metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetyl­ferrocene–2-chloro-1-ferrocenyl­ethanone (1/1)

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice 532 10, Czech Republic
*Correspondence e-mail: milan.erben@upce.cz

(Received 26 August 2011; accepted 19 September 2011; online 30 September 2011)

In the title co-crystal, [Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)], both substituted ferrocene mol­ecules show the expected sandwich structure. The crystal packing exhibits weak inter­molecular Cl⋯Cl contacts of 3.279 (4) Å, ππ inter­actions between the substituted Cp rings of two neighbouring 2-chloro-1-ferrocenyl­ethanone mol­ecules [centroid–centroid distance = 3.534 (3) Å], and weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

The simple preparation of 2-chloro-1-ferrocenyl­ethanone was described previously by Ferreira et al. (2009[Ferreira, A. P., da Silva, J. L. F., Duarte, M. T., de Piedade, M. F. M., Robalo, M. P., Harjivan, S. G., Marzano, C., Gandin, V. & Marques, M. M. (2009). Organometallics, 28, 5412-5423.]). For the crystal structures of ferrocenyl complexes of the type [FeCp(C5H4COR)], where Cp is η5-C5H5 and R is CH3 or CH2I, see: Sato et al. (1984[Sato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361-2365.]); Khrustalev et al. (2006[Khrustalev, V. N., Nikitin, L. N., Vasil'kov, A. Y. & Khoklov, A. R. (2006). Russ. Chem. Bull. 55, 576-578.]); McAdam et al. (2006[McAdam, C. J., Robinson, B. H. & Simpson, J. (2006). Acta Cryst. E62, m2354-m2356.]). For the use of acyl­ferrocenes as catalysts for the autoxidation of alkyd resins, see: Štáva et al. (2007[Štáva, V., Erben, M., Veselý, D. & Kalenda, P. (2007). J. Phys. Chem. Solids, 68, 799-802.]); Kalenda et al. (2010[Kalenda, P., Veselý, D., Kalendová, A. & Šťáva, V. (2010). Pigm. Resin Technol. 39, 342-347.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)]

  • Mr = 490.56

  • Monoclinic, P 2/c

  • a = 15.2981 (11) Å

  • b = 5.7338 (3) Å

  • c = 24.4051 (12) Å

  • β = 112.031 (7)°

  • V = 1984.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 150 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.791, Tmax = 0.886

  • 9948 measured reflections

  • 4502 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.151

  • S = 0.97

  • 4502 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.51 3.333 (6) 148
C14—H14⋯O2ii 0.93 2.63 3.424 (6) 144
C20—H20⋯Cl1 0.93 2.76 3.602 (8) 152
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Table 2
Selected geometric parameters (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C5, C8–C12, C13–C17 and C20–C24 rings, respectively.

2-Chloro-1-ferrocenyl­ethanone   Acetyl­ferrocene  
Fe1⋯Cg1 1.643 (1) Fe2⋯Cg3 1.646 (2)
Fe1⋯Cg2 1.648 (2) Fe2⋯Cg4 1.653 (3)
Cg1⋯Fe1⋯Cg2 178.06 (11) Cg3⋯Fe2⋯Cg4 179.11 (15)

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Nonius: Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1994). J. Appl. Cryst. 27, 1045-1050.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Substituted ferrocenes belong to well known class of organometallic compounds that are currently studied as catalysts, in drug design, as building blocks in material engineering or in nanotechnology. Recently, we have shown that ferrocene complexes bearing electron-withdrawing acyl substituents at the cyclopentadienyl (Cp) ring could be used as driers for autoxidation of alkyd resins (Štáva et al., 2007; Kalenda et al., 2010). During our investigation of drying activity of ferrocene derivatives we prepared various stock solutions containing a mixture of acylferrocenes. From the mixture of acetylferrocene and 2-chloro-1-ferrocenylethanone in cyclohexane crystals of the title compound (I) were grown. Herewith we present crystal structure of (I).

The asymmetric unit of (I) contains one molecule of acetylferrocene and one molecule of 2-chloro-1-ferrocenylethanone. Molecule of acetylferrocene has geometrical parameters very close to that reported for acetylferrocene by Sato et al. (1984) and by Khrustalev et al. (2006), see Table 1.

2-Chloro-1-ferrocenylethanone has a structure typical for monosubstituted ferrocene with almost eclipsed Cp rings. The dihedral angle C1—Cg1—Cg2—C8 was found to be 2.2 (4)°. Carbonyl sp2 atom C6 is slightly displaced from the Cp ring plane toward the Fe atom, with an angle of 3.0 (3)° between C1—C6 bond and the ring plane. The shortening of single bond length C1—C6 to a value of 1.459 (7) Å together with elongation of double bond C6O1 [1.221 (6) Å] indicate significant conjugation of carbonyl substituent with adjacent Cp ring π-system. These values are similar to those observed for 2-iodo-1-ferrocenylethanone (McAdam et al., 2006).

Substituted Cp ring of molecule 2-chloro-1-ferrocenylethanone at (x, y, z) is coplanar with substituted Cp ring of molecule at (-x, 2 - y, -z) with the distance between the centroids of 3.534 (3) Å. Thus molecules of 2-chloro-1-ferrocenylethanone form pairs due to π···π stacking. Simultaneously, the molecule at (x, y, z) show C—Cl···Cl—C contact to the molecule at (-x, y, 1/2-z) with the Cl···Cl distance of 3.279 (4) Å giving infinite wires of 2-chloro-1-ferrocenylethanone molecules along the c axis. Molecular wires of 2-chloro-1-ferrocenylethanone are connected with molecules of acetylferrocene via weak C—H···O2 and C—H···Cl1 hydrogen bonds (Table 2) giving observed three-dimensional structure.

Related literature top

The simple preparation of 2-chloro-1-ferrocenylethanone was described previously by Ferreira et al. (2009). For the crystal structures of ferrocenyl complexes of the type [FeCp(C5H4COR)], where Cp is η5-C5H5 and R is CH3 or CH2I, see: Sato et al. (1984); Khrustalev et al. (2006); McAdam et al. (2006). For the use of acylferrocenes as catalysts for the autoxidation of alkyd resins, see: Štáva et al. (2007); Kalenda et al. (2010).

Experimental top

Red crystals of (I) suitable for X-ray diffraction analysis were grown by slow evaporation of cyclohexane solution containing acetylferrocene (purchased from Sigma Aldrich) and 2-chloro-1-ferrocenylethanone in 1:1 molar ratio. The 2-chloro-1-ferrocenylethanone has been prepared from ferrocene and chloroacetyl chloride following method of Ferreira et al. (2009).

Structure description top

Substituted ferrocenes belong to well known class of organometallic compounds that are currently studied as catalysts, in drug design, as building blocks in material engineering or in nanotechnology. Recently, we have shown that ferrocene complexes bearing electron-withdrawing acyl substituents at the cyclopentadienyl (Cp) ring could be used as driers for autoxidation of alkyd resins (Štáva et al., 2007; Kalenda et al., 2010). During our investigation of drying activity of ferrocene derivatives we prepared various stock solutions containing a mixture of acylferrocenes. From the mixture of acetylferrocene and 2-chloro-1-ferrocenylethanone in cyclohexane crystals of the title compound (I) were grown. Herewith we present crystal structure of (I).

The asymmetric unit of (I) contains one molecule of acetylferrocene and one molecule of 2-chloro-1-ferrocenylethanone. Molecule of acetylferrocene has geometrical parameters very close to that reported for acetylferrocene by Sato et al. (1984) and by Khrustalev et al. (2006), see Table 1.

2-Chloro-1-ferrocenylethanone has a structure typical for monosubstituted ferrocene with almost eclipsed Cp rings. The dihedral angle C1—Cg1—Cg2—C8 was found to be 2.2 (4)°. Carbonyl sp2 atom C6 is slightly displaced from the Cp ring plane toward the Fe atom, with an angle of 3.0 (3)° between C1—C6 bond and the ring plane. The shortening of single bond length C1—C6 to a value of 1.459 (7) Å together with elongation of double bond C6O1 [1.221 (6) Å] indicate significant conjugation of carbonyl substituent with adjacent Cp ring π-system. These values are similar to those observed for 2-iodo-1-ferrocenylethanone (McAdam et al., 2006).

Substituted Cp ring of molecule 2-chloro-1-ferrocenylethanone at (x, y, z) is coplanar with substituted Cp ring of molecule at (-x, 2 - y, -z) with the distance between the centroids of 3.534 (3) Å. Thus molecules of 2-chloro-1-ferrocenylethanone form pairs due to π···π stacking. Simultaneously, the molecule at (x, y, z) show C—Cl···Cl—C contact to the molecule at (-x, y, 1/2-z) with the Cl···Cl distance of 3.279 (4) Å giving infinite wires of 2-chloro-1-ferrocenylethanone molecules along the c axis. Molecular wires of 2-chloro-1-ferrocenylethanone are connected with molecules of acetylferrocene via weak C—H···O2 and C—H···Cl1 hydrogen bonds (Table 2) giving observed three-dimensional structure.

The simple preparation of 2-chloro-1-ferrocenylethanone was described previously by Ferreira et al. (2009). For the crystal structures of ferrocenyl complexes of the type [FeCp(C5H4COR)], where Cp is η5-C5H5 and R is CH3 or CH2I, see: Sato et al. (1984); Khrustalev et al. (2006); McAdam et al. (2006). For the use of acylferrocenes as catalysts for the autoxidation of alkyd resins, see: Štáva et al. (2007); Kalenda et al. (2010).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A content of asymmetric part of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
acetylferrocene–2-chloro-1-ferrocenylethanone (1/1) top
Crystal data top
[Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)]F(000) = 1008
Mr = 490.56Dx = 1.642 Mg m3
Monoclinic, P2/cMelting point: 350 K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.2981 (11) ÅCell parameters from 9981 reflections
b = 5.7338 (3) Åθ = 1–27.5°
c = 24.4051 (12) ŵ = 1.62 mm1
β = 112.031 (7)°T = 150 K
V = 1984.5 (2) Å3Block, red
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4502 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ and ω scans to fill the Ewald sphereh = 1819
Absorption correction: gaussian
(Coppens, 1970)
k = 57
Tmin = 0.791, Tmax = 0.886l = 2131
9948 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.063P)2 + 9.3142P]
where P = (Fo2 + 2Fc2)/3
4502 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)]V = 1984.5 (2) Å3
Mr = 490.56Z = 4
Monoclinic, P2/cMo Kα radiation
a = 15.2981 (11) ŵ = 1.62 mm1
b = 5.7338 (3) ÅT = 150 K
c = 24.4051 (12) Å0.15 × 0.10 × 0.08 mm
β = 112.031 (7)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4502 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
3232 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.886Rint = 0.052
9948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.97Δρmax = 0.48 e Å3
4502 reflectionsΔρmin = 1.22 e Å3
262 parameters
Special details top

Experimental. Melting point: 349–350 K. Spectroscopic analysis: IR (diamond ATR, cm-1): 3097 (m), 2955 (m), 2916 (s), 2848 (s), 1673 (m), 1660 (m, sh), 1652 (versus), 1451 (m), 1408 (w), 1374 (s), 1356 (m), 1278 (versus), 1240 (m), 1103 (m), 1066 (w), 1038 (m), 960 (w), 892 (m), 848 (w), 819 (versus), 720 (m), 668 (w), 618 (s), 593 (w), 531 (s), 494 (s), 480 (versus), 458(s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.22439 (4)0.81308 (10)0.05785 (3)0.01538 (18)
Fe20.36043 (5)0.35801 (11)0.34458 (3)0.01683 (18)
Cl10.08171 (16)0.8811 (4)0.22170 (9)0.0682 (6)
O10.1117 (3)1.2154 (6)0.13777 (18)0.0347 (9)
C100.3214 (3)0.5641 (8)0.0624 (2)0.0215 (10)
H100.31240.43880.03670.026*
C10.1050 (3)0.9508 (8)0.0629 (2)0.0199 (10)
C20.0869 (3)0.7242 (8)0.0358 (2)0.0195 (10)
H20.06520.59430.04970.023*
O20.1710 (3)0.6485 (6)0.38637 (19)0.0358 (9)
C120.3591 (3)0.9268 (8)0.1048 (2)0.0228 (10)
H120.37851.08140.11170.027*
C140.3080 (3)0.1198 (8)0.3857 (2)0.0222 (10)
H140.26770.00250.36740.027*
C180.1843 (3)0.4500 (9)0.3721 (2)0.0238 (10)
C30.1083 (3)0.7360 (9)0.0156 (2)0.0231 (10)
H30.10210.61440.04210.028*
C130.2802 (3)0.3504 (8)0.3943 (2)0.0198 (10)
C110.3566 (3)0.7881 (9)0.0558 (2)0.0211 (10)
H110.37480.83490.02510.025*
C150.4080 (4)0.1097 (9)0.4101 (2)0.0259 (11)
H150.44480.02040.41100.031*
C50.1390 (3)1.0972 (8)0.0278 (2)0.0226 (10)
H50.15641.25300.03520.027*
C90.3028 (3)0.5646 (8)0.1146 (2)0.0235 (11)
H90.27920.44010.12930.028*
C170.3638 (3)0.4823 (8)0.4241 (2)0.0204 (10)
H170.36660.63790.43540.024*
C80.3258 (3)0.7881 (9)0.1412 (2)0.0238 (11)
H80.32040.83490.17630.029*
C40.1408 (3)0.9647 (9)0.0203 (2)0.0228 (10)
H40.15971.01800.05010.027*
C160.4420 (4)0.3345 (9)0.4331 (2)0.0248 (11)
H160.50500.37690.45100.030*
C70.0684 (4)0.8231 (10)0.1510 (3)0.0348 (13)
H7A0.10490.68510.15070.042*
H7B0.00270.78710.12860.042*
C230.4422 (4)0.4927 (12)0.3029 (2)0.0408 (16)
H230.50520.53630.32070.049*
C210.3125 (4)0.2756 (11)0.2570 (2)0.0382 (14)
H210.27380.15020.23910.046*
C60.0974 (3)1.0163 (9)0.1187 (2)0.0234 (10)
C190.1050 (4)0.3049 (10)0.3315 (3)0.0340 (13)
H19A0.04610.37400.32820.041*
H19B0.10870.14910.34660.041*
H19C0.10910.30030.29320.041*
C240.3630 (7)0.6347 (10)0.2938 (3)0.057 (2)
H240.36320.79010.30470.068*
C220.4093 (4)0.2720 (11)0.2798 (3)0.0372 (13)
H220.44640.14360.27990.045*
C200.2817 (5)0.4942 (13)0.2643 (3)0.0453 (17)
H200.21920.54130.25260.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0120 (3)0.0136 (3)0.0193 (4)0.0013 (2)0.0044 (3)0.0008 (3)
Fe20.0177 (3)0.0177 (3)0.0147 (3)0.0025 (3)0.0056 (3)0.0002 (3)
Cl10.0756 (14)0.0759 (13)0.0513 (11)0.0204 (11)0.0220 (10)0.0051 (10)
O10.031 (2)0.030 (2)0.040 (2)0.0007 (16)0.0092 (17)0.0108 (18)
C100.014 (2)0.023 (2)0.025 (3)0.0067 (18)0.0044 (19)0.003 (2)
C10.013 (2)0.019 (2)0.026 (3)0.0046 (18)0.0057 (19)0.001 (2)
C20.012 (2)0.017 (2)0.029 (3)0.0045 (17)0.0077 (19)0.002 (2)
O20.033 (2)0.027 (2)0.054 (3)0.0020 (16)0.024 (2)0.0088 (18)
C120.012 (2)0.019 (2)0.032 (3)0.0011 (18)0.003 (2)0.003 (2)
C140.025 (3)0.018 (2)0.025 (2)0.0031 (19)0.011 (2)0.0023 (19)
C180.023 (2)0.028 (3)0.025 (3)0.004 (2)0.015 (2)0.001 (2)
C30.020 (2)0.026 (2)0.020 (2)0.001 (2)0.0035 (19)0.002 (2)
C130.023 (2)0.020 (2)0.018 (2)0.0055 (19)0.0099 (19)0.0015 (19)
C110.013 (2)0.030 (3)0.023 (2)0.0003 (19)0.0094 (19)0.002 (2)
C150.025 (3)0.024 (3)0.028 (3)0.002 (2)0.009 (2)0.009 (2)
C50.013 (2)0.016 (2)0.033 (3)0.0019 (17)0.002 (2)0.008 (2)
C90.013 (2)0.020 (2)0.032 (3)0.0011 (18)0.003 (2)0.008 (2)
C170.028 (3)0.018 (2)0.017 (2)0.0087 (19)0.010 (2)0.0028 (19)
C80.016 (2)0.034 (3)0.016 (2)0.006 (2)0.0000 (19)0.001 (2)
C40.017 (2)0.026 (2)0.021 (2)0.0020 (19)0.003 (2)0.007 (2)
C160.022 (2)0.033 (3)0.015 (2)0.007 (2)0.0019 (19)0.006 (2)
C70.024 (3)0.041 (3)0.039 (3)0.007 (2)0.011 (2)0.005 (3)
C230.031 (3)0.066 (4)0.025 (3)0.024 (3)0.010 (2)0.006 (3)
C210.049 (4)0.046 (3)0.021 (3)0.019 (3)0.014 (3)0.010 (3)
C60.012 (2)0.025 (3)0.031 (3)0.0035 (19)0.006 (2)0.000 (2)
C190.023 (3)0.039 (3)0.037 (3)0.004 (2)0.008 (2)0.010 (3)
C240.138 (8)0.018 (3)0.034 (3)0.001 (4)0.055 (4)0.004 (3)
C220.044 (3)0.042 (3)0.036 (3)0.006 (3)0.027 (3)0.006 (3)
C200.039 (3)0.073 (5)0.025 (3)0.019 (3)0.013 (3)0.025 (3)
Geometric parameters (Å, º) top
Fe1—C102.032 (5)C14—C131.428 (6)
Fe1—C22.031 (4)C14—H140.9300
Fe1—C92.035 (5)C18—C131.474 (7)
Fe1—C12.036 (4)C18—C191.499 (7)
Fe1—C82.048 (5)C3—C41.422 (7)
Fe1—C52.044 (5)C3—H30.9301
Fe1—C32.043 (5)C13—C171.428 (6)
Fe1—C122.053 (5)C11—H110.9299
Fe1—C112.047 (4)C15—C161.424 (7)
Fe1—C42.050 (5)C15—H150.9300
Fe2—C202.032 (6)C5—C41.407 (7)
Fe2—C242.023 (6)C5—H50.9300
Fe2—C132.025 (5)C9—C81.420 (7)
Fe2—C212.037 (5)C9—H90.9301
Fe2—C142.031 (5)C17—C161.414 (7)
Fe2—C232.038 (5)C17—H170.9300
Fe2—C222.046 (5)C8—H80.9300
Fe2—C172.049 (5)C4—H40.9299
Fe2—C162.055 (5)C16—H160.9299
Fe2—C152.058 (5)C7—C61.519 (7)
Cl1—C71.693 (6)C7—H7A0.9699
O1—C61.222 (6)C7—H7B0.9700
C10—C91.405 (7)C23—C221.400 (9)
C10—C111.426 (7)C23—C241.407 (10)
C10—H100.9299C23—H230.9300
C1—C51.430 (7)C21—C221.372 (8)
C1—C21.437 (6)C21—C201.374 (9)
C1—C61.458 (7)C21—H210.9300
C2—C31.413 (7)C19—H19A0.9600
C2—H20.9299C19—H19B0.9600
O2—C181.229 (6)C19—H19C0.9601
C12—C81.421 (7)C24—C201.429 (10)
C12—C111.426 (7)C24—H240.9300
C12—H120.9300C22—H220.9300
C14—C151.419 (7)C20—H200.9300
C10—Fe1—C2120.04 (19)C15—C14—C13108.1 (4)
C10—Fe1—C940.4 (2)C15—C14—Fe270.7 (3)
C2—Fe1—C9106.99 (19)C13—C14—Fe269.1 (3)
C10—Fe1—C1157.31 (19)C15—C14—H14125.9
C2—Fe1—C141.38 (19)C13—C14—H14126.1
C9—Fe1—C1122.9 (2)Fe2—C14—H14125.5
C10—Fe1—C868.3 (2)O2—C18—C13120.2 (5)
C2—Fe1—C8124.7 (2)O2—C18—C19121.5 (5)
C9—Fe1—C840.7 (2)C13—C18—C19118.3 (4)
C1—Fe1—C8109.2 (2)C4—C3—C2108.7 (4)
C10—Fe1—C5159.2 (2)C4—C3—Fe169.9 (3)
C2—Fe1—C569.28 (18)C2—C3—Fe169.3 (3)
C9—Fe1—C5159.4 (2)C4—C3—H3125.7
C1—Fe1—C541.03 (19)C2—C3—H3125.7
C8—Fe1—C5123.8 (2)Fe1—C3—H3126.8
C10—Fe1—C3105.8 (2)C17—C13—C14107.8 (4)
C2—Fe1—C340.6 (2)C17—C13—C18124.0 (4)
C9—Fe1—C3122.8 (2)C14—C13—C18127.9 (4)
C1—Fe1—C368.5 (2)C17—C13—Fe270.4 (3)
C8—Fe1—C3160.3 (2)C14—C13—Fe269.6 (3)
C5—Fe1—C368.3 (2)C18—C13—Fe2121.0 (3)
C10—Fe1—C1268.47 (19)C12—C11—C10107.4 (4)
C2—Fe1—C12161.9 (2)C12—C11—Fe169.9 (3)
C9—Fe1—C1268.31 (19)C10—C11—Fe169.0 (2)
C1—Fe1—C12125.36 (19)C12—C11—H11126.3
C8—Fe1—C1240.6 (2)C10—C11—H11126.3
C5—Fe1—C12108.64 (19)Fe1—C11—H11126.6
C3—Fe1—C12156.7 (2)C14—C15—C16107.8 (4)
C10—Fe1—C1140.9 (2)C14—C15—Fe268.7 (3)
C2—Fe1—C11155.59 (19)C16—C15—Fe269.6 (3)
C9—Fe1—C1168.43 (19)C14—C15—H15126.2
C1—Fe1—C11161.07 (19)C16—C15—H15126.0
C8—Fe1—C1168.4 (2)Fe2—C15—H15127.4
C5—Fe1—C11123.43 (19)C4—C5—C1107.9 (4)
C3—Fe1—C11120.3 (2)C4—C5—Fe170.1 (3)
C12—Fe1—C1140.69 (19)C1—C5—Fe169.2 (2)
C10—Fe1—C4122.5 (2)C4—C5—H5126.0
C2—Fe1—C468.71 (19)C1—C5—H5126.1
C9—Fe1—C4158.9 (2)Fe1—C5—H5126.8
C1—Fe1—C468.33 (19)C10—C9—C8108.4 (4)
C8—Fe1—C4158.4 (2)C10—C9—Fe169.7 (3)
C5—Fe1—C440.2 (2)C8—C9—Fe170.2 (3)
C3—Fe1—C440.65 (19)C10—C9—H9125.9
C12—Fe1—C4122.0 (2)C8—C9—H9125.6
C11—Fe1—C4106.5 (2)Fe1—C9—H9125.8
C20—Fe2—C2441.3 (3)C16—C17—C13107.8 (4)
C20—Fe2—C13108.2 (2)C16—C17—Fe270.1 (3)
C24—Fe2—C13122.7 (3)C13—C17—Fe268.5 (3)
C20—Fe2—C2139.5 (3)C16—C17—H17126.0
C24—Fe2—C2167.7 (3)C13—C17—H17126.2
C13—Fe2—C21124.3 (2)Fe2—C17—H17126.6
C20—Fe2—C14122.3 (2)C9—C8—C12107.8 (4)
C24—Fe2—C14158.9 (3)C9—C8—Fe169.2 (3)
C13—Fe2—C1441.24 (19)C12—C8—Fe169.9 (3)
C21—Fe2—C14108.0 (2)C9—C8—H8126.1
C20—Fe2—C2368.0 (3)C12—C8—H8126.1
C24—Fe2—C2340.5 (3)Fe1—C8—H8126.8
C13—Fe2—C23158.7 (2)C5—C4—C3108.3 (4)
C21—Fe2—C2367.1 (2)C5—C4—Fe169.7 (3)
C14—Fe2—C23158.8 (3)C3—C4—Fe169.4 (3)
C20—Fe2—C2266.6 (3)C5—C4—H4125.7
C24—Fe2—C2267.6 (3)C3—C4—H4126.0
C13—Fe2—C22159.6 (2)Fe1—C4—H4126.8
C21—Fe2—C2239.3 (2)C17—C16—C15108.6 (4)
C14—Fe2—C22123.1 (2)C17—C16—Fe269.6 (3)
C23—Fe2—C2240.1 (3)C15—C16—Fe269.9 (3)
C20—Fe2—C17125.1 (2)C17—C16—H16125.8
C24—Fe2—C17107.9 (2)C15—C16—H16125.6
C13—Fe2—C1741.04 (18)Fe2—C16—H16126.1
C21—Fe2—C17160.9 (2)C6—C7—Cl1116.1 (4)
C14—Fe2—C1768.89 (19)C6—C7—H7A108.1
C23—Fe2—C17122.6 (2)Cl1—C7—H7A108.6
C22—Fe2—C17158.2 (2)C6—C7—H7B107.8
C20—Fe2—C16161.0 (3)Cl1—C7—H7B108.6
C24—Fe2—C16123.5 (3)H7A—C7—H7B107.5
C13—Fe2—C1668.5 (2)C22—C23—C24107.5 (5)
C21—Fe2—C16157.7 (2)C22—C23—Fe270.2 (3)
C14—Fe2—C1668.4 (2)C24—C23—Fe269.1 (3)
C23—Fe2—C16107.8 (2)C22—C23—H23125.8
C22—Fe2—C16122.9 (2)C24—C23—H23126.8
C17—Fe2—C1640.3 (2)Fe2—C23—H23126.2
C20—Fe2—C15157.4 (3)C22—C21—C20109.4 (6)
C24—Fe2—C15159.4 (3)C22—C21—Fe270.7 (3)
C13—Fe2—C1568.7 (2)C20—C21—Fe270.1 (3)
C21—Fe2—C15122.5 (2)C22—C21—H21125.4
C14—Fe2—C1540.61 (19)C20—C21—H21125.3
C23—Fe2—C15123.1 (2)Fe2—C21—H21126.0
C22—Fe2—C15107.9 (2)O1—C6—C1122.1 (5)
C17—Fe2—C1568.2 (2)O1—C6—C7121.9 (5)
C16—Fe2—C1540.5 (2)C1—C6—C7116.0 (4)
C9—C10—C11108.4 (4)C18—C19—H19A109.1
C9—C10—Fe169.9 (3)C18—C19—H19B110.3
C11—C10—Fe170.1 (3)H19A—C19—H19B109.5
C9—C10—H10125.8C18—C19—H19C109.1
C11—C10—H10125.8H19A—C19—H19C109.5
Fe1—C10—H10125.9H19B—C19—H19C109.5
C5—C1—C2107.8 (4)C20—C24—C23106.8 (5)
C5—C1—C6125.6 (4)C20—C24—Fe269.7 (3)
C2—C1—C6126.4 (4)C23—C24—Fe270.3 (3)
C5—C1—Fe169.8 (3)C20—C24—H24126.4
C2—C1—Fe169.1 (2)C23—C24—H24126.8
C6—C1—Fe1122.9 (3)Fe2—C24—H24125.0
C3—C2—C1107.3 (4)C21—C22—C23108.7 (6)
C3—C2—Fe170.2 (3)C21—C22—Fe270.0 (3)
C1—C2—Fe169.5 (2)C23—C22—Fe269.7 (3)
C3—C2—H2126.6C21—C22—H22125.3
C1—C2—H2126.1C23—C22—H22126.0
Fe1—C2—H2125.5Fe2—C22—H22126.1
C8—C12—C11108.0 (4)C21—C20—C24107.7 (6)
C8—C12—Fe169.5 (3)C21—C20—Fe270.5 (3)
C11—C12—Fe169.4 (3)C24—C20—Fe269.0 (3)
C8—C12—H12125.8C21—C20—H20126.1
C11—C12—H12126.1C24—C20—H20126.3
Fe1—C12—H12126.1Fe2—C20—H20125.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.513.333 (6)148
C14—H14···O2ii0.932.633.424 (6)144
C20—H20···Cl10.932.763.602 (8)152
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C7H6ClO)][Fe(C5H5)(C7H7O)]
Mr490.56
Crystal system, space groupMonoclinic, P2/c
Temperature (K)150
a, b, c (Å)15.2981 (11), 5.7338 (3), 24.4051 (12)
β (°) 112.031 (7)
V3)1984.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.791, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
9948, 4502, 3232
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.151, 0.97
No. of reflections4502
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 1.22

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.513.333 (6)148
C14—H14···O2ii0.932.633.424 (6)144
C20—H20···Cl10.932.763.602 (8)152
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y1, z.
Selected geometric parameters (Å, °). top
2-Chloro-1-ferrocenylethanoneAcetylferrocene
Fe1···Cg11.643 (1)Fe2···Cg31.646 (2)
Fe1···Cg21.648 (2)Fe2···Cg41.653 (3)
Cg1···Fe1···Cg2178.06 (11)Cg3···Fe2···Cg4179.11 (15)
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C5, C8–C12, C13–C17 and C20–C24 rings, respectively.
 

Acknowledgements

Financial support from the Czech Science Foundation (GA 104/09/0529) and the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501) is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1994). J. Appl. Cryst. 27, 1045–1050.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationFerreira, A. P., da Silva, J. L. F., Duarte, M. T., de Piedade, M. F. M., Robalo, M. P., Harjivan, S. G., Marzano, C., Gandin, V. & Marques, M. M. (2009). Organometallics, 28, 5412–5423.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. W. (1998). COLLECT. Nonius: Delft, The Netherlands.  Google Scholar
First citationKalenda, P., Veselý, D., Kalendová, A. & Šťáva, V. (2010). Pigm. Resin Technol. 39, 342–347.  Web of Science CrossRef CAS Google Scholar
First citationKhrustalev, V. N., Nikitin, L. N., Vasil'kov, A. Y. & Khoklov, A. R. (2006). Russ. Chem. Bull. 55, 576–578.  Web of Science CrossRef CAS Google Scholar
First citationMcAdam, C. J., Robinson, B. H. & Simpson, J. (2006). Acta Cryst. E62, m2354–m2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361–2365.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtáva, V., Erben, M., Veselý, D. & Kalenda, P. (2007). J. Phys. Chem. Solids, 68, 799–802.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds