metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-[(thio­phen-2-ylmeth­yl)imino­meth­yl]pyridine-κ2N,N′}palladium(II)

aUniversity of the Western Cape, Cape Town, Bellville 7535, South Africa
*Correspondence e-mail: monani@uwc.ac.za

(Received 28 August 2011; accepted 13 September 2011; online 17 September 2011)

In the title compound, [PdCl2(C11H10N2S)], the PdII ion is four-coordinated in a distorted square-planar environment by two N atoms of the chelating 2-[(thio­phen-2-ylmeth­yl)imino­meth­yl]pyridine ligand and two chloride anions. The thio­phene ring is rotationally disordered over two orientations in a 1:1 ratio. The crystal packing exhibits weak inter­molecular C—H⋯Cl and C—H⋯S hydrogen bonds.

Related literature

For the synthesis of imino­pyridyl ligands and their transition metal-based complexes, see: Zhang et al. (2006[Zhang, W., Sun, W.-H., Wu, B., Zhang, S., Ma, H., Li, Y., Cheng, J. & Hao, P. (2006). J. Organomet. Chem. 691, 4759-4767.]); Bianchini et al. (2010[Bianchini, C., Giambastiani, G., Luconi, L. & Meli, A. (2010). Coord. Chem. Rev. 254, 431-455.]). For related structures, see: Doherty et al. (2002[Doherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R. J. & Clegg, W. (2002). J. Organomet. Chem. 650, 231-248.]); Ojwach et al. (2009[Ojwach, S. O., Guzei, I. A. & Darkwa, J. (2009). J. Organomet. Chem. 694, 1393-1399.]); Motswainyana et al. (2011[Motswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574-2580.]). For similar structures with nickel, see: Britovsek et al. (2003[Britovsek, G. J. P., Baugh, S. P. D., Hoarau, O., Gibson, V. C., Wass, D. F., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 345, 279-291.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C11H10N2S)]

  • Mr = 379.57

  • Monoclinic, P 21 /c

  • a = 8.0061 (19) Å

  • b = 17.768 (4) Å

  • c = 8.864 (2) Å

  • β = 98.353 (3)°

  • V = 1247.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 100 K

  • 0.24 × 0.19 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.887

  • 6411 measured reflections

  • 2656 independent reflections

  • 2238 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.144

  • S = 1.07

  • 2656 reflections

  • 149 parameters

  • 26 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl15i 0.95 2.70 3.508 (6) 143
C6B—H6B⋯Cl16ii 0.95 2.74 3.622 (14) 155
C7A—H7A⋯S8Aiii 0.95 2.69 3.468 (12) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-11.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen based ligands have attracted considerable interest due to their stability and various activities (Bianchini et al., 2010; Zhang et al., 2006). These ligands can be complexed to various transition metals to form stable metal complexes which exhibit different colours and geometries (Bianchini et al., 2010; Britovsek et al., 2003; Motswainyana et al., 2011). Herewith we present the crystal stucture of the title compound (I).

The asymmetric unit of (I) contains one molecule of the PdII complex (Fig 1). All bond lengths and angles are normal and comparable with those observed in the related complexes (Zhang et al., 2006; Motswainyana et al., 2011; Doherty et al., 2002). PdII ion has a distorted square planar environment being coordinated by the N,N'-bidentate ligand and two Cl anios. The Pd – Cl bond length trans to the pyridyl N atom is slightly longer than the Pd – Cl bond length trans to the amine N atom showing the stronger trans influence of the pyridyl group compared to the secondary amine.

The crystal packing exhibits weak intermolecular C—H···Cl and C—H···S hydrogen bonds (Table 1).

Related literature top

For the synthesis of iminopyridyl ligands and their transition metal-based complexes, see: Zhang et al. (2006); Bianchini et al. (2010). For related structures, see: Doherty et al. (2002); Ojwach et al. (2009); Motswainyana et al. (2011). For similar structures with nickel, see: Britovsek et al. (2003).

Experimental top

To a solution of [PdCl2(cod)] (0.10 g, 0.35 mmol) in CH2Cl2 (15 ml) was added a solution of 1-phenyl-N-(2-thienylmethyl)methanimine (0.07 g, 0.35 mmol) in CH2Cl2 (5 ml). The solution was stirred for 6 h to give a light yellow precipitate. The precipitate was filtered to obtain a light yellow solid. Recrystallization from a mixture of CH2Cl2: hexane solution afforded single crystals suitable for X-ray analysis. Yield = 0.110 g (85%).

Refinement top

All hydrogen atoms were placed at idealized positions with d(C—H) = 0.95-0.99 Å and refined as riding on their parent atoms, with Uiso (H) = 1.2 – 1.5 Ueq (C). The thiophene ring was treated as rotationally disordered over two orientations in a ratio 1:1.

Structure description top

Nitrogen based ligands have attracted considerable interest due to their stability and various activities (Bianchini et al., 2010; Zhang et al., 2006). These ligands can be complexed to various transition metals to form stable metal complexes which exhibit different colours and geometries (Bianchini et al., 2010; Britovsek et al., 2003; Motswainyana et al., 2011). Herewith we present the crystal stucture of the title compound (I).

The asymmetric unit of (I) contains one molecule of the PdII complex (Fig 1). All bond lengths and angles are normal and comparable with those observed in the related complexes (Zhang et al., 2006; Motswainyana et al., 2011; Doherty et al., 2002). PdII ion has a distorted square planar environment being coordinated by the N,N'-bidentate ligand and two Cl anios. The Pd – Cl bond length trans to the pyridyl N atom is slightly longer than the Pd – Cl bond length trans to the amine N atom showing the stronger trans influence of the pyridyl group compared to the secondary amine.

The crystal packing exhibits weak intermolecular C—H···Cl and C—H···S hydrogen bonds (Table 1).

For the synthesis of iminopyridyl ligands and their transition metal-based complexes, see: Zhang et al. (2006); Bianchini et al. (2010). For related structures, see: Doherty et al. (2002); Ojwach et al. (2009); Motswainyana et al. (2011). For similar structures with nickel, see: Britovsek et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atomic numbering and 50% probability displacement ellipsoids. For the rotationally disordered thiophene ring only one orientation is shown.
Dichlorido{2-[(thiophen-2-ylmethyl)iminomethyl]pyridine- κ2N,N'}palladium(II) top
Crystal data top
[PdCl2(C11H10N2S)]F(000) = 744
Mr = 379.57Dx = 2.021 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3002 reflections
a = 8.0061 (19) Åθ = 2.3–27.6°
b = 17.768 (4) ŵ = 2.06 mm1
c = 8.864 (2) ÅT = 100 K
β = 98.353 (3)°Plate, yellow
V = 1247.6 (5) Å30.24 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2656 independent reflections
Radiation source: fine-focus sealed tube2238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.638, Tmax = 0.887k = 2222
6411 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.096P)2]
where P = (Fo2 + 2Fc2)/3
2656 reflections(Δ/σ)max = 0.017
149 parametersΔρmax = 0.96 e Å3
26 restraintsΔρmin = 0.98 e Å3
Crystal data top
[PdCl2(C11H10N2S)]V = 1247.6 (5) Å3
Mr = 379.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0061 (19) ŵ = 2.06 mm1
b = 17.768 (4) ÅT = 100 K
c = 8.864 (2) Å0.24 × 0.19 × 0.06 mm
β = 98.353 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2238 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.887Rint = 0.036
6411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04226 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.07Δρmax = 0.96 e Å3
2656 reflectionsΔρmin = 0.98 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.30571 (5)0.01089 (2)0.58087 (4)0.01686 (18)
Cl150.40550 (17)0.08117 (7)0.79082 (15)0.0254 (3)
Cl160.16329 (16)0.11300 (7)0.46964 (15)0.0238 (3)
N20.2291 (5)0.0612 (2)0.4078 (5)0.0179 (9)
N90.4236 (5)0.0838 (2)0.6682 (5)0.0167 (8)
C10.2820 (6)0.1286 (3)0.4327 (6)0.0186 (10)
H10.25210.16690.35900.022*
C30.1145 (6)0.0400 (3)0.2666 (6)0.0211 (10)
H3A0.15630.00780.22850.025*
H3B0.00160.02980.29500.025*
C100.3879 (6)0.1454 (3)0.5747 (6)0.0208 (10)
C110.4519 (6)0.2153 (3)0.6190 (6)0.0218 (11)
H110.42430.25770.55480.026*
C120.5564 (7)0.2239 (3)0.7569 (6)0.0225 (11)
H120.60090.27200.78810.027*
C130.5949 (7)0.1613 (3)0.8484 (6)0.0219 (10)
H130.66900.16530.94200.026*
C140.5223 (6)0.0922 (3)0.8001 (6)0.0203 (10)
H140.54490.04960.86470.024*
S8A0.0145 (4)0.1806 (2)0.1442 (4)0.0239 (7)*0.50
C4A0.095 (2)0.0978 (8)0.1389 (14)0.024 (9)*0.50
C5A0.1525 (17)0.0901 (7)0.0021 (15)0.029 (4)*0.50
H5A0.21280.04730.02870.035*0.50
C6A0.1126 (18)0.1522 (8)0.1017 (14)0.018 (4)*0.50
H6A0.14390.15640.20070.021*0.50
C7A0.0239 (15)0.2047 (6)0.0361 (13)0.016 (3)*0.50
H7A0.01370.25060.08480.019*0.50
S8B0.1827 (5)0.07989 (19)0.0198 (4)0.0248 (8)*0.50
C4B0.093 (3)0.0937 (10)0.1403 (18)0.011 (12)*0.50
C5B0.0011 (15)0.1601 (7)0.1324 (13)0.025 (3)*0.50
H5B0.05830.17730.21110.030*0.50
C6B0.0055 (17)0.1999 (8)0.0075 (15)0.030 (4)*0.50
H6B0.04960.24660.03270.036*0.50
C7B0.098 (2)0.1628 (9)0.0980 (19)0.037 (6)*0.50
H7B0.11440.18040.19590.045*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0192 (3)0.0166 (3)0.0149 (3)0.00044 (13)0.00286 (17)0.00049 (13)
Cl150.0346 (7)0.0195 (6)0.0212 (7)0.0002 (5)0.0014 (5)0.0049 (5)
Cl160.0279 (7)0.0199 (6)0.0233 (7)0.0034 (5)0.0028 (5)0.0032 (5)
N20.016 (2)0.024 (2)0.014 (2)0.0025 (17)0.0029 (16)0.0014 (16)
N90.016 (2)0.019 (2)0.015 (2)0.0022 (15)0.0009 (16)0.0031 (15)
C10.022 (3)0.020 (2)0.014 (2)0.0006 (19)0.0036 (19)0.0013 (18)
C30.021 (3)0.021 (2)0.022 (3)0.002 (2)0.002 (2)0.003 (2)
C100.017 (2)0.023 (2)0.023 (3)0.0010 (19)0.004 (2)0.003 (2)
C110.024 (3)0.022 (2)0.019 (3)0.001 (2)0.003 (2)0.004 (2)
C120.028 (3)0.018 (2)0.021 (3)0.000 (2)0.005 (2)0.0017 (19)
C130.023 (3)0.027 (3)0.015 (2)0.002 (2)0.0009 (19)0.001 (2)
C140.021 (3)0.019 (2)0.022 (3)0.0049 (19)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Pd1—N22.024 (4)C13—C141.400 (7)
Pd1—N92.027 (4)C13—H130.9500
Pd1—Cl152.2866 (13)C14—H140.9500
Pd1—Cl162.2885 (13)S8A—C4A1.715 (13)
N2—C11.279 (6)S8A—C7A1.725 (11)
N2—C31.489 (6)C4A—C5A1.402 (14)
N9—C141.321 (7)C5A—C6A1.420 (14)
N9—C101.378 (6)C5A—H5A0.9500
C1—C101.443 (7)C6A—C7A1.354 (14)
C1—H10.9500C6A—H6A0.9500
C3—C4B1.462 (13)C7A—H7A0.9500
C3—C4A1.519 (12)S8B—C4B1.698 (14)
C3—H3A0.9900S8B—C7B1.726 (14)
C3—H3B0.9900C4B—C5B1.388 (15)
C10—C111.379 (7)C5B—C6B1.432 (14)
C11—C121.386 (7)C5B—H5B0.9500
C11—H110.9500C6B—C7B1.340 (15)
C12—C131.385 (7)C6B—H6B0.9500
C12—H120.9500C7B—H7B0.9500
N2—Pd1—N980.64 (16)C12—C13—C14118.6 (5)
N2—Pd1—Cl15173.71 (12)C12—C13—H13120.7
N9—Pd1—Cl1593.10 (12)C14—C13—H13120.7
N2—Pd1—Cl1695.62 (13)N9—C14—C13122.6 (5)
N9—Pd1—Cl16176.22 (11)N9—C14—H14118.7
Cl15—Pd1—Cl1690.63 (5)C13—C14—H14118.7
C1—N2—C3122.0 (4)C4A—S8A—C7A91.6 (5)
C1—N2—Pd1113.9 (3)C5A—C4A—C3125.9 (10)
C3—N2—Pd1124.0 (3)C5A—C4A—S8A110.1 (9)
C14—N9—C10119.2 (4)C3—C4A—S8A123.9 (8)
C14—N9—Pd1128.1 (3)C4A—C5A—C6A113.9 (11)
C10—N9—Pd1112.7 (3)C4A—C5A—H5A123.2
N2—C1—C10118.8 (4)C6A—C5A—H5A122.9
N2—C1—H1120.6C7A—C6A—C5A110.7 (11)
C10—C1—H1120.6C7A—C6A—H6A124.7
C4B—C3—N2117.9 (10)C5A—C6A—H6A124.7
N2—C3—C4A116.2 (8)C6A—C7A—S8A113.7 (9)
C4B—C3—H3A108.0C6A—C7A—H7A123.2
N2—C3—H3A107.8S8A—C7A—H7A123.1
C4A—C3—H3A109.4C4B—S8B—C7B91.3 (7)
C4B—C3—H3B107.6C5B—C4B—C3126.5 (11)
N2—C3—H3B107.8C5B—C4B—S8B111.5 (9)
C4A—C3—H3B108.1C3—C4B—S8B122.0 (10)
H3A—C3—H3B107.2C4B—C5B—C6B112.6 (11)
N9—C10—C11120.6 (5)C4B—C5B—H5B123.7
N9—C10—C1113.9 (4)C6B—C5B—H5B123.7
C11—C10—C1125.6 (5)C7B—C6B—C5B111.1 (12)
C10—C11—C12120.2 (5)C7B—C6B—H6B124.5
C10—C11—H11119.9C5B—C6B—H6B124.4
C12—C11—H11119.9C6B—C7B—S8B113.5 (11)
C13—C12—C11118.8 (5)C6B—C7B—H7B123.2
C13—C12—H12120.6S8B—C7B—H7B123.2
C11—C12—H12120.6
N9—Pd1—N2—C11.8 (3)Pd1—N9—C14—C13179.1 (4)
Cl16—Pd1—N2—C1177.6 (3)C12—C13—C14—N92.5 (8)
N9—Pd1—N2—C3178.8 (4)C4B—C3—C4A—C5A50 (37)
Cl16—Pd1—N2—C30.6 (4)N2—C3—C4A—C5A112.1 (13)
N2—Pd1—N9—C14179.2 (4)C4B—C3—C4A—S8A126 (39)
Cl15—Pd1—N9—C141.4 (4)N2—C3—C4A—S8A71.9 (14)
N2—Pd1—N9—C102.5 (3)C7A—S8A—C4A—C5A1.8 (10)
Cl15—Pd1—N9—C10176.8 (3)C7A—S8A—C4A—C3178.4 (14)
C3—N2—C1—C10177.8 (4)C3—C4A—C5A—C6A178.5 (15)
Pd1—N2—C1—C100.7 (6)S8A—C4A—C5A—C6A2.0 (13)
C1—N2—C3—C4B13.7 (10)C4A—C5A—C6A—C7A1.0 (14)
Pd1—N2—C3—C4B169.5 (8)C5A—C6A—C7A—S8A0.4 (13)
C1—N2—C3—C4A13.0 (8)C4A—S8A—C7A—C6A1.3 (11)
Pd1—N2—C3—C4A170.2 (6)N2—C3—C4B—C5B74 (2)
C14—N9—C10—C111.0 (7)C4A—C3—C4B—C5B56 (37)
Pd1—N9—C10—C11177.4 (4)N2—C3—C4B—S8B106.1 (15)
C14—N9—C10—C1178.7 (4)C4A—C3—C4B—S8B124 (39)
Pd1—N9—C10—C12.9 (5)C7B—S8B—C4B—C5B0.0 (14)
N2—C1—C10—N91.5 (7)C7B—S8B—C4B—C3179.7 (18)
N2—C1—C10—C11178.7 (5)C3—C4B—C5B—C6B179.9 (19)
N9—C10—C11—C121.5 (8)S8B—C4B—C5B—C6B0.2 (15)
C1—C10—C11—C12178.2 (5)C4B—C5B—C6B—C7B0.4 (15)
C10—C11—C12—C130.0 (8)C5B—C6B—C7B—S8B0.4 (17)
C11—C12—C13—C142.0 (8)C4B—S8B—C7B—C6B0.2 (16)
C10—N9—C14—C131.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl15i0.952.703.508 (6)143
C6B—H6B···Cl16ii0.952.743.622 (14)155
C7A—H7A···S8Aiii0.952.693.468 (12)139
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[PdCl2(C11H10N2S)]
Mr379.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0061 (19), 17.768 (4), 8.864 (2)
β (°) 98.353 (3)
V3)1247.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.24 × 0.19 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.638, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
6411, 2656, 2238
Rint0.036
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.144, 1.07
No. of reflections2656
No. of parameters149
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.98

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl15i0.952.703.508 (6)143
C6B—H6B···Cl16ii0.952.743.622 (14)155
C7A—H7A···S8Aiii0.952.693.468 (12)139
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

We acknowledge financial support from the Botswanan Government (WMM) and the University of the Western Cape Senate Research and NRF (Thuthuka).

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–11.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBianchini, C., Giambastiani, G., Luconi, L. & Meli, A. (2010). Coord. Chem. Rev. 254, 431–455.  Web of Science CrossRef CAS Google Scholar
First citationBritovsek, G. J. P., Baugh, S. P. D., Hoarau, O., Gibson, V. C., Wass, D. F., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 345, 279–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R. J. & Clegg, W. (2002). J. Organomet. Chem. 650, 231–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574-2580.  Web of Science CSD CrossRef CAS Google Scholar
First citationOjwach, S. O., Guzei, I. A. & Darkwa, J. (2009). J. Organomet. Chem. 694, 1393–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Sun, W.-H., Wu, B., Zhang, S., Ma, H., Li, Y., Cheng, J. & Hao, P. (2006). J. Organomet. Chem. 691, 4759–4767.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds