metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­nickel(II)]-μ-4,4′-bi­pyridyl-κ2N:N′] 3,3′-(p-phenyl­ene)diacrylate]

aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China
*Correspondence e-mail: niyali@chnu.edu.cn

(Received 4 September 2011; accepted 12 September 2011; online 17 September 2011)

In the title compound, {[Ni(C10H8N2)(H2O)4](C12H8O4)}n, the NiII, 4,4′-bipyridyl (bipy) and 3,3′-(p-phenyl­ene)diacrylate (L2−) moieties are situated on inversion centres. The bipy ligands bridge NiII ions into positively charged polymeric chains along [101]. The NiII atom is coordinated by two N atoms from two bipy ligands and four water mol­ecules in a distorted octa­hedral geometry. L2− anions inter­act with the polymeric chains via O–H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For a metal-organic complex with bipy and L2− ligands, see: Huang et al. (2008[Huang, K. L., Zuo, Y. Q., Sun, J., Chen, X., Miao, H. J., Liu, X. & Xu, H. (2008). Chin. J. Struct. Chem. 27, 1393-1397.]). For related Ni complexes, see: Batten & Harris (2001[Batten, S. R. & Harris, A. R. (2001). Acta Cryst. E57, m7-m8.]); Dong (2009[Dong, L. Y. (2009). Acta Cryst. E65, m962-m963.]); Li et al. (2010[Li, C. P., Yu, Q., Chen, J. & Du, M. (2010). Cryst. Growth Des. 10, 2650-2660.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H8N2)(H2O)4](C12H8O4)

  • Mr = 503.12

  • Triclinic, [P \overline 1]

  • a = 7.0867 (14) Å

  • b = 7.3614 (15) Å

  • c = 10.418 (2) Å

  • α = 95.51 (3)°

  • β = 102.51 (3)°

  • γ = 97.27 (3)°

  • V = 522.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 223 K

  • 0.40 × 0.40 × 0.25 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.694, Tmax = 0.791

  • 4910 measured reflections

  • 1884 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.07

  • 1884 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2W⋯O3 0.84 (3) 1.90 (3) 2.734 (2) 170 (3)
O1—H1W⋯O3i 0.79 (3) 1.90 (3) 2.683 (2) 171 (3)
O2—H3W⋯O4ii 0.85 (3) 1.86 (3) 2.701 (2) 172 (3)
O2—H4W⋯O4iii 0.82 (3) 1.95 (3) 2.754 (2) 167 (3)
Symmetry codes: (i) -x, -y+2, -z; (ii) x+1, y, z; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, supramolecular frameworks have attracted considerable attention because of their intriguing architectures and potential applications (Li et al., 2010). Polycarboxylates and dipyridyl ligands have proved to be good linkers for the construction of supramolecular compounds (Li et al., 2010). In this paper, we report the hydrothermal synthesis and structure of a supramolecular compound assembled by the mixed ligands of 4,4'-bipyridyl (bipy) and 3,3'-(1,4-phenylene)-diacrylate (L2-), respectively.

The aymmetric unit of the title compound (I) (Fig. 1) contains half of a [Ni(H2O)4(bipy)] unit, half of a L2- anion (L2- = 3,3'-(1,4-phenylene)-diacrylate) and two water molecules. Each Ni center has a distorted octahedral environment being coordinated by four water molecules at the basal positions and two N atoms from two different bipy ligand at the apical position. The Ni–O and Ni–N bond lengths are comparable with those in reported Ni-complexes (Batten & Harris, 2001; Dong, 2009; Li et al., 2010). The Ni centers are bridged by bipy ligands to form one-dimensional [Ni(H2O)4(bipy)]n polymeric chain (Fig. 2). The adjacent chains are further interconnected by the L2- ligands via intermolecular O—H···O hydrogen bonds (Table 1) to form a three-dimensional supramolecular framework (Fig. 3).

Related literature top

For a metal-organic complex with bipy and L2- ligands, see: Huang et al. (2008). For related Ni complexes, see: Batten & Harris (2001); Dong (2009); Li et al. (2010).

Experimental top

10 mL Pyrex glass tube was loaded by NiCl2.6H2O (24 mg, 0.1 mmol), 3,3'-(1,4-phenylene)-diacrylic acid (22 mg, 0.1 mmol), 4,4'-bipyridyl (16 mg, 0.1 mmol), and 3 ml of H2O. The tube was sealed and heated in an oven to 170°C for 3 d, and then cooled to ambient temperature at the rate of 5°C h-1 to form blue crystals.

Refinement top

The H atoms of the coordinated water molecules were located on a difference Fourier map and isotropically refined. All the rest H atoms were placed in geometrically idealized positions (C–H = 0.94 Å) and constrained to ride on their parent atoms with, Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, supramolecular frameworks have attracted considerable attention because of their intriguing architectures and potential applications (Li et al., 2010). Polycarboxylates and dipyridyl ligands have proved to be good linkers for the construction of supramolecular compounds (Li et al., 2010). In this paper, we report the hydrothermal synthesis and structure of a supramolecular compound assembled by the mixed ligands of 4,4'-bipyridyl (bipy) and 3,3'-(1,4-phenylene)-diacrylate (L2-), respectively.

The aymmetric unit of the title compound (I) (Fig. 1) contains half of a [Ni(H2O)4(bipy)] unit, half of a L2- anion (L2- = 3,3'-(1,4-phenylene)-diacrylate) and two water molecules. Each Ni center has a distorted octahedral environment being coordinated by four water molecules at the basal positions and two N atoms from two different bipy ligand at the apical position. The Ni–O and Ni–N bond lengths are comparable with those in reported Ni-complexes (Batten & Harris, 2001; Dong, 2009; Li et al., 2010). The Ni centers are bridged by bipy ligands to form one-dimensional [Ni(H2O)4(bipy)]n polymeric chain (Fig. 2). The adjacent chains are further interconnected by the L2- ligands via intermolecular O—H···O hydrogen bonds (Table 1) to form a three-dimensional supramolecular framework (Fig. 3).

For a metal-organic complex with bipy and L2- ligands, see: Huang et al. (2008). For related Ni complexes, see: Batten & Harris (2001); Dong (2009); Li et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 2, -y + 2, -z + 1; (iii) x - 1, y, z - 1; (iv) -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. View of the positively charged polymeric chain in (I).
[Figure 3] Fig. 3. View of the three-dimensional supramolecular network of the title compound. The green dashed lines represent intermolecular hydrogen bonds.
catena-Poly[[[tetraaquanickel(II)]-µ-4,4'-bipyridyl- κ2N:N'] 3,3'-(p-phenylene)diacrylate] top
Crystal data top
[Ni(C10H8N2)(H2O)4](C12H8O4)Z = 1
Mr = 503.12F(000) = 262
Triclinic, P1Dx = 1.600 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0867 (14) ÅCell parameters from 2063 reflections
b = 7.3614 (15) Åθ = 3.2–25.4°
c = 10.418 (2) ŵ = 0.98 mm1
α = 95.51 (3)°T = 223 K
β = 102.51 (3)°Block, blue
γ = 97.27 (3)°0.40 × 0.40 × 0.25 mm
V = 522.0 (2) Å3
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1884 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.694, Tmax = 0.791k = 87
4910 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.2568P]
where P = (Fo2 + 2Fc2)/3
1884 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C10H8N2)(H2O)4](C12H8O4)γ = 97.27 (3)°
Mr = 503.12V = 522.0 (2) Å3
Triclinic, P1Z = 1
a = 7.0867 (14) ÅMo Kα radiation
b = 7.3614 (15) ŵ = 0.98 mm1
c = 10.418 (2) ÅT = 223 K
α = 95.51 (3)°0.40 × 0.40 × 0.25 mm
β = 102.51 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1884 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1807 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.791Rint = 0.018
4910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.41 e Å3
1884 reflectionsΔρmin = 0.36 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.01822 (12)
N10.6792 (2)1.0320 (2)0.19330 (14)0.0216 (3)
O10.2663 (2)1.0289 (2)0.08405 (13)0.0259 (3)
H1W0.209 (4)1.105 (4)0.052 (3)0.044 (8)*
H2W0.182 (4)0.935 (4)0.075 (3)0.055 (8)*
O20.4632 (2)0.72250 (19)0.01349 (16)0.0302 (3)
H3W0.565 (5)0.678 (4)0.048 (3)0.062 (9)*
H4W0.391 (4)0.643 (4)0.042 (3)0.056 (8)*
O30.03762 (19)0.74413 (19)0.03648 (14)0.0323 (3)
O40.22675 (19)0.58018 (19)0.14203 (14)0.0303 (3)
C10.6170 (3)0.9485 (3)0.28808 (19)0.0298 (4)
H10.48460.89610.27120.036*
C20.7352 (3)0.9347 (3)0.40847 (19)0.0297 (4)
H20.68320.87550.47200.036*
C30.9324 (3)1.0085 (2)0.43649 (17)0.0206 (4)
C40.9949 (3)1.0998 (3)0.33922 (18)0.0262 (4)
H41.12591.15540.35390.031*
C50.8665 (3)1.1094 (3)0.22164 (18)0.0249 (4)
H50.91271.17350.15810.030*
C60.3586 (3)0.5704 (3)0.5528 (2)0.0317 (5)
H60.26260.61810.58980.038*
C70.4735 (3)0.4638 (3)0.3653 (2)0.0325 (5)
H70.45640.43810.27300.039*
C80.3284 (3)0.5354 (3)0.41562 (19)0.0266 (4)
C90.1461 (3)0.5739 (3)0.3316 (2)0.0303 (4)
H90.04010.58400.37130.036*
C100.1196 (3)0.5953 (3)0.2054 (2)0.0308 (4)
H100.22310.57980.16420.037*
C110.0630 (3)0.6423 (3)0.12331 (19)0.0246 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01467 (17)0.02099 (18)0.01691 (18)0.00316 (12)0.00192 (12)0.00425 (12)
N10.0182 (7)0.0255 (8)0.0190 (8)0.0030 (6)0.0006 (6)0.0042 (6)
O10.0187 (7)0.0328 (8)0.0264 (7)0.0062 (7)0.0024 (6)0.0080 (6)
O20.0252 (8)0.0213 (7)0.0382 (8)0.0035 (6)0.0057 (6)0.0043 (6)
O30.0262 (7)0.0367 (8)0.0355 (8)0.0076 (6)0.0036 (6)0.0165 (7)
O40.0220 (7)0.0323 (7)0.0343 (8)0.0025 (6)0.0005 (6)0.0086 (6)
C10.0180 (9)0.0406 (12)0.0268 (10)0.0029 (8)0.0017 (8)0.0102 (9)
C20.0216 (9)0.0417 (12)0.0227 (10)0.0039 (8)0.0000 (8)0.0125 (9)
C30.0198 (9)0.0205 (9)0.0185 (9)0.0022 (7)0.0013 (7)0.0026 (7)
C40.0177 (9)0.0336 (11)0.0228 (9)0.0028 (8)0.0023 (7)0.0064 (8)
C50.0228 (9)0.0298 (10)0.0197 (9)0.0010 (8)0.0010 (7)0.0063 (8)
C60.0256 (10)0.0386 (12)0.0336 (11)0.0115 (9)0.0085 (9)0.0054 (9)
C70.0359 (11)0.0406 (12)0.0205 (10)0.0101 (9)0.0025 (8)0.0059 (9)
C80.0228 (9)0.0247 (10)0.0298 (10)0.0034 (8)0.0009 (8)0.0074 (8)
C90.0242 (10)0.0321 (11)0.0340 (11)0.0048 (8)0.0033 (8)0.0078 (9)
C100.0228 (10)0.0344 (11)0.0342 (11)0.0049 (8)0.0022 (8)0.0087 (9)
C110.0225 (9)0.0214 (9)0.0261 (10)0.0034 (7)0.0018 (8)0.0011 (8)
Geometric parameters (Å, º) top
Ni1—O2i2.0486 (14)C2—H20.9400
Ni1—O22.0487 (14)C3—C41.387 (3)
Ni1—O1i2.0582 (14)C3—C3ii1.483 (3)
Ni1—O12.0582 (14)C4—C51.372 (3)
Ni1—N1i2.1093 (16)C4—H40.9400
Ni1—N12.1093 (16)C5—H50.9400
N1—C51.334 (2)C6—C7iii1.373 (3)
N1—C11.336 (2)C6—C81.391 (3)
O1—H1W0.79 (3)C6—H60.9400
O1—H2W0.84 (3)C7—C6iii1.373 (3)
O2—H3W0.85 (3)C7—C81.389 (3)
O2—H4W0.82 (3)C7—H70.9400
O3—C111.257 (2)C8—C91.472 (3)
O4—C111.255 (2)C9—C101.314 (3)
C1—C21.370 (3)C9—H90.9400
C1—H10.9400C10—C111.489 (3)
C2—C31.391 (3)C10—H100.9400
O2i—Ni1—O2180.0C3—C2—H2120.1
O2i—Ni1—O1i90.45 (7)C4—C3—C2116.20 (16)
O2—Ni1—O1i89.55 (7)C4—C3—C3ii122.0 (2)
O2i—Ni1—O189.55 (7)C2—C3—C3ii121.8 (2)
O2—Ni1—O190.45 (7)C5—C4—C3120.40 (17)
O1i—Ni1—O1180.0C5—C4—H4119.8
O2i—Ni1—N1i86.37 (7)C3—C4—H4119.8
O2—Ni1—N1i93.63 (7)N1—C5—C4123.09 (17)
O1i—Ni1—N1i88.07 (6)N1—C5—H5118.5
O1—Ni1—N1i91.93 (6)C4—C5—H5118.5
O2i—Ni1—N193.63 (7)C7iii—C6—C8120.99 (19)
O2—Ni1—N186.37 (7)C7iii—C6—H6119.5
O1i—Ni1—N191.93 (6)C8—C6—H6119.5
O1—Ni1—N188.07 (6)C6iii—C7—C8121.49 (18)
N1i—Ni1—N1180.0C6iii—C7—H7119.3
C5—N1—C1116.72 (15)C8—C7—H7119.3
C5—N1—Ni1122.36 (12)C7—C8—C6117.51 (18)
C1—N1—Ni1120.09 (12)C7—C8—C9123.34 (18)
Ni1—O1—H1W109.4 (19)C6—C8—C9119.14 (18)
Ni1—O1—H2W116.4 (19)C10—C9—C8125.23 (19)
H1W—O1—H2W105 (3)C10—C9—H9117.4
Ni1—O2—H3W116 (2)C8—C9—H9117.4
Ni1—O2—H4W125 (2)C9—C10—C11124.51 (19)
H3W—O2—H4W109 (3)C9—C10—H10117.7
N1—C1—C2123.70 (17)C11—C10—H10117.7
N1—C1—H1118.1O4—C11—O3124.63 (17)
C2—C1—H1118.1O4—C11—C10120.49 (17)
C1—C2—C3119.80 (17)O3—C11—C10114.88 (17)
C1—C2—H2120.1
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2W···O30.84 (3)1.90 (3)2.734 (2)170 (3)
O1—H1W···O3iv0.79 (3)1.90 (3)2.683 (2)171 (3)
O2—H3W···O4v0.85 (3)1.86 (3)2.701 (2)172 (3)
O2—H4W···O4vi0.82 (3)1.95 (3)2.754 (2)167 (3)
Symmetry codes: (iv) x, y+2, z; (v) x+1, y, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H8N2)(H2O)4](C12H8O4)
Mr503.12
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.0867 (14), 7.3614 (15), 10.418 (2)
α, β, γ (°)95.51 (3), 102.51 (3), 97.27 (3)
V3)522.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.40 × 0.40 × 0.25
Data collection
DiffractometerRigaku Mercury CCD area-detector
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.694, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
4910, 1884, 1807
Rint0.018
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.07
No. of reflections1884
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2W···O30.84 (3)1.90 (3)2.734 (2)170 (3)
O1—H1W···O3i0.79 (3)1.90 (3)2.683 (2)171 (3)
O2—H3W···O4ii0.85 (3)1.86 (3)2.701 (2)172 (3)
O2—H4W···O4iii0.82 (3)1.95 (3)2.754 (2)167 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University.

References

First citationBatten, S. R. & Harris, A. R. (2001). Acta Cryst. E57, m7–m8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDong, L. Y. (2009). Acta Cryst. E65, m962–m963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, K. L., Zuo, Y. Q., Sun, J., Chen, X., Miao, H. J., Liu, X. & Xu, H. (2008). Chin. J. Struct. Chem. 27, 1393–1397.  CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, C. P., Yu, Q., Chen, J. & Du, M. (2010). Cryst. Growth Des. 10, 2650–2660.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds