metal-organic compounds
Acetylferrocene–2-chloro-1-ferrocenylethanone (1/1)
aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice 532 10, Czech Republic
*Correspondence e-mail: milan.erben@upce.cz
In the title 5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)], both substituted ferrocene molecules show the expected sandwich structure. The crystal packing exhibits weak intermolecular Cl⋯Cl contacts of 3.279 (4) Å, π–π interactions between the substituted Cp rings of two neighbouring 2-chloro-1-ferrocenylethanone molecules [centroid–centroid distance = 3.534 (3) Å], and weak intermolecular C—H⋯O and C—H⋯Cl hydrogen bonds.
[Fe(CRelated literature
The simple preparation of 2-chloro-1-ferrocenylethanone was described previously by Ferreira et al. (2009). For the crystal structures of ferrocenyl complexes of the type [FeCp(C5H4COR)], where Cp is η5-C5H5 and R is CH3 or CH2I, see: Sato et al. (1984); Khrustalev et al. (2006); McAdam et al. (2006). For the use of acylferrocenes as catalysts for the autoxidation of alkyd resins, see: Štáva et al. (2007); Kalenda et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Hooft, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536811038244/cv5144sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038244/cv5144Isup2.hkl
Red crystals of (I) suitable for X-ray
were grown by slow evaporation of cyclohexane solution containing acetylferrocene (purchased from Sigma Aldrich) and 2-chloro-1-ferrocenylethanone in 1:1 molar ratio. The 2-chloro-1-ferrocenylethanone has been prepared from ferrocene and chloroacetyl chloride following method of Ferreira et al. (2009).Substituted ferrocenes belong to well known class of organometallic compounds that are currently studied as catalysts, in drug design, as building blocks in material engineering or in nanotechnology. Recently, we have shown that ferrocene complexes bearing electron-withdrawing acyl substituents at the cyclopentadienyl (Cp) ring could be used as driers for autoxidation of alkyd resins (Štáva et al., 2007; Kalenda et al., 2010). During our investigation of drying activity of ferrocene derivatives we prepared various stock solutions containing a mixture of acylferrocenes. From the mixture of acetylferrocene and 2-chloro-1-ferrocenylethanone in cyclohexane crystals of the title compound (I) were grown. Herewith we present
of (I).The
of (I) contains one molecule of acetylferrocene and one molecule of 2-chloro-1-ferrocenylethanone. Molecule of acetylferrocene has geometrical parameters very close to that reported for acetylferrocene by Sato et al. (1984) and by Khrustalev et al. (2006), see Table 1.2-Chloro-1-ferrocenylethanone has a structure typical for monosubstituted ferrocene with almost eclipsed Cp rings. The dihedral angle C1—Cg1—Cg2—C8 was found to be 2.2 (4)°. Carbonyl sp2 atom C6 is slightly displaced from the Cp ring plane toward the Fe atom, with an angle of 3.0 (3)° between C1—C6 bond and the ring plane. The shortening of single bond length C1—C6 to a value of 1.459 (7) Å together with elongation of double bond C6═O1 [1.221 (6) Å] indicate significant conjugation of carbonyl substituent with adjacent Cp ring π-system. These values are similar to those observed for 2-iodo-1-ferrocenylethanone (McAdam et al., 2006).
Substituted Cp ring of molecule 2-chloro-1-ferrocenylethanone at (x, y, z) is coplanar with substituted Cp ring of molecule at (-x, 2 - y, -z) with the distance between the centroids of 3.534 (3) Å. Thus molecules of 2-chloro-1-ferrocenylethanone form pairs due to π···π stacking. Simultaneously, the molecule at (x, y, z) show C—Cl···Cl—C contact to the molecule at (-x, y, 1/2-z) with the Cl···Cl distance of 3.279 (4) Å giving infinite wires of 2-chloro-1-ferrocenylethanone molecules along the c axis. Molecular wires of 2-chloro-1-ferrocenylethanone are connected with molecules of acetylferrocene via weak C—H···O2 and C—H···Cl1 hydrogen bonds (Table 2) giving observed three-dimensional structure.
The simple preparation of 2-chloro-1-ferrocenylethanone was described previously by Ferreira et al. (2009). For the crystal structures of ferrocenyl complexes of the type [FeCp(C5H4COR)], where Cp is η5-C5H5 and R is CH3 or CH2I, see: Sato et al. (1984); Khrustalev et al. (2006); McAdam et al. (2006). For the use of acylferrocenes as catalysts for the autoxidation of alkyd resins, see: Štáva et al. (2007); Kalenda et al. (2010).
Data collection: COLLECT (Hooft, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. A content of asymmetric part of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. |
[Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)] | F(000) = 1008 |
Mr = 490.56 | Dx = 1.642 Mg m−3 |
Monoclinic, P2/c | Melting point: 350 K |
Hall symbol: -P 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.2981 (11) Å | Cell parameters from 9981 reflections |
b = 5.7338 (3) Å | θ = 1–27.5° |
c = 24.4051 (12) Å | µ = 1.62 mm−1 |
β = 112.031 (7)° | T = 150 K |
V = 1984.5 (2) Å3 | Block, red |
Z = 4 | 0.15 × 0.10 × 0.08 mm |
Nonius KappaCCD area-detector diffractometer | 4502 independent reflections |
Radiation source: fine-focus sealed tube | 3232 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
φ and ω scans to fill the Ewald sphere | h = −18→19 |
Absorption correction: gaussian (Coppens, 1970) | k = −5→7 |
Tmin = 0.791, Tmax = 0.886 | l = −21→31 |
9948 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.063P)2 + 9.3142P] where P = (Fo2 + 2Fc2)/3 |
4502 reflections | (Δ/σ)max < 0.001 |
262 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −1.22 e Å−3 |
[Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)] | V = 1984.5 (2) Å3 |
Mr = 490.56 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 15.2981 (11) Å | µ = 1.62 mm−1 |
b = 5.7338 (3) Å | T = 150 K |
c = 24.4051 (12) Å | 0.15 × 0.10 × 0.08 mm |
β = 112.031 (7)° |
Nonius KappaCCD area-detector diffractometer | 4502 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 3232 reflections with I > 2σ(I) |
Tmin = 0.791, Tmax = 0.886 | Rint = 0.052 |
9948 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.48 e Å−3 |
4502 reflections | Δρmin = −1.22 e Å−3 |
262 parameters |
Experimental. Melting point: 349–350 K. Spectroscopic analysis: IR (diamond ATR, cm-1): 3097 (m), 2955 (m), 2916 (s), 2848 (s), 1673 (m), 1660 (m, sh), 1652 (versus), 1451 (m), 1408 (w), 1374 (s), 1356 (m), 1278 (versus), 1240 (m), 1103 (m), 1066 (w), 1038 (m), 960 (w), 892 (m), 848 (w), 819 (versus), 720 (m), 668 (w), 618 (s), 593 (w), 531 (s), 494 (s), 480 (versus), 458(s). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.22439 (4) | 0.81308 (10) | 0.05785 (3) | 0.01538 (18) | |
Fe2 | 0.36043 (5) | 0.35801 (11) | 0.34458 (3) | 0.01683 (18) | |
Cl1 | 0.08171 (16) | 0.8811 (4) | 0.22170 (9) | 0.0682 (6) | |
O1 | 0.1117 (3) | 1.2154 (6) | 0.13777 (18) | 0.0347 (9) | |
C10 | 0.3214 (3) | 0.5641 (8) | 0.0624 (2) | 0.0215 (10) | |
H10 | 0.3124 | 0.4388 | 0.0367 | 0.026* | |
C1 | 0.1050 (3) | 0.9508 (8) | 0.0629 (2) | 0.0199 (10) | |
C2 | 0.0869 (3) | 0.7242 (8) | 0.0358 (2) | 0.0195 (10) | |
H2 | 0.0652 | 0.5943 | 0.0497 | 0.023* | |
O2 | 0.1710 (3) | 0.6485 (6) | 0.38637 (19) | 0.0358 (9) | |
C12 | 0.3591 (3) | 0.9268 (8) | 0.1048 (2) | 0.0228 (10) | |
H12 | 0.3785 | 1.0814 | 0.1117 | 0.027* | |
C14 | 0.3080 (3) | 0.1198 (8) | 0.3857 (2) | 0.0222 (10) | |
H14 | 0.2677 | −0.0025 | 0.3674 | 0.027* | |
C18 | 0.1843 (3) | 0.4500 (9) | 0.3721 (2) | 0.0238 (10) | |
C3 | 0.1083 (3) | 0.7360 (9) | −0.0156 (2) | 0.0231 (10) | |
H3 | 0.1021 | 0.6144 | −0.0421 | 0.028* | |
C13 | 0.2802 (3) | 0.3504 (8) | 0.3943 (2) | 0.0198 (10) | |
C11 | 0.3566 (3) | 0.7881 (9) | 0.0558 (2) | 0.0211 (10) | |
H11 | 0.3748 | 0.8349 | 0.0251 | 0.025* | |
C15 | 0.4080 (4) | 0.1097 (9) | 0.4101 (2) | 0.0259 (11) | |
H15 | 0.4448 | −0.0204 | 0.4110 | 0.031* | |
C5 | 0.1390 (3) | 1.0972 (8) | 0.0278 (2) | 0.0226 (10) | |
H5 | 0.1564 | 1.2530 | 0.0352 | 0.027* | |
C9 | 0.3028 (3) | 0.5646 (8) | 0.1146 (2) | 0.0235 (11) | |
H9 | 0.2792 | 0.4401 | 0.1293 | 0.028* | |
C17 | 0.3638 (3) | 0.4823 (8) | 0.4241 (2) | 0.0204 (10) | |
H17 | 0.3666 | 0.6379 | 0.4354 | 0.024* | |
C8 | 0.3258 (3) | 0.7881 (9) | 0.1412 (2) | 0.0238 (11) | |
H8 | 0.3204 | 0.8349 | 0.1763 | 0.029* | |
C4 | 0.1408 (3) | 0.9647 (9) | −0.0203 (2) | 0.0228 (10) | |
H4 | 0.1597 | 1.0180 | −0.0501 | 0.027* | |
C16 | 0.4420 (4) | 0.3345 (9) | 0.4331 (2) | 0.0248 (11) | |
H16 | 0.5050 | 0.3769 | 0.4510 | 0.030* | |
C7 | 0.0684 (4) | 0.8231 (10) | 0.1510 (3) | 0.0348 (13) | |
H7A | 0.1049 | 0.6851 | 0.1507 | 0.042* | |
H7B | 0.0027 | 0.7871 | 0.1286 | 0.042* | |
C23 | 0.4422 (4) | 0.4927 (12) | 0.3029 (2) | 0.0408 (16) | |
H23 | 0.5052 | 0.5363 | 0.3207 | 0.049* | |
C21 | 0.3125 (4) | 0.2756 (11) | 0.2570 (2) | 0.0382 (14) | |
H21 | 0.2738 | 0.1502 | 0.2391 | 0.046* | |
C6 | 0.0974 (3) | 1.0163 (9) | 0.1187 (2) | 0.0234 (10) | |
C19 | 0.1050 (4) | 0.3049 (10) | 0.3315 (3) | 0.0340 (13) | |
H19A | 0.0461 | 0.3740 | 0.3282 | 0.041* | |
H19B | 0.1087 | 0.1491 | 0.3466 | 0.041* | |
H19C | 0.1091 | 0.3003 | 0.2932 | 0.041* | |
C24 | 0.3630 (7) | 0.6347 (10) | 0.2938 (3) | 0.057 (2) | |
H24 | 0.3632 | 0.7901 | 0.3047 | 0.068* | |
C22 | 0.4093 (4) | 0.2720 (11) | 0.2798 (3) | 0.0372 (13) | |
H22 | 0.4464 | 0.1436 | 0.2799 | 0.045* | |
C20 | 0.2817 (5) | 0.4942 (13) | 0.2643 (3) | 0.0453 (17) | |
H20 | 0.2192 | 0.5413 | 0.2526 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0120 (3) | 0.0136 (3) | 0.0193 (4) | 0.0013 (2) | 0.0044 (3) | 0.0008 (3) |
Fe2 | 0.0177 (3) | 0.0177 (3) | 0.0147 (3) | −0.0025 (3) | 0.0056 (3) | −0.0002 (3) |
Cl1 | 0.0756 (14) | 0.0759 (13) | 0.0513 (11) | 0.0204 (11) | 0.0220 (10) | −0.0051 (10) |
O1 | 0.031 (2) | 0.030 (2) | 0.040 (2) | 0.0007 (16) | 0.0092 (17) | −0.0108 (18) |
C10 | 0.014 (2) | 0.023 (2) | 0.025 (3) | 0.0067 (18) | 0.0044 (19) | −0.003 (2) |
C1 | 0.013 (2) | 0.019 (2) | 0.026 (3) | 0.0046 (18) | 0.0057 (19) | 0.001 (2) |
C2 | 0.012 (2) | 0.017 (2) | 0.029 (3) | −0.0045 (17) | 0.0077 (19) | −0.002 (2) |
O2 | 0.033 (2) | 0.027 (2) | 0.054 (3) | 0.0020 (16) | 0.024 (2) | −0.0088 (18) |
C12 | 0.012 (2) | 0.019 (2) | 0.032 (3) | 0.0011 (18) | 0.003 (2) | −0.003 (2) |
C14 | 0.025 (3) | 0.018 (2) | 0.025 (2) | −0.0031 (19) | 0.011 (2) | 0.0023 (19) |
C18 | 0.023 (2) | 0.028 (3) | 0.025 (3) | −0.004 (2) | 0.015 (2) | −0.001 (2) |
C3 | 0.020 (2) | 0.026 (2) | 0.020 (2) | −0.001 (2) | 0.0035 (19) | −0.002 (2) |
C13 | 0.023 (2) | 0.020 (2) | 0.018 (2) | −0.0055 (19) | 0.0099 (19) | −0.0015 (19) |
C11 | 0.013 (2) | 0.030 (3) | 0.023 (2) | 0.0003 (19) | 0.0094 (19) | 0.002 (2) |
C15 | 0.025 (3) | 0.024 (3) | 0.028 (3) | 0.002 (2) | 0.009 (2) | 0.009 (2) |
C5 | 0.013 (2) | 0.016 (2) | 0.033 (3) | 0.0019 (17) | 0.002 (2) | 0.008 (2) |
C9 | 0.013 (2) | 0.020 (2) | 0.032 (3) | 0.0011 (18) | 0.003 (2) | 0.008 (2) |
C17 | 0.028 (3) | 0.018 (2) | 0.017 (2) | −0.0087 (19) | 0.010 (2) | −0.0028 (19) |
C8 | 0.016 (2) | 0.034 (3) | 0.016 (2) | 0.006 (2) | 0.0000 (19) | 0.001 (2) |
C4 | 0.017 (2) | 0.026 (2) | 0.021 (2) | 0.0020 (19) | 0.003 (2) | 0.007 (2) |
C16 | 0.022 (2) | 0.033 (3) | 0.015 (2) | −0.007 (2) | 0.0019 (19) | 0.006 (2) |
C7 | 0.024 (3) | 0.041 (3) | 0.039 (3) | 0.007 (2) | 0.011 (2) | 0.005 (3) |
C23 | 0.031 (3) | 0.066 (4) | 0.025 (3) | −0.024 (3) | 0.010 (2) | 0.006 (3) |
C21 | 0.049 (4) | 0.046 (3) | 0.021 (3) | −0.019 (3) | 0.014 (3) | −0.010 (3) |
C6 | 0.012 (2) | 0.025 (3) | 0.031 (3) | 0.0035 (19) | 0.006 (2) | 0.000 (2) |
C19 | 0.023 (3) | 0.039 (3) | 0.037 (3) | −0.004 (2) | 0.008 (2) | −0.010 (3) |
C24 | 0.138 (8) | 0.018 (3) | 0.034 (3) | 0.001 (4) | 0.055 (4) | 0.004 (3) |
C22 | 0.044 (3) | 0.042 (3) | 0.036 (3) | 0.006 (3) | 0.027 (3) | 0.006 (3) |
C20 | 0.039 (3) | 0.073 (5) | 0.025 (3) | 0.019 (3) | 0.013 (3) | 0.025 (3) |
Fe1—C10 | 2.032 (5) | C14—C13 | 1.428 (6) |
Fe1—C2 | 2.031 (4) | C14—H14 | 0.9300 |
Fe1—C9 | 2.035 (5) | C18—C13 | 1.474 (7) |
Fe1—C1 | 2.036 (4) | C18—C19 | 1.499 (7) |
Fe1—C8 | 2.048 (5) | C3—C4 | 1.422 (7) |
Fe1—C5 | 2.044 (5) | C3—H3 | 0.9301 |
Fe1—C3 | 2.043 (5) | C13—C17 | 1.428 (6) |
Fe1—C12 | 2.053 (5) | C11—H11 | 0.9299 |
Fe1—C11 | 2.047 (4) | C15—C16 | 1.424 (7) |
Fe1—C4 | 2.050 (5) | C15—H15 | 0.9300 |
Fe2—C20 | 2.032 (6) | C5—C4 | 1.407 (7) |
Fe2—C24 | 2.023 (6) | C5—H5 | 0.9300 |
Fe2—C13 | 2.025 (5) | C9—C8 | 1.420 (7) |
Fe2—C21 | 2.037 (5) | C9—H9 | 0.9301 |
Fe2—C14 | 2.031 (5) | C17—C16 | 1.414 (7) |
Fe2—C23 | 2.038 (5) | C17—H17 | 0.9300 |
Fe2—C22 | 2.046 (5) | C8—H8 | 0.9300 |
Fe2—C17 | 2.049 (5) | C4—H4 | 0.9299 |
Fe2—C16 | 2.055 (5) | C16—H16 | 0.9299 |
Fe2—C15 | 2.058 (5) | C7—C6 | 1.519 (7) |
Cl1—C7 | 1.693 (6) | C7—H7A | 0.9699 |
O1—C6 | 1.222 (6) | C7—H7B | 0.9700 |
C10—C9 | 1.405 (7) | C23—C22 | 1.400 (9) |
C10—C11 | 1.426 (7) | C23—C24 | 1.407 (10) |
C10—H10 | 0.9299 | C23—H23 | 0.9300 |
C1—C5 | 1.430 (7) | C21—C22 | 1.372 (8) |
C1—C2 | 1.437 (6) | C21—C20 | 1.374 (9) |
C1—C6 | 1.458 (7) | C21—H21 | 0.9300 |
C2—C3 | 1.413 (7) | C19—H19A | 0.9600 |
C2—H2 | 0.9299 | C19—H19B | 0.9600 |
O2—C18 | 1.229 (6) | C19—H19C | 0.9601 |
C12—C8 | 1.421 (7) | C24—C20 | 1.429 (10) |
C12—C11 | 1.426 (7) | C24—H24 | 0.9300 |
C12—H12 | 0.9300 | C22—H22 | 0.9300 |
C14—C15 | 1.419 (7) | C20—H20 | 0.9300 |
C10—Fe1—C2 | 120.04 (19) | C15—C14—C13 | 108.1 (4) |
C10—Fe1—C9 | 40.4 (2) | C15—C14—Fe2 | 70.7 (3) |
C2—Fe1—C9 | 106.99 (19) | C13—C14—Fe2 | 69.1 (3) |
C10—Fe1—C1 | 157.31 (19) | C15—C14—H14 | 125.9 |
C2—Fe1—C1 | 41.38 (19) | C13—C14—H14 | 126.1 |
C9—Fe1—C1 | 122.9 (2) | Fe2—C14—H14 | 125.5 |
C10—Fe1—C8 | 68.3 (2) | O2—C18—C13 | 120.2 (5) |
C2—Fe1—C8 | 124.7 (2) | O2—C18—C19 | 121.5 (5) |
C9—Fe1—C8 | 40.7 (2) | C13—C18—C19 | 118.3 (4) |
C1—Fe1—C8 | 109.2 (2) | C4—C3—C2 | 108.7 (4) |
C10—Fe1—C5 | 159.2 (2) | C4—C3—Fe1 | 69.9 (3) |
C2—Fe1—C5 | 69.28 (18) | C2—C3—Fe1 | 69.3 (3) |
C9—Fe1—C5 | 159.4 (2) | C4—C3—H3 | 125.7 |
C1—Fe1—C5 | 41.03 (19) | C2—C3—H3 | 125.7 |
C8—Fe1—C5 | 123.8 (2) | Fe1—C3—H3 | 126.8 |
C10—Fe1—C3 | 105.8 (2) | C17—C13—C14 | 107.8 (4) |
C2—Fe1—C3 | 40.6 (2) | C17—C13—C18 | 124.0 (4) |
C9—Fe1—C3 | 122.8 (2) | C14—C13—C18 | 127.9 (4) |
C1—Fe1—C3 | 68.5 (2) | C17—C13—Fe2 | 70.4 (3) |
C8—Fe1—C3 | 160.3 (2) | C14—C13—Fe2 | 69.6 (3) |
C5—Fe1—C3 | 68.3 (2) | C18—C13—Fe2 | 121.0 (3) |
C10—Fe1—C12 | 68.47 (19) | C12—C11—C10 | 107.4 (4) |
C2—Fe1—C12 | 161.9 (2) | C12—C11—Fe1 | 69.9 (3) |
C9—Fe1—C12 | 68.31 (19) | C10—C11—Fe1 | 69.0 (2) |
C1—Fe1—C12 | 125.36 (19) | C12—C11—H11 | 126.3 |
C8—Fe1—C12 | 40.6 (2) | C10—C11—H11 | 126.3 |
C5—Fe1—C12 | 108.64 (19) | Fe1—C11—H11 | 126.6 |
C3—Fe1—C12 | 156.7 (2) | C14—C15—C16 | 107.8 (4) |
C10—Fe1—C11 | 40.9 (2) | C14—C15—Fe2 | 68.7 (3) |
C2—Fe1—C11 | 155.59 (19) | C16—C15—Fe2 | 69.6 (3) |
C9—Fe1—C11 | 68.43 (19) | C14—C15—H15 | 126.2 |
C1—Fe1—C11 | 161.07 (19) | C16—C15—H15 | 126.0 |
C8—Fe1—C11 | 68.4 (2) | Fe2—C15—H15 | 127.4 |
C5—Fe1—C11 | 123.43 (19) | C4—C5—C1 | 107.9 (4) |
C3—Fe1—C11 | 120.3 (2) | C4—C5—Fe1 | 70.1 (3) |
C12—Fe1—C11 | 40.69 (19) | C1—C5—Fe1 | 69.2 (2) |
C10—Fe1—C4 | 122.5 (2) | C4—C5—H5 | 126.0 |
C2—Fe1—C4 | 68.71 (19) | C1—C5—H5 | 126.1 |
C9—Fe1—C4 | 158.9 (2) | Fe1—C5—H5 | 126.8 |
C1—Fe1—C4 | 68.33 (19) | C10—C9—C8 | 108.4 (4) |
C8—Fe1—C4 | 158.4 (2) | C10—C9—Fe1 | 69.7 (3) |
C5—Fe1—C4 | 40.2 (2) | C8—C9—Fe1 | 70.2 (3) |
C3—Fe1—C4 | 40.65 (19) | C10—C9—H9 | 125.9 |
C12—Fe1—C4 | 122.0 (2) | C8—C9—H9 | 125.6 |
C11—Fe1—C4 | 106.5 (2) | Fe1—C9—H9 | 125.8 |
C20—Fe2—C24 | 41.3 (3) | C16—C17—C13 | 107.8 (4) |
C20—Fe2—C13 | 108.2 (2) | C16—C17—Fe2 | 70.1 (3) |
C24—Fe2—C13 | 122.7 (3) | C13—C17—Fe2 | 68.5 (3) |
C20—Fe2—C21 | 39.5 (3) | C16—C17—H17 | 126.0 |
C24—Fe2—C21 | 67.7 (3) | C13—C17—H17 | 126.2 |
C13—Fe2—C21 | 124.3 (2) | Fe2—C17—H17 | 126.6 |
C20—Fe2—C14 | 122.3 (2) | C9—C8—C12 | 107.8 (4) |
C24—Fe2—C14 | 158.9 (3) | C9—C8—Fe1 | 69.2 (3) |
C13—Fe2—C14 | 41.24 (19) | C12—C8—Fe1 | 69.9 (3) |
C21—Fe2—C14 | 108.0 (2) | C9—C8—H8 | 126.1 |
C20—Fe2—C23 | 68.0 (3) | C12—C8—H8 | 126.1 |
C24—Fe2—C23 | 40.5 (3) | Fe1—C8—H8 | 126.8 |
C13—Fe2—C23 | 158.7 (2) | C5—C4—C3 | 108.3 (4) |
C21—Fe2—C23 | 67.1 (2) | C5—C4—Fe1 | 69.7 (3) |
C14—Fe2—C23 | 158.8 (3) | C3—C4—Fe1 | 69.4 (3) |
C20—Fe2—C22 | 66.6 (3) | C5—C4—H4 | 125.7 |
C24—Fe2—C22 | 67.6 (3) | C3—C4—H4 | 126.0 |
C13—Fe2—C22 | 159.6 (2) | Fe1—C4—H4 | 126.8 |
C21—Fe2—C22 | 39.3 (2) | C17—C16—C15 | 108.6 (4) |
C14—Fe2—C22 | 123.1 (2) | C17—C16—Fe2 | 69.6 (3) |
C23—Fe2—C22 | 40.1 (3) | C15—C16—Fe2 | 69.9 (3) |
C20—Fe2—C17 | 125.1 (2) | C17—C16—H16 | 125.8 |
C24—Fe2—C17 | 107.9 (2) | C15—C16—H16 | 125.6 |
C13—Fe2—C17 | 41.04 (18) | Fe2—C16—H16 | 126.1 |
C21—Fe2—C17 | 160.9 (2) | C6—C7—Cl1 | 116.1 (4) |
C14—Fe2—C17 | 68.89 (19) | C6—C7—H7A | 108.1 |
C23—Fe2—C17 | 122.6 (2) | Cl1—C7—H7A | 108.6 |
C22—Fe2—C17 | 158.2 (2) | C6—C7—H7B | 107.8 |
C20—Fe2—C16 | 161.0 (3) | Cl1—C7—H7B | 108.6 |
C24—Fe2—C16 | 123.5 (3) | H7A—C7—H7B | 107.5 |
C13—Fe2—C16 | 68.5 (2) | C22—C23—C24 | 107.5 (5) |
C21—Fe2—C16 | 157.7 (2) | C22—C23—Fe2 | 70.2 (3) |
C14—Fe2—C16 | 68.4 (2) | C24—C23—Fe2 | 69.1 (3) |
C23—Fe2—C16 | 107.8 (2) | C22—C23—H23 | 125.8 |
C22—Fe2—C16 | 122.9 (2) | C24—C23—H23 | 126.8 |
C17—Fe2—C16 | 40.3 (2) | Fe2—C23—H23 | 126.2 |
C20—Fe2—C15 | 157.4 (3) | C22—C21—C20 | 109.4 (6) |
C24—Fe2—C15 | 159.4 (3) | C22—C21—Fe2 | 70.7 (3) |
C13—Fe2—C15 | 68.7 (2) | C20—C21—Fe2 | 70.1 (3) |
C21—Fe2—C15 | 122.5 (2) | C22—C21—H21 | 125.4 |
C14—Fe2—C15 | 40.61 (19) | C20—C21—H21 | 125.3 |
C23—Fe2—C15 | 123.1 (2) | Fe2—C21—H21 | 126.0 |
C22—Fe2—C15 | 107.9 (2) | O1—C6—C1 | 122.1 (5) |
C17—Fe2—C15 | 68.2 (2) | O1—C6—C7 | 121.9 (5) |
C16—Fe2—C15 | 40.5 (2) | C1—C6—C7 | 116.0 (4) |
C9—C10—C11 | 108.4 (4) | C18—C19—H19A | 109.1 |
C9—C10—Fe1 | 69.9 (3) | C18—C19—H19B | 110.3 |
C11—C10—Fe1 | 70.1 (3) | H19A—C19—H19B | 109.5 |
C9—C10—H10 | 125.8 | C18—C19—H19C | 109.1 |
C11—C10—H10 | 125.8 | H19A—C19—H19C | 109.5 |
Fe1—C10—H10 | 125.9 | H19B—C19—H19C | 109.5 |
C5—C1—C2 | 107.8 (4) | C20—C24—C23 | 106.8 (5) |
C5—C1—C6 | 125.6 (4) | C20—C24—Fe2 | 69.7 (3) |
C2—C1—C6 | 126.4 (4) | C23—C24—Fe2 | 70.3 (3) |
C5—C1—Fe1 | 69.8 (3) | C20—C24—H24 | 126.4 |
C2—C1—Fe1 | 69.1 (2) | C23—C24—H24 | 126.8 |
C6—C1—Fe1 | 122.9 (3) | Fe2—C24—H24 | 125.0 |
C3—C2—C1 | 107.3 (4) | C21—C22—C23 | 108.7 (6) |
C3—C2—Fe1 | 70.2 (3) | C21—C22—Fe2 | 70.0 (3) |
C1—C2—Fe1 | 69.5 (2) | C23—C22—Fe2 | 69.7 (3) |
C3—C2—H2 | 126.6 | C21—C22—H22 | 125.3 |
C1—C2—H2 | 126.1 | C23—C22—H22 | 126.0 |
Fe1—C2—H2 | 125.5 | Fe2—C22—H22 | 126.1 |
C8—C12—C11 | 108.0 (4) | C21—C20—C24 | 107.7 (6) |
C8—C12—Fe1 | 69.5 (3) | C21—C20—Fe2 | 70.5 (3) |
C11—C12—Fe1 | 69.4 (3) | C24—C20—Fe2 | 69.0 (3) |
C8—C12—H12 | 125.8 | C21—C20—H20 | 126.1 |
C11—C12—H12 | 126.1 | C24—C20—H20 | 126.3 |
Fe1—C12—H12 | 126.1 | Fe2—C20—H20 | 125.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.51 | 3.333 (6) | 148 |
C14—H14···O2ii | 0.93 | 2.63 | 3.424 (6) | 144 |
C20—H20···Cl1 | 0.93 | 2.76 | 3.602 (8) | 152 |
Symmetry codes: (i) x, −y+2, z−1/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)] |
Mr | 490.56 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 150 |
a, b, c (Å) | 15.2981 (11), 5.7338 (3), 24.4051 (12) |
β (°) | 112.031 (7) |
V (Å3) | 1984.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.62 |
Crystal size (mm) | 0.15 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.791, 0.886 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9948, 4502, 3232 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.151, 0.97 |
No. of reflections | 4502 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −1.22 |
Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.51 | 3.333 (6) | 148 |
C14—H14···O2ii | 0.93 | 2.63 | 3.424 (6) | 144 |
C20—H20···Cl1 | 0.93 | 2.76 | 3.602 (8) | 152 |
Symmetry codes: (i) x, −y+2, z−1/2; (ii) x, y−1, z. |
2-Chloro-1-ferrocenylethanone | Acetylferrocene | ||
Fe1···Cg1 | 1.643 (1) | Fe2···Cg3 | 1.646 (2) |
Fe1···Cg2 | 1.648 (2) | Fe2···Cg4 | 1.653 (3) |
Cg1···Fe1···Cg2 | 178.06 (11) | Cg3···Fe2···Cg4 | 179.11 (15) |
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C5, C8–C12, C13–C17 and C20–C24 rings, respectively. |
Acknowledgements
Financial support from the Czech Science Foundation (GA 104/09/0529) and the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501) is gratefully acknowledged.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1994). J. Appl. Cryst. 27, 1045–1050. CrossRef CAS Web of Science IUCr Journals Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Ferreira, A. P., da Silva, J. L. F., Duarte, M. T., de Piedade, M. F. M., Robalo, M. P., Harjivan, S. G., Marzano, C., Gandin, V. & Marques, M. M. (2009). Organometallics, 28, 5412–5423. Web of Science CSD CrossRef CAS Google Scholar
Hooft, R. W. (1998). COLLECT. Nonius: Delft, The Netherlands. Google Scholar
Kalenda, P., Veselý, D., Kalendová, A. & Šťáva, V. (2010). Pigm. Resin Technol. 39, 342–347. Web of Science CrossRef CAS Google Scholar
Khrustalev, V. N., Nikitin, L. N., Vasil'kov, A. Y. & Khoklov, A. R. (2006). Russ. Chem. Bull. 55, 576–578. Web of Science CrossRef CAS Google Scholar
McAdam, C. J., Robinson, B. H. & Simpson, J. (2006). Acta Cryst. E62, m2354–m2356. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361–2365. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Štáva, V., Erben, M., Veselý, D. & Kalenda, P. (2007). J. Phys. Chem. Solids, 68, 799–802. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted ferrocenes belong to well known class of organometallic compounds that are currently studied as catalysts, in drug design, as building blocks in material engineering or in nanotechnology. Recently, we have shown that ferrocene complexes bearing electron-withdrawing acyl substituents at the cyclopentadienyl (Cp) ring could be used as driers for autoxidation of alkyd resins (Štáva et al., 2007; Kalenda et al., 2010). During our investigation of drying activity of ferrocene derivatives we prepared various stock solutions containing a mixture of acylferrocenes. From the mixture of acetylferrocene and 2-chloro-1-ferrocenylethanone in cyclohexane crystals of the title compound (I) were grown. Herewith we present crystal structure of (I).
The asymmetric unit of (I) contains one molecule of acetylferrocene and one molecule of 2-chloro-1-ferrocenylethanone. Molecule of acetylferrocene has geometrical parameters very close to that reported for acetylferrocene by Sato et al. (1984) and by Khrustalev et al. (2006), see Table 1.
2-Chloro-1-ferrocenylethanone has a structure typical for monosubstituted ferrocene with almost eclipsed Cp rings. The dihedral angle C1—Cg1—Cg2—C8 was found to be 2.2 (4)°. Carbonyl sp2 atom C6 is slightly displaced from the Cp ring plane toward the Fe atom, with an angle of 3.0 (3)° between C1—C6 bond and the ring plane. The shortening of single bond length C1—C6 to a value of 1.459 (7) Å together with elongation of double bond C6═O1 [1.221 (6) Å] indicate significant conjugation of carbonyl substituent with adjacent Cp ring π-system. These values are similar to those observed for 2-iodo-1-ferrocenylethanone (McAdam et al., 2006).
Substituted Cp ring of molecule 2-chloro-1-ferrocenylethanone at (x, y, z) is coplanar with substituted Cp ring of molecule at (-x, 2 - y, -z) with the distance between the centroids of 3.534 (3) Å. Thus molecules of 2-chloro-1-ferrocenylethanone form pairs due to π···π stacking. Simultaneously, the molecule at (x, y, z) show C—Cl···Cl—C contact to the molecule at (-x, y, 1/2-z) with the Cl···Cl distance of 3.279 (4) Å giving infinite wires of 2-chloro-1-ferrocenylethanone molecules along the c axis. Molecular wires of 2-chloro-1-ferrocenylethanone are connected with molecules of acetylferrocene via weak C—H···O2 and C—H···Cl1 hydrogen bonds (Table 2) giving observed three-dimensional structure.