metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aquaterbium(III)]-tetra­kis­(μ2-pyridine-4-carboxylato-κ2O:O′)-[di­aquaterbium(III)]-bis­(μ2-pyridine-4-carboxylato-κ2O:O′)]

aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000 Henan, People's Republic of China
*Correspondence e-mail: zhaibin1978@163.com

(Received 10 August 2011; accepted 20 September 2011; online 30 September 2011)

The title complex, [Tb2(C6H4NO2)6(H2O)4]n, was isolated under hydro­thermal conditions using the ligand pyridine-4-carb­oxy­lic acid (HL) and Tb2O3. The deprotonated L2− ligands adopt bridging coordination modes. The central TbIII atom is bridged by L2− ligands, forming a polymeric chain parallel to the a axis. Supra­molecular O—H⋯N inter­actions link the chains, building up a layer parallel to (010). O—H⋯O hydrogen bonds also occur. Two of the pyridine rings are disordered by rotation around the central C—N direction with occupancy ratios of 0.53 (1):0.47 (1).

Related literature

For the properties of metal-organic coordination polymers, see: Bradshaw et al. (2004[Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. (2004). J. Am. Chem. Soc. 126, 6106-6114.]); Singh & Roesky (2007[Singh, S. & Roesky, H. W. (2007). Dalton Trans. pp. 1360-1370.]); Rosi et al. (2002[Rosi, N. L., Eddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2002). CrystEngComm. 4, 401-404.]); Thirumurugan & Natarajan (2005[Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588-4594.]); Thirumurugan et al. (2008[Thirumurugan, A., Sanguramath, R. A. & Rao, C. N. R. (2008). Inorg. Chem. 47, 823-831.]); Forster & Cheetham (2002[Forster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457-459.]); Fan & Zhu (2007[Fan, S. R. & Zhu, L. G. (2007). Inorg. Chem. 46, 6785-6793.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(C6H4NO2)6(H2O)4]

  • Mr = 1122.52

  • Monoclinic, P 21 /c

  • a = 9.7008 (10) Å

  • b = 19.813 (2) Å

  • c = 11.6253 (12) Å

  • β = 112.009 (1)°

  • V = 2071.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.46 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS.. University of Göttingen, Germany.]) Tmin = 0.466, Tmax = 0.575

  • 11208 measured reflections

  • 4055 independent reflections

  • 2998 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.105

  • S = 1.11

  • 4055 reflections

  • 259 parameters

  • 148 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯N3i 0.84 1.96 2.787 (7) 168
O7—H72⋯N2ii 0.84 1.98 2.802 (5) 167
O8—H81⋯N1iii 0.85 2.01 2.837 (7) 163
O8—H82⋯O7iv 0.85 2.16 3.002 (5) 171
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nowadays the connection of metal-organic coordination polymers based on transition metals and multifunctional bridging ligands has proven to be a promising field due to their intriguing and beautiful topologies and potential functions in material chemistry (Singh & Roesky, 2007; Forster & Cheetham, 2002 ). Great effort has been devoted to prepare such materials (Rosi et al., 2002; Thirumurugan & Natarajan, 2005; Fan & Zhu, 2007; Bradshaw et al., 2004; Thirumurugan et al., 2008), for example, multidentate aromatic polycarboxylic acids including benzene-1,2-dicarboxylate, benzene-1,3-dicarboxylate, benzene-1,4-dicarboxylate, benzene-1,2,3-tricarboxylate, benzene-1,2,4-tricarboxylate, benzene-1,3,5- tricarboxylate and benzene-1,2,4,5-tetracarboxylate have been widely used for the syntheses of coordination polymers of transition metal ions, and the syntheses are mainly through the direct interaction between the metal ions and carboxylate groups to construct one-, two-, and three-dimensional networks in a variety of coordination modes. In general, carboxylate positions, functional groups and ligand conformations are important for syntheses of these hybrid materials. The ligand pyridine-4-carboxylic acid (H2L) has proven to be a good building block for constructing functional coordination polymers. On the other hand, Tb3+ complex is strongly fluorescent, having a large fluorescence quantum yield and very long fluorescence lifetime.

In compound I, each TbIII atom is bonded to six Oatoms from six different carboxylates (Tb–O = 2.424 (3)–2.491 (4) Å) and two water molecules (Tb–Ow = 2.531 (3)–2.559 (3) Å). The coordination geometry around Tb atom can also be described as a distorted square antiprism with O–Tb–O bond angles ranging from 70.52 (11) to 147.15 (11)°. Adjacent two Tb centers are connected together via four bridging carboxylates with the Tb···Tb distances of 4.349 Å, which are further extended by other two L2- ligand to generate an infinite chain (Figure 1) which develop parallel to the a axis. All carboxylate groups in (I) adopt bridging modes and the potential N-donor coordination site still remains free.

O-H···N supramolecular interactions link the chain to form layers parallel to the (0 1 0) plane (Table 1, Fig. 2). There are also O-H···O intramolecular hydrogen bonds within the chains (Table 1).

Related literature top

For the properties of metal-organic coordination polymers, see: Bradshaw et al. (2004); Singh & Roesky (2007); Rosi et al. (2002); Thirumurugan & Natarajan (2005); Thirumurugan et al. (2008); Forster & Cheetham (2002); Fan & Zhu (2007).

Experimental top

Synthesis of [TbL3(H2O)2]n (I). A mixture of H2L (0.3 mmol), Tb2O3(0.1 mmol) and H2O (15 mL) were placed in a 25 mL Teflon-lined steel vessel and heated to 180 °C for 5 days, then cooled to room temperature. The resulting colorless block-shaped crystals of (I) were washed several times by water and diethyl ether. Elemental analysis calcd for (I) (%): C, 38.52; H, 2.87; N, 7.49. Found: C, 38.46; H, 2.94; N,7.45. Selected IR spectra for (I): ν (cm-1) = 3449 s, 1632 s, 1401 m,745 m.

Refinement top

Two of the pyridine rings were disordered by slight rotation around the axial C—N bond. The occupancy factors of the two positions were refined restraining the sum of the occupancy factors to be equal to 1. The values obtained after refinement are 0.47 (1) and 0.53 (1). These values were then fixed and the anisotropic thermal parameters were introduced with EADP restraints (Sheldrick, 2008).

H atoms bound to C atoms were placed geometrically and treated as riding with C-H = 0.93 Å and Uiso = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement they were considered as riding on their parent O atoms.

Structure description top

Nowadays the connection of metal-organic coordination polymers based on transition metals and multifunctional bridging ligands has proven to be a promising field due to their intriguing and beautiful topologies and potential functions in material chemistry (Singh & Roesky, 2007; Forster & Cheetham, 2002 ). Great effort has been devoted to prepare such materials (Rosi et al., 2002; Thirumurugan & Natarajan, 2005; Fan & Zhu, 2007; Bradshaw et al., 2004; Thirumurugan et al., 2008), for example, multidentate aromatic polycarboxylic acids including benzene-1,2-dicarboxylate, benzene-1,3-dicarboxylate, benzene-1,4-dicarboxylate, benzene-1,2,3-tricarboxylate, benzene-1,2,4-tricarboxylate, benzene-1,3,5- tricarboxylate and benzene-1,2,4,5-tetracarboxylate have been widely used for the syntheses of coordination polymers of transition metal ions, and the syntheses are mainly through the direct interaction between the metal ions and carboxylate groups to construct one-, two-, and three-dimensional networks in a variety of coordination modes. In general, carboxylate positions, functional groups and ligand conformations are important for syntheses of these hybrid materials. The ligand pyridine-4-carboxylic acid (H2L) has proven to be a good building block for constructing functional coordination polymers. On the other hand, Tb3+ complex is strongly fluorescent, having a large fluorescence quantum yield and very long fluorescence lifetime.

In compound I, each TbIII atom is bonded to six Oatoms from six different carboxylates (Tb–O = 2.424 (3)–2.491 (4) Å) and two water molecules (Tb–Ow = 2.531 (3)–2.559 (3) Å). The coordination geometry around Tb atom can also be described as a distorted square antiprism with O–Tb–O bond angles ranging from 70.52 (11) to 147.15 (11)°. Adjacent two Tb centers are connected together via four bridging carboxylates with the Tb···Tb distances of 4.349 Å, which are further extended by other two L2- ligand to generate an infinite chain (Figure 1) which develop parallel to the a axis. All carboxylate groups in (I) adopt bridging modes and the potential N-donor coordination site still remains free.

O-H···N supramolecular interactions link the chain to form layers parallel to the (0 1 0) plane (Table 1, Fig. 2). There are also O-H···O intramolecular hydrogen bonds within the chains (Table 1).

For the properties of metal-organic coordination polymers, see: Bradshaw et al. (2004); Singh & Roesky (2007); Rosi et al. (2002); Thirumurugan & Natarajan (2005); Thirumurugan et al. (2008); Forster & Cheetham (2002); Fan & Zhu (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Partial view of the polymeric chain. Ellipsoids are drawn at the 30% probability level. H atoms and one component of the disordered pyridine rings have been omitted for clarity. [Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. Partial packing view showing the formation of layer through O-H···N hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity.
catena-Poly[[diaquaterbium(III)]-tetrakis(µ2-pyridine-4- carboxylato-κ2O:O')-[diaquaterbium(III)]-bis(µ2- pyridine-4-carboxylato-κ2O:O')] top
Crystal data top
[Tb2(C6H4NO2)6(H2O)4]F(000) = 1096
Mr = 1122.52Dx = 1.800 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5467 reflections
a = 9.7008 (10) Åθ = 2.2–26.4°
b = 19.813 (2) ŵ = 3.46 mm1
c = 11.6253 (12) ÅT = 293 K
β = 112.009 (1)°Block, colourless
V = 2071.6 (4) Å30.26 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4055 independent reflections
Radiation source: fine-focus sealed tube2998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1111
Tmin = 0.466, Tmax = 0.575k = 1024
11208 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0526P)2 + 5.420P]
where P = (Fo2 + 2Fc2)/3
4055 reflections(Δ/σ)max = 0.012
259 parametersΔρmax = 0.78 e Å3
148 restraintsΔρmin = 1.60 e Å3
Crystal data top
[Tb2(C6H4NO2)6(H2O)4]V = 2071.6 (4) Å3
Mr = 1122.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7008 (10) ŵ = 3.46 mm1
b = 19.813 (2) ÅT = 293 K
c = 11.6253 (12) Å0.26 × 0.20 × 0.18 mm
β = 112.009 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2998 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.575Rint = 0.026
11208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035148 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.11Δρmax = 0.78 e Å3
4055 reflectionsΔρmin = 1.60 e Å3
259 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The ISOR instruction are used for C16 C16' C17' C5 C5' C15 C15' C18' atoms to insolve their ADP alerts. The instructions of DFIX and DANG are used for H atoms on O7 and O8 water molecules, in order to place H atoms of water molecules in calculated positions as rigiding atoms. The SIMU and DELU instructions against C16 N3 C13 O6 C1 O2 atoms are used for insolveing their ADP alerts. In addition, the disordered C3 C4 C5 C6 and C3' C4' C5' C6' atoms are localized by the differece Fourier map, which are treated as disordered part with 0.5 occupancy. Whereas, the C15 C16 C17 C18 and C15' C16' C17' C18' atoms are treated as disordered part with free refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.28030 (2)0.499202 (11)0.50935 (2)0.01827 (11)
O10.3953 (4)0.61276 (17)0.5299 (3)0.0248 (8)
O20.5886 (4)0.60949 (17)0.4690 (3)0.0270 (8)
O30.3869 (4)0.49073 (17)0.3515 (3)0.0253 (8)
O40.5557 (4)0.49956 (19)0.2667 (4)0.0324 (10)
O50.0756 (4)0.43450 (17)0.3615 (3)0.0235 (8)
O60.1256 (4)0.43637 (18)0.4071 (3)0.0274 (8)
O70.1132 (4)0.57515 (17)0.3392 (3)0.0262 (8)
H710.13770.61480.32900.039*
H720.06020.56330.26670.039*
O80.1792 (4)0.41684 (18)0.6284 (3)0.0267 (8)
H810.23440.39990.69750.040*
H820.09490.42330.63250.040*
N20.1002 (5)0.4546 (3)0.1043 (4)0.0355 (12)
C10.5085 (5)0.6369 (2)0.5182 (4)0.0191 (10)
C20.5552 (6)0.7071 (3)0.5691 (5)0.0263 (11)
C30.5412 (18)0.7272 (6)0.6767 (14)0.065 (2)0.53
H30.49910.69880.71830.078*0.53
C40.5922 (18)0.7922 (6)0.7231 (14)0.065 (2)0.53
H40.58500.80490.79760.078*0.53
N10.6468 (7)0.8341 (3)0.6704 (7)0.0652 (19)
C50.6418 (18)0.8184 (6)0.5577 (13)0.065 (2)0.53
H50.66080.85190.50930.078*0.53
C60.6088 (18)0.7530 (6)0.5098 (14)0.065 (2)0.53
H60.62360.74100.43790.078*0.53
C3'0.4669 (18)0.7485 (7)0.6043 (18)0.065 (2)0.47
H3'0.37160.73490.59490.078*0.47
C4'0.5197 (17)0.8116 (7)0.6545 (18)0.065 (2)0.47
H4'0.45660.83890.67780.078*0.47
C5'0.7305 (18)0.7961 (7)0.6254 (18)0.065 (2)0.47
H5'0.82000.81390.62730.078*0.47
C6'0.6903 (17)0.7308 (7)0.5758 (18)0.065 (2)0.47
H6'0.75270.70520.54900.078*0.47
C70.4248 (6)0.4912 (2)0.2593 (5)0.0205 (11)
C80.3085 (5)0.4796 (3)0.1332 (4)0.0201 (10)
C90.3287 (7)0.5057 (3)0.0274 (5)0.0286 (12)
H9A0.41130.53170.03440.034*
C100.2195 (7)0.4908 (3)0.0881 (5)0.0353 (15)
H10A0.23190.50760.15830.042*
C110.0841 (6)0.4311 (3)0.0041 (5)0.0392 (15)
H11A0.00130.40450.01460.047*
C120.1823 (6)0.4436 (3)0.1157 (5)0.0304 (12)
H12A0.16260.42760.18320.037*
C130.0423 (5)0.4099 (2)0.3623 (4)0.0148 (9)
C140.0838 (6)0.3403 (3)0.3060 (5)0.0251 (11)
C150.061 (2)0.3205 (7)0.2026 (15)0.067 (2)0.47
H150.01410.34880.16470.080*0.47
C160.110 (2)0.2552 (6)0.1541 (16)0.067 (2)0.47
H160.11380.24520.07480.080*0.47
N30.1491 (7)0.2101 (3)0.2112 (6)0.0647 (19)
C170.186 (2)0.2304 (7)0.3059 (16)0.067 (2)0.47
H170.23000.19960.34160.080*0.47
C180.1591 (19)0.2972 (7)0.3543 (17)0.067 (2)0.47
H180.19160.31120.41620.080*0.47
C15'0.0235 (16)0.3043 (6)0.2749 (17)0.067 (2)0.53
H15'0.11590.32290.28700.080*0.53
C16'0.0161 (15)0.2386 (6)0.2247 (17)0.067 (2)0.53
H16'0.05040.21440.20030.080*0.53
C17'0.2435 (15)0.2459 (6)0.2278 (17)0.067 (2)0.53
H17'0.33880.22850.20640.080*0.53
C18'0.2165 (14)0.3119 (6)0.2774 (17)0.067 (2)0.53
H18'0.29230.33560.29010.080*0.53
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01824 (16)0.01848 (16)0.01805 (16)0.00263 (9)0.00676 (11)0.00260 (9)
O10.0188 (17)0.0176 (17)0.040 (2)0.0057 (14)0.0135 (16)0.0055 (15)
O20.029 (2)0.0208 (18)0.037 (2)0.0011 (16)0.0197 (17)0.0011 (16)
O30.034 (2)0.031 (2)0.0143 (17)0.0008 (15)0.0121 (16)0.0015 (14)
O40.0171 (19)0.060 (3)0.0183 (19)0.0084 (17)0.0044 (16)0.0052 (17)
O50.0218 (18)0.0230 (18)0.0260 (19)0.0100 (15)0.0092 (15)0.0068 (15)
O60.0246 (18)0.0276 (19)0.035 (2)0.0016 (16)0.0164 (17)0.0087 (17)
O70.0292 (19)0.0203 (18)0.0194 (17)0.0051 (15)0.0019 (15)0.0041 (14)
O80.0188 (17)0.035 (2)0.029 (2)0.0054 (15)0.0126 (15)0.0136 (16)
N20.029 (3)0.053 (3)0.017 (2)0.008 (2)0.001 (2)0.008 (2)
C10.019 (2)0.013 (2)0.023 (3)0.0017 (19)0.004 (2)0.0002 (18)
C20.021 (2)0.023 (2)0.032 (3)0.008 (2)0.006 (2)0.007 (2)
C30.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C40.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
N10.069 (4)0.037 (3)0.097 (5)0.030 (3)0.041 (4)0.040 (3)
C50.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C60.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C3'0.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C4'0.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C5'0.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C6'0.074 (5)0.041 (3)0.094 (5)0.032 (3)0.050 (4)0.034 (3)
C70.022 (3)0.026 (3)0.011 (2)0.000 (2)0.004 (2)0.0010 (19)
C80.018 (2)0.031 (3)0.010 (2)0.004 (2)0.005 (2)0.001 (2)
C90.027 (3)0.047 (3)0.014 (2)0.001 (2)0.010 (2)0.001 (2)
C100.036 (3)0.056 (4)0.012 (3)0.012 (3)0.007 (2)0.001 (2)
C110.023 (3)0.055 (4)0.035 (3)0.010 (3)0.005 (3)0.011 (3)
C120.025 (3)0.046 (3)0.019 (3)0.005 (3)0.008 (2)0.003 (2)
C130.017 (2)0.012 (2)0.011 (2)0.0018 (18)0.0005 (18)0.0014 (17)
C140.021 (2)0.020 (2)0.031 (3)0.003 (2)0.006 (2)0.009 (2)
C150.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
C160.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
N30.063 (4)0.032 (3)0.084 (5)0.016 (3)0.011 (4)0.031 (3)
C170.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
C180.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
C15'0.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
C16'0.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
C17'0.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
C18'0.061 (4)0.039 (3)0.108 (6)0.021 (3)0.041 (4)0.043 (4)
Geometric parameters (Å, º) top
Tb1—O32.426 (4)C6—H60.9300
Tb1—O6i2.432 (3)C3'—C4'1.393 (14)
Tb1—O52.446 (3)C3'—H3'0.9300
Tb1—O2ii2.466 (3)C4'—H4'0.9300
Tb1—O12.483 (3)C5'—C6'1.410 (14)
Tb1—O4ii2.491 (4)C5'—H5'0.9300
Tb1—O72.530 (3)C6'—H6'0.9300
Tb1—O82.561 (3)C7—C81.495 (7)
O1—C11.250 (6)C8—C121.365 (7)
O2—C11.249 (5)C8—C91.414 (7)
O2—Tb1ii2.466 (3)C9—C101.395 (8)
O3—C71.258 (6)C9—H9A0.9300
O4—C71.250 (7)C10—H10A0.9300
O4—Tb1ii2.491 (4)C11—C121.383 (7)
O5—C131.247 (6)C11—H11A0.9300
O6—C131.232 (6)C12—H12A0.9300
O6—Tb1i2.432 (3)C13—C141.513 (6)
O7—H710.8413C14—C18'1.329 (12)
O7—H720.8403C14—C151.360 (13)
O8—H810.8508C14—C181.374 (14)
O8—H820.8460C14—C15'1.415 (12)
N2—C101.314 (8)C15—C161.421 (14)
N2—C111.316 (8)C15—H150.9300
C1—C21.513 (7)C16—N31.252 (14)
C2—C3'1.356 (13)C16—H160.9300
C2—C61.357 (12)N3—C17'1.230 (12)
C2—C6'1.367 (13)N3—C171.338 (14)
C2—C31.368 (12)N3—C16'1.362 (13)
C3—C41.411 (13)C17—C181.423 (14)
C3—H30.9300C17—H170.9300
C4—N11.261 (12)C18—H180.9300
C4—H40.9300C15'—C16'1.419 (13)
N1—C4'1.259 (13)C15'—H15'0.9300
N1—C51.331 (13)C16'—H16'0.9300
N1—C5'1.349 (13)C17'—C18'1.412 (13)
C5—C61.401 (13)C17'—H17'0.9300
C5—H50.9300C18'—H18'0.9300
O3—Tb1—O6i147.12 (12)C2—C3'—H3'120.1
O3—Tb1—O584.03 (12)C4'—C3'—H3'120.1
O6i—Tb1—O595.50 (12)N1—C4'—C3'124.5 (13)
O3—Tb1—O2ii70.56 (12)N1—C4'—H4'117.8
O6i—Tb1—O2ii142.13 (12)C3'—C4'—H4'117.8
O5—Tb1—O2ii82.30 (12)N1—C5'—C6'123.8 (12)
O3—Tb1—O180.33 (11)N1—C5'—H5'118.1
O6i—Tb1—O178.94 (12)C6'—C5'—H5'118.1
O5—Tb1—O1139.44 (12)C2—C6'—C5'116.9 (12)
O2ii—Tb1—O1125.85 (13)C2—C6'—H6'121.6
O3—Tb1—O4ii120.33 (13)C5'—C6'—H6'121.6
O6i—Tb1—O4ii79.95 (13)O4—C7—O3123.8 (5)
O5—Tb1—O4ii140.54 (12)O4—C7—C8117.5 (4)
O2ii—Tb1—O4ii78.39 (12)O3—C7—C8118.7 (5)
O1—Tb1—O4ii78.61 (12)C12—C8—C9118.1 (5)
O3—Tb1—O777.28 (12)C12—C8—C7122.1 (5)
O6i—Tb1—O771.90 (12)C9—C8—C7119.8 (5)
O5—Tb1—O769.43 (12)C10—C9—C8117.2 (6)
O2ii—Tb1—O7138.97 (12)C10—C9—H9A121.4
O1—Tb1—O770.70 (11)C8—C9—H9A121.4
O4ii—Tb1—O7141.47 (12)N2—C10—C9124.4 (5)
O3—Tb1—O8136.28 (12)N2—C10—H10A117.8
O6i—Tb1—O872.55 (12)C9—C10—H10A117.8
O5—Tb1—O870.81 (12)N2—C11—C12124.2 (5)
O2ii—Tb1—O871.07 (11)N2—C11—H11A117.9
O1—Tb1—O8140.79 (12)C12—C11—H11A117.9
O4ii—Tb1—O870.46 (12)C8—C12—C11118.9 (5)
O7—Tb1—O8122.57 (11)C8—C12—H12A120.5
C1—O1—Tb1135.8 (3)C11—C12—H12A120.5
C1—O2—Tb1ii135.9 (3)O6—C13—O5125.9 (4)
C7—O3—Tb1171.2 (4)O6—C13—C14117.5 (4)
C7—O4—Tb1ii107.9 (3)O5—C13—C14116.7 (4)
C13—O5—Tb1134.8 (3)C18'—C14—C1596.9 (10)
C13—O6—Tb1i173.6 (3)C18'—C14—C1839.1 (10)
Tb1—O7—H71122.2C15—C14—C18118.0 (9)
Tb1—O7—H72126.1C18'—C14—C15'117.3 (8)
H71—O7—H72102.6C15—C14—C15'41.4 (9)
Tb1—O8—H81122.0C18—C14—C15'110.2 (9)
Tb1—O8—H82120.6C18'—C14—C13124.7 (7)
H81—O8—H82106.6C15—C14—C13122.8 (7)
C10—N2—C11117.1 (5)C18—C14—C13119.0 (7)
O2—C1—O1127.3 (5)C15'—C14—C13117.9 (6)
O2—C1—C2115.6 (4)C14—C15—C16118.1 (13)
O1—C1—C2117.1 (4)C14—C15—H15120.9
C3'—C2—C698.8 (10)C16—C15—H15120.9
C3'—C2—C6'118.3 (8)N3—C16—C15124.2 (14)
C6—C2—C6'42.0 (9)N3—C16—H16117.9
C3'—C2—C342.0 (9)C15—C16—H16117.9
C6—C2—C3117.2 (8)C17'—N3—C1693.6 (12)
C6'—C2—C3105.6 (10)C17'—N3—C1741.9 (11)
C3'—C2—C1123.0 (7)C16—N3—C17116.6 (9)
C6—C2—C1122.2 (7)C17'—N3—C16'118.1 (9)
C6'—C2—C1118.7 (7)C16—N3—C16'46.0 (10)
C3—C2—C1120.5 (6)C17—N3—C16'108.1 (10)
C2—C3—C4118.3 (11)N3—C17—C18122.7 (13)
C2—C3—H3120.8N3—C17—H17118.6
C4—C3—H3120.8C18—C17—H17118.6
N1—C4—C3124.6 (12)C14—C18—C17117.5 (12)
N1—C4—H4117.7C14—C18—H18121.3
C3—C4—H4117.7C17—C18—H18121.3
C4'—N1—C443.1 (10)C14—C15'—C16'117.1 (11)
C4'—N1—C595.7 (11)C14—C15'—H15'121.4
C4—N1—C5117.2 (8)C16'—C15'—H15'121.4
C4'—N1—C5'116.3 (9)N3—C16'—C15'121.7 (11)
C4—N1—C5'104.1 (10)N3—C16'—H16'119.1
C5—N1—C5'44.9 (10)C15'—C16'—H16'119.1
N1—C5—C6121.8 (12)N3—C17'—C18'124.3 (12)
N1—C5—H5119.1N3—C17'—H17'117.9
C6—C5—H5119.1C18'—C17'—H17'117.9
C2—C6—C5119.5 (11)C14—C18'—C17'120.6 (11)
C2—C6—H6120.2C14—C18'—H18'119.7
C5—C6—H6120.2C17'—C18'—H18'119.7
C2—C3'—C4'119.7 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···N3iii0.841.962.787 (7)168
O7—H72···N2iv0.841.982.802 (5)167
O8—H81···N1v0.852.012.837 (7)163
O8—H82···O7i0.852.163.002 (5)171
Symmetry codes: (i) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Tb2(C6H4NO2)6(H2O)4]
Mr1122.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7008 (10), 19.813 (2), 11.6253 (12)
β (°) 112.009 (1)
V3)2071.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.46
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.466, 0.575
No. of measured, independent and
observed [I > 2σ(I)] reflections
11208, 4055, 2998
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.105, 1.11
No. of reflections4055
No. of parameters259
No. of restraints148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 1.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···N3i0.841.962.787 (7)167.8
O7—H72···N2ii0.841.982.802 (5)167.1
O8—H81···N1iii0.852.012.837 (7)162.6
O8—H82···O7iv0.852.163.002 (5)170.7
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21001071), the Natural Science Research Program of the Education Department of Henan Province (2010A150018) and the Youth Fund Program of Shangqiu Normal University.

References

First citationBradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. (2004). J. Am. Chem. Soc. 126, 6106–6114.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, S. R. & Zhu, L. G. (2007). Inorg. Chem. 46, 6785–6793.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationForster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosi, N. L., Eddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2002). CrystEngComm. 4, 401–404.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS.. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. & Roesky, H. W. (2007). Dalton Trans. pp. 1360–1370.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594.  Web of Science CSD CrossRef CAS Google Scholar
First citationThirumurugan, A., Sanguramath, R. A. & Rao, C. N. R. (2008). Inorg. Chem. 47, 823–831.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds