 and C19 are directed towards the aromatic ring. The hydroxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1) typical for Xanthene derivative.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) links the molecules into layers parallel to ab plane.

For the biological activity of xanthenes and their derivatives, see: Jonathan et al. (1988); Delfourne et al. (2000); Koeller et al. (2003); For related xanthene structures, see: Bolte et al. (2001); Palakshi Reddy et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: IL MILIONE (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
3-Hydroxy-2-[(2E)-1-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-3-(2-methoxy phenyl)prop-2-en-1-yl]cyclohex-2-en-1-one top
Crystal data top
C22H24O5F(000) = 784.00
Mr = 368.43Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 11442 reflections
a = 10.7988 (8) Åθ = 3.2–27.4°
b = 12.0509 (8) ŵ = 0.09 mm1
c = 15.0238 (10) ÅT = 297 K
β = 104.536 (2)°Chunk, colourless
V = 1892.5 (3) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2465 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.033
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1413
Tmin = 0.715, Tmax = 0.982k = 1513
18125 measured reflectionsl = 1919
4304 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0196P]
where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C22H24O5V = 1892.5 (3) Å3
Mr = 368.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7988 (8) ŵ = 0.09 mm1
b = 12.0509 (8) ÅT = 297 K
c = 15.0238 (10) Å0.40 × 0.20 × 0.20 mm
β = 104.536 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4304 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2465 reflections with F2 > 2.0σ(F2)
Tmin = 0.715, Tmax = 0.982Rint = 0.033
18125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
4304 reflectionsΔρmin = 0.20 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09043 (11)0.05978 (9)0.07867 (8)0.0658 (4)
O20.28313 (11)0.19541 (10)0.23571 (8)0.0645 (4)
O30.41828 (12)0.47367 (10)0.06364 (9)0.0663 (4)
O40.51114 (12)0.11253 (10)0.29205 (9)0.0724 (4)
O50.65368 (11)0.41783 (9)0.15245 (8)0.0632 (4)
C10.02975 (16)0.04933 (18)0.14336 (13)0.0742 (6)
C20.15960 (14)0.03397 (12)0.04910 (10)0.0488 (4)
C30.11998 (17)0.13977 (14)0.07901 (12)0.0626 (5)
C40.19488 (18)0.23024 (14)0.04442 (14)0.0678 (5)
C50.30822 (16)0.21703 (13)0.02058 (13)0.0625 (5)
C60.34792 (15)0.11098 (12)0.05032 (11)0.0520 (4)
C70.27626 (13)0.01761 (12)0.01666 (10)0.0434 (4)
C80.31364 (14)0.09541 (12)0.05010 (10)0.0446 (4)
C90.42886 (14)0.12987 (12)0.09303 (10)0.0459 (4)
C100.46403 (12)0.24820 (11)0.12552 (10)0.0416 (4)
C110.58135 (13)0.25288 (11)0.20732 (10)0.0429 (4)
C120.59878 (15)0.18020 (13)0.28119 (11)0.0517 (4)
C130.72021 (16)0.17659 (15)0.35550 (12)0.0646 (5)
C140.83130 (17)0.22703 (16)0.32580 (14)0.0732 (6)
C150.79534 (15)0.34015 (16)0.28366 (13)0.0653 (5)
C160.67165 (14)0.33779 (13)0.21009 (11)0.0497 (4)
C170.26577 (14)0.28332 (13)0.18620 (11)0.0492 (4)
C180.14924 (15)0.35094 (15)0.18728 (12)0.0622 (5)
C190.10349 (16)0.41715 (15)0.10015 (13)0.0679 (6)
C200.21250 (16)0.48847 (15)0.08684 (13)0.0664 (5)
C210.33291 (15)0.42426 (12)0.09539 (11)0.0492 (4)
C220.35061 (13)0.31784 (11)0.13452 (10)0.0417 (4)
H1A0.08340.00000.11950.0890*
H1B0.01750.02010.19990.0890*
H1C0.06980.12090.15440.0890*
H30.04270.14990.12250.0751*
H3A0.48820.44480.08510.0795*
H40.16820.30100.06550.0813*
H4A0.44090.13510.26320.0868*
H50.35780.27830.04440.0750*
H60.42510.10210.09420.0624*
H80.2464 (14)0.1475 (12)0.0421 (10)0.043 (4)*
H90.4989 (16)0.0791 (13)0.1032 (11)0.057 (5)*
H100.49240.28270.07500.0499*
H13A0.74020.10010.37350.0776*
H13B0.70810.21630.40880.0776*
H14A0.85550.17890.28120.0878*
H14B0.90420.23390.37850.0878*
H15A0.78730.39170.33150.0783*
H15B0.86310.36680.25730.0783*
H18A0.16920.40110.23940.0747*
H18B0.08130.30190.19470.0747*
H19A0.03180.46360.10440.0815*
H19B0.07530.36750.04820.0815*
H20A0.18810.52250.02650.0797*
H20B0.22800.54740.13220.0797*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0519 (7)0.0618 (7)0.0705 (8)0.0035 (6)0.0095 (6)0.0080 (6)
O20.0689 (8)0.0638 (8)0.0656 (8)0.0072 (6)0.0257 (6)0.0071 (6)
O30.0630 (8)0.0536 (7)0.0817 (9)0.0034 (6)0.0172 (7)0.0186 (6)
O40.0691 (8)0.0665 (8)0.0769 (9)0.0077 (7)0.0098 (7)0.0239 (7)
O50.0572 (7)0.0508 (7)0.0782 (8)0.0137 (5)0.0107 (6)0.0069 (6)
C10.0495 (10)0.0975 (15)0.0642 (11)0.0084 (10)0.0070 (9)0.0180 (10)
C20.0461 (9)0.0512 (9)0.0466 (9)0.0057 (7)0.0067 (7)0.0001 (7)
C30.0601 (10)0.0625 (11)0.0596 (10)0.0195 (9)0.0046 (8)0.0101 (9)
C40.0716 (12)0.0504 (10)0.0816 (13)0.0154 (9)0.0199 (10)0.0154 (9)
C50.0592 (11)0.0444 (9)0.0842 (13)0.0005 (8)0.0184 (10)0.0037 (9)
C60.0430 (9)0.0493 (9)0.0618 (10)0.0009 (7)0.0095 (8)0.0019 (8)
C70.0418 (8)0.0425 (8)0.0454 (8)0.0040 (6)0.0096 (7)0.0015 (7)
C80.0433 (8)0.0420 (8)0.0456 (8)0.0013 (7)0.0058 (7)0.0019 (7)
C90.0421 (8)0.0419 (8)0.0511 (9)0.0004 (7)0.0073 (7)0.0022 (7)
C100.0390 (8)0.0400 (7)0.0442 (8)0.0033 (6)0.0076 (7)0.0007 (7)
C110.0386 (8)0.0391 (7)0.0492 (8)0.0009 (6)0.0077 (7)0.0026 (7)
C120.0526 (9)0.0446 (8)0.0553 (9)0.0035 (7)0.0084 (8)0.0009 (7)
C130.0668 (12)0.0593 (10)0.0562 (10)0.0119 (9)0.0062 (9)0.0020 (9)
C140.0473 (10)0.0858 (13)0.0741 (12)0.0122 (9)0.0079 (9)0.0055 (11)
C150.0421 (9)0.0754 (11)0.0720 (11)0.0108 (8)0.0026 (8)0.0105 (10)
C160.0414 (8)0.0488 (8)0.0568 (9)0.0024 (7)0.0086 (7)0.0072 (8)
C170.0448 (9)0.0504 (9)0.0507 (9)0.0078 (7)0.0086 (7)0.0110 (8)
C180.0466 (9)0.0694 (11)0.0731 (12)0.0054 (8)0.0193 (8)0.0233 (10)
C190.0439 (9)0.0700 (11)0.0824 (13)0.0101 (8)0.0016 (9)0.0209 (10)
C200.0605 (11)0.0552 (10)0.0769 (12)0.0145 (8)0.0047 (9)0.0055 (9)
C210.0475 (9)0.0467 (8)0.0486 (9)0.0012 (7)0.0031 (7)0.0041 (7)
C220.0377 (8)0.0413 (8)0.0427 (8)0.0030 (6)0.0034 (6)0.0046 (7)
Geometric parameters (Å, º) top
O1—C11.4183 (19)C20—C211.491 (3)
O1—C21.3657 (18)C21—C221.404 (2)
O2—C171.281 (2)O3—H3A0.820
O3—C211.286 (3)O4—H4A0.820
O4—C121.290 (3)C1—H1A0.960
O5—C161.278 (2)C1—H1B0.960
C2—C31.383 (3)C1—H1C0.960
C2—C71.4061 (19)C3—H30.930
C3—C41.379 (3)C4—H40.930
C4—C51.370 (3)C5—H50.930
C5—C61.386 (3)C6—H60.930
C6—C71.387 (2)C8—H80.944 (15)
C7—C81.473 (2)C9—H90.954 (17)
C8—C91.317 (2)C10—H100.980
C9—C101.524 (2)C13—H13A0.970
C10—C111.5287 (18)C13—H13B0.970
C10—C221.519 (2)C14—H14A0.970
C11—C121.389 (3)C14—H14B0.970
C11—C161.407 (2)C15—H15A0.970
C12—C131.494 (2)C15—H15B0.970
C13—C141.509 (3)C18—H18A0.970
C14—C151.512 (3)C18—H18B0.970
C15—C161.505 (2)C19—H19A0.970
C17—C181.503 (3)C19—H19B0.970
C17—C221.404 (3)C20—H20A0.970
C18—C191.507 (3)C20—H20B0.970
C19—C201.511 (3)
O1···C82.7196 (17)C8···H13Bi3.1204
O2···O42.5943 (17)C8···H15Ai3.2285
O2···C83.130 (2)C9···H6iv3.5698
O2···C93.064 (3)C9···H14Bi3.5664
O2···C102.930 (2)C10···H5iv3.5801
O2···C113.424 (2)C11···H1Bviii3.3634
O2···C123.309 (2)C11···H1Cviii3.3161
O2···C213.593 (2)C12···H1Cviii3.2985
O3···O52.6443 (16)C13···H8viii3.470 (15)
O3···C102.8741 (18)C13···H20Aviii3.5946
O3···C113.5961 (18)C14···H5v3.4339
O3···C163.4622 (19)C14···H6v3.3192
O3···C173.590 (3)C15···H4iv3.4312
O4···C92.905 (2)C15···H6v3.1913
O4···C102.924 (2)C16···H1Bviii3.2120
O4···C173.4162 (19)C16···H4iv3.1300
O4···C223.5593 (18)C17···H1Bviii3.4654
O5···C102.8497 (18)C17···H1Cviii2.8440
O5···C123.587 (2)C18···H1Cviii3.3703
O5···C213.354 (2)C18···H3vi3.1780
O5···C223.4341 (19)C18···H4vi3.5086
C1···C32.821 (3)C18···H15Bxii3.5102
C2···C52.774 (3)C19···H4vi3.1730
C3···C62.748 (3)C19···H4Aix3.4414
C4···C72.788 (3)C19···H19Axiii3.3752
C6···C93.053 (2)C19···H20Axiii3.3249
C8···C173.179 (3)C20···H4x3.3690
C8···C222.949 (2)C20···H4Aix3.5808
C9···C123.020 (2)C20···H5x3.3566
C9···C173.117 (3)C20···H13Ai3.4621
C11···C142.853 (2)C20···H19Axiii3.4272
C11···C173.362 (2)C21···H1Bviii3.1656
C11···C213.468 (2)C21···H13Ai3.2451
C12···C152.861 (3)C21···H13Bi3.2631
C12···C223.439 (2)C22···H1Bviii3.2018
C13···C162.872 (3)C22···H1Cviii3.1582
C16···C223.375 (2)C22···H13Bi3.3789
C17···C202.871 (3)H1A···O1vi3.0828
C18···C212.828 (3)H1A···O2vi3.3695
C19···C222.851 (3)H1A···C2vi2.8827
O1···C15i3.595 (3)H1A···C3vi3.5331
O3···O3ii2.978 (2)H1A···C6vi3.5387
O3···O5ii3.4039 (18)H1A···C7vi2.8961
O4···C19iii3.272 (3)H1A···C8vi3.1454
O5···O3ii3.4039 (18)H1A···H1Avi3.5908
O5···C4iv3.428 (3)H1A···H8vi2.9387
O5···C13v3.417 (3)H1A···H18Ai3.1954
C1···C2vi3.521 (3)H1B···O3i3.4446
C1···C17i3.558 (3)H1B···O5i3.3091
C2···C1vi3.521 (3)H1B···C11i3.3634
C4···O5iv3.428 (3)H1B···C16i3.2120
C4···C16iv3.428 (3)H1B···C17i3.4654
C13···O5vii3.417 (3)H1B···C21i3.1656
C15···O1viii3.595 (3)H1B···C22i3.2018
C16···C4iv3.428 (3)H1B···H3Ai3.2729
C17···C1viii3.558 (3)H1B···H14Aiv3.3723
C19···O4ix3.272 (3)H1B···H15Ai3.3772
O1···H32.6295H1B···H18Ai3.4114
O1···H82.390 (14)H1B···H20Bi3.3308
O2···H4A1.8023H1C···O2i2.9723
O2···H82.893 (15)H1C···O4i3.4764
O2···H18A2.7740H1C···C2vi3.5878
O2···H18B2.4700H1C···C11i3.3161
O3···H102.4282H1C···C12i3.2985
O3···H20A2.4779H1C···C17i2.8440
O3···H20B2.6713H1C···C18i3.3703
O4···H92.835 (17)H1C···C22i3.1582
O4···H13A2.4733H1C···H4Ai3.2039
O4···H13B2.7005H1C···H13Bi3.5103
O5···H3A1.8483H1C···H18Ai2.8820
O5···H102.4540H3···O2vi3.5452
O5···H15A2.7329H3···C18vi3.1780
O5···H15B2.4876H3···H14Aiv2.8866
C1···H32.5202H3···H18Bvi2.3650
C2···H1A2.6034H3···H19Bvi3.2350
C2···H1B2.6535H3A···O3ii2.8477
C2···H1C3.1862H3A···H1Bviii3.2729
C2···H43.2307H3A···H3Aii2.9488
C2···H63.2298H3A···H5iv3.4928
C2···H82.626 (15)H3A···H13Av3.4020
C3···H1A2.7126H4···O5iv2.9416
C3···H1B2.8037H4···C15iv3.4312
C3···H53.2300H4···C16iv3.1300
C4···H63.2099H4···C18vi3.5086
C5···H33.2255H4···C19vi3.1730
C6···H43.2162H4···C20xi3.3690
C6···H83.294 (15)H4···H14Aiv3.5105
C6···H92.809 (16)H4···H15Biv2.9262
C7···H33.2601H4···H18Bvi2.8985
C7···H53.2616H4···H19Avi2.8654
C7···H92.694 (16)H4···H19Bvi2.8224
C8···H4A3.1867H4···H20Axi2.5151
C8···H62.6746H4···H20Bxi3.4074
C8···H102.9324H4A···C19iii3.4414
C9···H4A2.5271H4A···C20iii3.5808
C9···H62.7961H4A···H1Cviii3.2039
C10···H3A2.4763H4A···H18Aiii3.0575
C10···H4A2.5403H4A···H19Aiii2.8330
C10···H82.662 (14)H4A···H20Biii2.8906
C11···H3A2.9679H5···O3xi3.0571
C11···H4A2.3780H5···O5iv3.3769
C11···H92.631 (16)H5···C10iv3.5801
C11···H13A3.2271H5···C14vii3.4339
C11···H13B3.0252H5···C20xi3.3566
C11···H14A3.0235H5···H3Aiv3.4928
C11···H15A3.0236H5···H10iv2.7005
C11···H15B3.2498H5···H14Avii3.5555
C12···H92.889 (16)H5···H14Bvii2.5446
C12···H103.2647H5···H20Axi2.9903
C12···H14A2.7721H5···H20Bxi3.0067
C12···H14B3.3185H6···C9iv3.5698
C12···H15A3.2309H6···C14vii3.3192
C13···H4A3.0282H6···C15vii3.1913
C13···H15A2.7395H6···H9iv3.2824
C13···H15B3.3097H6···H14Bvii2.6633
C15···H13A3.3091H6···H15Avii3.0262
C15···H13B2.7458H6···H15Bvii2.7899
C16···H3A2.6923H6···H18Aiii2.9252
C16···H102.5172H6···H18Biii3.3928
C16···H13B3.2591H8···C13i3.470 (15)
C16···H14A2.7721H8···H1Avi2.9387
C16···H14B3.3296H8···H13Bi2.5419
C17···H4A2.6467H8···H15Ai3.3368
C17···H82.680 (15)H9···C5iv3.536 (19)
C17···H103.2916H9···C6iv3.181 (19)
C17···H19A3.3245H9···C7iv3.448 (19)
C17···H19B2.7239H9···H6iv3.2824
C17···H20B3.2846H9···H15Avii3.2033
C18···H20A3.2862H9···H15Bvii3.4048
C18···H20B2.7145H10···C4iv3.5768
C20···H3A3.0298H10···C5iv2.9791
C20···H18A2.6689H10···C6iv3.5256
C20···H18B3.2925H10···H5iv2.7005
C21···H83.502 (15)H10···H13Bi3.4366
C21···H102.4969H10···H14Bi2.8717
C21···H18A3.1320H13A···O3viii3.1455
C21···H19A3.3218H13A···O5vii2.5517
C21···H19B2.7781H13A···C20viii3.4621
C22···H3A2.3781H13A···C21viii3.2451
C22···H4A2.9304H13A···H3Avii3.4020
C22···H82.574 (14)H13A···H15Bvii3.4506
C22···H93.382 (17)H13A···H19Aiii3.4546
C22···H18A2.9800H13A···H19Bviii3.5436
C22···H18B3.2603H13A···H20Aviii2.9036
C22···H19B2.9905H13B···O1viii3.0081
C22···H20A3.2202H13B···C8viii3.1204
C22···H20B3.0637H13B···C21viii3.2631
H1A···H32.2690H13B···C22viii3.3789
H1B···H32.3646H13B···H1Cviii3.5103
H1C···H33.4728H13B···H8viii2.5419
H3···H42.3031H13B···H10viii3.4366
H3A···H101.9610H13B···H19Bviii2.9943
H3A···H20A3.2743H13B···H20Aviii3.4126
H3A···H20B3.3049H14A···O5vii3.3092
H4···H52.3014H14A···C3iv3.1507
H4A···H83.4579H14A···C4iv3.5164
H4A···H92.7158H14A···H1Biv3.3723
H4A···H103.5005H14A···H3iv2.8866
H4A···H13A3.2681H14A···H4iv3.5105
H4A···H13B3.3016H14A···H5v3.5555
H5···H62.3077H14A···H18Bxiv3.3802
H6···H83.5527H14B···C5v3.1512
H6···H92.3176H14B···C6v3.2197
H8···H92.77 (3)H14B···C9viii3.5664
H8···H103.0491H14B···H5v2.5446
H8···H19B3.2466H14B···H6v2.6633
H9···H102.4876H14B···H10viii2.8717
H13A···H14A2.2890H15A···O1viii2.8504
H13A···H14B2.3826H15A···C2viii3.0500
H13B···H14A2.8184H15A···C7viii3.1974
H13B···H14B2.2847H15A···C8viii3.2285
H13B···H15A2.6544H15A···H1Bviii3.3772
H14A···H15A2.8224H15A···H6v3.0262
H14A···H15B2.2972H15A···H8viii3.3368
H14B···H15A2.2932H15A···H9v3.2033
H14B···H15B2.3813H15B···O4v3.4160
H18A···H19A2.3178H15B···C4iv3.5109
H18A···H19B2.8261H15B···C18xiv3.5102
H18A···H20A3.5710H15B···H4iv2.9262
H18A···H20B2.5737H15B···H6v2.7899
H18B···H19A2.3578H15B···H9v3.4048
H18B···H19B2.3246H15B···H13Av3.4506
H18B···H20B3.5909H15B···H18Axiv3.4073
H19A···H20A2.3907H15B···H18Bxiv2.8571
H19A···H20B2.2891H15B···H19Axiv3.4726
H19B···H20A2.2973H18A···O2ix3.5903
H19B···H20B2.8231H18A···O4ix3.1696
O1···H1Avi3.0828H18A···C1viii3.3400
O1···H13Bi3.0081H18A···C6ix3.2131
O1···H15Ai2.8504H18A···H1Aviii3.1954
O2···H1Avi3.3695H18A···H1Bviii3.4114
O2···H1Cviii2.9723H18A···H1Cviii2.8820
O2···H3vi3.5452H18A···H4Aix3.0575
O2···H18Aiii3.5903H18A···H6ix2.9252
O2···H20Biii2.6927H18A···H15Bxii3.4073
O3···H1Bviii3.4446H18B···C3vi3.1087
O3···H3Aii2.8477H18B···C4vi3.3700
O3···H5x3.0571H18B···H3vi2.3650
O3···H13Ai3.1455H18B···H4vi2.8985
O4···H1Cviii3.4764H18B···H6ix3.3928
O4···H15Bvii3.4160H18B···H14Axii3.3802
O4···H18Aiii3.1696H18B···H15Bxii2.8571
O4···H19Aiii2.4938H19A···O4ix2.4938
O4···H20Biii3.1709H19A···C19xiii3.3752
O5···H1Bviii3.3091H19A···C20xiii3.4272
O5···H4iv2.9416H19A···H4vi2.8654
O5···H5iv3.3769H19A···H4Aix2.8330
O5···H13Av2.5517H19A···H13Aix3.4546
O5···H14Av3.3092H19A···H15Bxii3.4726
C1···H18Ai3.3400H19A···H19Axiii3.1627
C2···H1Avi2.8827H19A···H19Bxiii3.0665
C2···H1Cvi3.5878H19A···H20Axiii2.6815
C2···H15Ai3.0500H19B···C3vi3.5619
C3···H1Avi3.5331H19B···C4vi3.3424
C3···H14Aiv3.1507H19B···H3vi3.2350
C3···H18Bvi3.1087H19B···H4vi2.8224
C3···H19Bvi3.5619H19B···H13Ai3.5436
C4···H10iv3.5768H19B···H13Bi2.9943
C4···H14Aiv3.5164H19B···H19Axiii3.0665
C4···H15Biv3.5109H19B···H20Axiii3.0827
C4···H18Bvi3.3700H20A···C4x3.1710
C4···H19Bvi3.3424H20A···C5x3.4057
C4···H20Axi3.1710H20A···C13i3.5946
C5···H9iv3.536 (19)H20A···C19xiii3.3249
C5···H10iv2.9791H20A···H4x2.5151
C5···H14Bvii3.1512H20A···H5x2.9903
C5···H20Axi3.4057H20A···H13Ai2.9036
C5···H20Bxi3.5141H20A···H13Bi3.4126
C6···H1Avi3.5387H20A···H19Axiii2.6815
C6···H9iv3.181 (19)H20A···H19Bxiii3.0827
C6···H10iv3.5256H20B···O2ix2.6927
C6···H14Bvii3.2197H20B···O4ix3.1709
C6···H18Aiii3.2131H20B···C5x3.5141
C7···H1Avi2.8961H20B···H1Bviii3.3308
C7···H9iv3.448 (19)H20B···H4x3.4074
C7···H15Ai3.1974H20B···H4Aix2.8906
C8···H1Avi3.1454H20B···H5x3.0067
C1—O1—C2118.76 (13)H1B—C1—H1C109.479
O1—C2—C3123.88 (13)C2—C3—H3119.939
O1—C2—C7115.66 (13)C4—C3—H3119.939
C3—C2—C7120.46 (14)C3—C4—H4119.629
C2—C3—C4120.12 (15)C5—C4—H4119.623
C3—C4—C5120.75 (16)C4—C5—H5120.477
C4—C5—C6119.06 (15)C6—C5—H5120.466
C5—C6—C7122.10 (14)C5—C6—H6118.958
C2—C7—C6117.51 (13)C7—C6—H6118.945
C2—C7—C8119.33 (13)C7—C8—H8115.8 (9)
C6—C7—C8123.08 (12)C9—C8—H8117.0 (9)
C7—C8—C9127.10 (14)C8—C9—H9119.3 (10)
C8—C9—C10125.51 (14)C10—C9—H9115.1 (10)
C9—C10—C11112.43 (11)C9—C10—H10104.489
C9—C10—C22113.82 (11)C11—C10—H10104.490
C11—C10—C22115.61 (12)C22—C10—H10104.498
C10—C11—C12122.53 (13)C12—C13—H13A109.122
C10—C11—C16118.62 (13)C12—C13—H13B109.121
C12—C11—C16118.75 (13)C14—C13—H13A109.120
O4—C12—C11122.89 (13)C14—C13—H13B109.119
O4—C12—C13114.90 (15)H13A—C13—H13B107.853
C11—C12—C13122.20 (15)C13—C14—H14A109.586
C12—C13—C14112.40 (15)C13—C14—H14B109.587
C13—C14—C15110.32 (15)C15—C14—H14A109.592
C14—C15—C16112.19 (15)C15—C14—H14B109.587
O5—C16—C11122.86 (13)H14A—C14—H14B108.131
O5—C16—C15116.05 (14)C14—C15—H15A109.166
C11—C16—C15121.08 (15)C14—C15—H15B109.165
O2—C17—C18116.30 (16)C16—C15—H15A109.164
O2—C17—C22123.05 (15)C16—C15—H15B109.166
C18—C17—C22120.64 (14)H15A—C15—H15B107.891
C17—C18—C19111.76 (16)C17—C18—H18A109.268
C18—C19—C20108.65 (14)C17—C18—H18B109.261
C19—C20—C21112.65 (15)C19—C18—H18A109.270
O3—C21—C20114.76 (14)C19—C18—H18B109.262
O3—C21—C22122.93 (15)H18A—C18—H18B107.941
C20—C21—C22122.31 (16)C18—C19—H19A109.957
C10—C22—C17122.56 (13)C18—C19—H19B109.959
C10—C22—C21119.72 (14)C20—C19—H19A109.965
C17—C22—C21117.58 (14)C20—C19—H19B109.962
C21—O3—H3A109.468H19A—C19—H19B108.341
C12—O4—H4A109.461C19—C20—H20A109.067
O1—C1—H1A109.469C19—C20—H20B109.070
O1—C1—H1B109.475C21—C20—H20A109.054
O1—C1—H1C109.465C21—C20—H20B109.061
H1A—C1—H1B109.469H20A—C20—H20B107.825
H1A—C1—H1C109.470
C1—O1—C2—C30.5 (3)C10—C11—C12—C13172.78 (13)
C1—O1—C2—C7178.50 (14)C10—C11—C16—O57.5 (3)
O1—C2—C3—C4178.93 (15)C10—C11—C16—C15173.79 (12)
O1—C2—C7—C6178.35 (13)C12—C11—C16—O5169.16 (15)
O1—C2—C7—C81.5 (3)C12—C11—C16—C159.5 (3)
C3—C2—C7—C60.7 (3)C16—C11—C12—O4167.84 (15)
C3—C2—C7—C8177.51 (15)C16—C11—C12—C1310.7 (3)
C7—C2—C3—C40.0 (3)O4—C12—C13—C14161.33 (14)
C2—C3—C4—C50.8 (3)C11—C12—C13—C1420.0 (3)
C3—C4—C5—C61.0 (4)C12—C13—C14—C1550.1 (2)
C4—C5—C6—C70.3 (3)C13—C14—C15—C1651.0 (2)
C5—C6—C7—C20.5 (3)C14—C15—C16—O5159.17 (16)
C5—C6—C7—C8177.25 (16)C14—C15—C16—C1122.0 (3)
C2—C7—C8—C9162.38 (15)O2—C17—C18—C19153.73 (12)
C6—C7—C8—C921.0 (3)O2—C17—C22—C106.0 (2)
C7—C8—C9—C10179.16 (14)O2—C17—C22—C21169.71 (12)
C8—C9—C10—C11153.67 (15)C18—C17—C22—C10175.32 (12)
C8—C9—C10—C2219.8 (3)C18—C17—C22—C219.0 (2)
C9—C10—C11—C1243.38 (19)C22—C17—C18—C1927.47 (19)
C9—C10—C11—C16140.09 (13)C17—C18—C19—C2055.86 (18)
C9—C10—C22—C1753.17 (17)C18—C19—C20—C2150.0 (2)
C9—C10—C22—C21131.23 (12)C19—C20—C21—O3164.22 (14)
C11—C10—C22—C1779.22 (15)C19—C20—C21—C2215.3 (3)
C11—C10—C22—C2196.37 (15)O3—C21—C22—C1010.8 (2)
C22—C10—C11—C1289.66 (16)O3—C21—C22—C17165.03 (13)
C22—C10—C11—C1686.88 (16)C20—C21—C22—C10168.73 (13)
C10—C11—C12—O48.7 (3)C20—C21—C22—C1715.5 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x, y, z; (vii) x+3/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x, y+1, z; (xi) x, y1, z; (xii) x1, y, z; (xiii) x, y+1, z; (xiv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.821.852.644 (3)163
O4—H4A···O20.821.802.594 (3)162
C19—H19A···O4ix0.972.493.272 (3)137
Symmetry code: (ix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H24O5
Mr368.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)10.7988 (8), 12.0509 (8), 15.0238 (10)
β (°) 104.536 (2)
V3)1892.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.715, 0.982
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
18125, 4304, 2465
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.119, 1.05
No. of reflections4304
No. of parameters255
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2006), IL MILIONE (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.8201.8482.644 (3)163.4
O4—H4A···O20.8201.8022.594 (3)161.9
C19—H19A···O4i0.9702.4943.272 (3)137.0
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationBolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 446–451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDelfourne, E., Roubin, C. & Bastide, J. (2000). J. Org. Chem. 65, 5476–5479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationKoeller, K. M., Haggarty, S. J., Perkins, S. D., Leykin, I., Wang, J. C., Kao, M. C. J. & Schreiber, S. L. (2003). Chem. Biol. 10, 397–410.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806–o2807.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds