organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-3-methyl-5-phenyl-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, and bDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
*Correspondence e-mail: tapashir@yahoo.com

(Received 25 July 2011; accepted 8 September 2011; online 30 September 2011)

In the title compound C11H13N3OS, the aromatic ring and the dihydro­pyrazole ring are oriented orthogonally with respect to each other, making a dihedral angle of 89.92 (9)°. An intra­molecular O—H⋯S hydrogen bond occurs. In the crystal, weak N—H⋯N and N—H⋯S hydrogen bonds link the mol­ecules into a columnar stack propagating along the b axis.

Related literature

For the biological activity of sulfur–nitro­gen ligand compounds, see: Wilder Smith (1964[Wilder Smith, A. E. (1964). Chem. Abstr. 61, 3118g-?.]); Grii & Khare (1976[Grii, S. & Khare, R. K. (1976). J. Antibact. Antifung. Agents Jpn, 4, 11-15.]); French & Blang (1966[French, F. A. & Blang, E. J. (1966). J. Med. Chem. 9, 585-589.]); Davis Parke & Co (1957[Davis, Parke & Co. (1957). Chem. Abstr. 66, 18720g.]); Vattum & Rao (1959[Vattum, S. & Rao, S. (1959). Proc. Indian Acad. Sci. 40, 56-64.]); Brockaman et al. (1959[Brockaman, R. W., Thomas, J. R., Bell, M. J. & Skipper, H. E. (1959). Cancer Res. 16, 167-170.]). For the carcinostatics thio­semicarbazone-containing nitro­gen heterocycles, see: Freedlander & French (1958[Freedlander, B. L. & French, F. A. (1958). Cancer Res. 16, 1286-89.]); French & Blang (1965[French, F. A. & Blang, E. J. (1965). Cancer Res. 25, 1454-58.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3OS

  • Mr = 235.31

  • Monoclinic, P 21 /c

  • a = 11.6955 (6) Å

  • b = 7.6889 (4) Å

  • c = 13.7588 (10) Å

  • β = 111.978 (7)°

  • V = 1147.35 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.39 × 0.41 × 0.43 mm

Data collection
  • Oxford Diffraction Gemini E CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.541, Tmax = 1.000

  • 19392 measured reflections

  • 2326 independent reflections

  • 2161 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 1.07

  • 2326 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S1 0.93 (3) 2.35 (3) 3.1256 (15) 141 (2)
N3—H3A⋯S1i 0.89 (2) 2.81 (2) 3.5827 (17) 145.9 (19)
N3—H3B⋯N1ii 0.87 (2) 2.30 (2) 3.158 (2) 168 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfur-Nitrogen ligand and their metal complexes have been reported as biologically important compounds possessing antiviral (Davis et al., 1957), antibacterial (Vattum & Rao, 1959), antipyretic (Wilder Smith, 1964), fungicidal (Grii & Khare, 1976) and analgesic (Wilder Smith, 1964) activities. It was reported that pyridine-2carboxaldehyde dithiosemicarbazone displays anticancer activity. However, no mechanism of action was proposed (Brockaman et al., 1959). French and co-workers (French & Blang, 1965; Freedlander & French, 1958; French & Blang, 1966) studied the carcinostatics thiosemicarbazones containing nitrogen heterocycles. The present investigation is an attempt to prepare a Schiff base ligand (HL) by the condensation of benzoyl acetone and thiosemicarbazide. During crystallization from ethanol-petroleum ether, the crystals of the title compound appropriate for single crystal X-ray diffraction were obtained.

In the crystal structure, the aromatic ring and the dihydropyrazole ring are oriented orthogonally with respect to each other [angle between these two rings is 89.92 (9) °]. Weak N–H···N (3.158 (2) Å) and N–H···S (3.5827 (17) Å) make the moloecules pack into a columnar stack propagating along b axis (see Figure 3).

Related literature top

For the biological activity of sulfur–nitrogen ligand compounds, see: Wilder Smith (1964); Grii & Khare (1976); French & Blang (1966); Davis Parke & Co (1957); Vattum & Rao (1959); Brockaman et al. (1959). For the carcinostatics thiosemicarbazone-containing nitrogen heterocycles, see: Freedlander & French (1958); French & Blang (1965).

Experimental top

Thiosemicarbazide purchased from the local market was crystallized from ethanol and dried under vacuum desiccator over silica gel (m.p. 441- 443 K) before use. A hot solution of benzoyl acetone (1.62 g, 10 mmol) in absolute ethanol was mixed with the hot solution of thiosemicarbazide (1.22 g, 10 mmol) in the same solvent. The mixture was refluxed for 6 h on a water bath. After reducing the volume, a white product was filtered off. This product was washed with ethanol for several times and dried in a vacuum desiccator over silica gel (m.p. 449–451 K. Yield 1.95 g (82.9%). Anal. Calc. for C11H13N3OS: C, 56.15; H, 5.57; N, 17.86; S, 13.62%. Found: C, 56.03; H, 5.61; N, 17.82; S, 13.57%. FT—IR (KBr, cm-1) νmax: 3360 (m, OH), 3260 (s, NH), 1642 (m, C=N), 999 (m, N—N). Then the crystals suitable for the crystallographic study were prepared by slow evaporation from a ethanol-petroleum ether (2:1 v/v) solution of the ligand.

Refinement top

Methyl groups were idealized (C—H = 0.96 A °) and allowed to ride. In all cases, H-atom displacement parameters were taken as Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C,O,N) otherwise.

Structure description top

Sulfur-Nitrogen ligand and their metal complexes have been reported as biologically important compounds possessing antiviral (Davis et al., 1957), antibacterial (Vattum & Rao, 1959), antipyretic (Wilder Smith, 1964), fungicidal (Grii & Khare, 1976) and analgesic (Wilder Smith, 1964) activities. It was reported that pyridine-2carboxaldehyde dithiosemicarbazone displays anticancer activity. However, no mechanism of action was proposed (Brockaman et al., 1959). French and co-workers (French & Blang, 1965; Freedlander & French, 1958; French & Blang, 1966) studied the carcinostatics thiosemicarbazones containing nitrogen heterocycles. The present investigation is an attempt to prepare a Schiff base ligand (HL) by the condensation of benzoyl acetone and thiosemicarbazide. During crystallization from ethanol-petroleum ether, the crystals of the title compound appropriate for single crystal X-ray diffraction were obtained.

In the crystal structure, the aromatic ring and the dihydropyrazole ring are oriented orthogonally with respect to each other [angle between these two rings is 89.92 (9) °]. Weak N–H···N (3.158 (2) Å) and N–H···S (3.5827 (17) Å) make the moloecules pack into a columnar stack propagating along b axis (see Figure 3).

For the biological activity of sulfur–nitrogen ligand compounds, see: Wilder Smith (1964); Grii & Khare (1976); French & Blang (1966); Davis Parke & Co (1957); Vattum & Rao (1959); Brockaman et al. (1959). For the carcinostatics thiosemicarbazone-containing nitrogen heterocycles, see: Freedlander & French (1958); French & Blang (1965).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : ORTEP (50% probablity) diagram of the title compound.
[Figure 2] Fig. 2. : Packing along a, showing the chain-like subunit formed. Intramolecular hydrogen bonds are displayed in green, and intermolecular hydrogen bonds in purple.
[Figure 3] Fig. 3. : Packing along b, showing the columnar arrangement of subunits. Intramolecular hydrogen bonds are displayed in green, and intermolecular hydrogen bonds in purple.
5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C11H13N3OSF(000) = 496
Mr = 235.31Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10287 reflections
a = 11.6955 (6) Åθ = 3.5–73.8°
b = 7.6889 (4) ŵ = 0.26 mm1
c = 13.7588 (10) ÅT = 298 K
β = 111.978 (7)°Prism, white
V = 1147.35 (12) Å30.43 × 0.41 × 0.39 mm
Z = 4
Data collection top
Oxford Diffraction Gemini E CCD
diffractometer
2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scans, thick slicesθmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.541, Tmax = 1.000k = 99
19392 measured reflectionsl = 1716
2326 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.2816P]
where P = (Fo2 + 2Fc2)/3
2326 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H13N3OSV = 1147.35 (12) Å3
Mr = 235.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6955 (6) ŵ = 0.26 mm1
b = 7.6889 (4) ÅT = 298 K
c = 13.7588 (10) Å0.43 × 0.41 × 0.39 mm
β = 111.978 (7)°
Data collection top
Oxford Diffraction Gemini E CCD
diffractometer
2326 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2161 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 1.000Rint = 0.069
19392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
2326 reflectionsΔρmin = 0.35 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38340 (12)0.44242 (18)0.08551 (10)0.0382 (3)
O10.09679 (11)0.29274 (18)0.04417 (11)0.0503 (3)
N30.47610 (13)0.1959 (2)0.22717 (13)0.0479 (4)
C110.36034 (14)0.1729 (2)0.16030 (12)0.0370 (3)
C100.36242 (19)0.7124 (2)0.00962 (16)0.0541 (5)
H10C0.44690.72730.03630.081*
H10A0.31380.80580.00080.081*
H10B0.35680.71280.0810.081*
N20.31423 (12)0.29247 (17)0.08476 (10)0.0392 (3)
H3B0.504 (2)0.124 (3)0.2795 (18)0.054 (6)*
H3A0.521 (2)0.286 (3)0.2218 (18)0.060 (6)*
H1O0.114 (2)0.194 (4)0.086 (2)0.068 (7)*
S10.27587 (4)0.00137 (5)0.17302 (3)0.04557 (19)
C60.17249 (13)0.1559 (2)0.08034 (12)0.0379 (3)
C90.31586 (15)0.5446 (2)0.01356 (12)0.0396 (4)
C70.18692 (14)0.2977 (2)0.00036 (13)0.0399 (4)
C80.18774 (17)0.4804 (2)0.04428 (16)0.0489 (4)
H8A0.16940.47560.11910.059*
H8B0.12780.55510.03170.059*
C10.07051 (15)0.0470 (2)0.11386 (13)0.0444 (4)
H20.01190.05570.08350.053*
C30.1390 (2)0.0863 (3)0.23965 (14)0.0559 (5)
H40.12770.16660.2930.067*
C50.25740 (16)0.1420 (2)0.12829 (14)0.0476 (4)
H60.32630.2140.1070.057*
C20.05503 (17)0.0744 (3)0.19207 (14)0.0527 (5)
H30.01280.14840.21250.063*
C40.2406 (2)0.0223 (3)0.20755 (17)0.0557 (5)
H50.2980.01490.23940.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0370 (7)0.0349 (7)0.0363 (7)0.0034 (5)0.0064 (5)0.0002 (5)
O10.0396 (6)0.0545 (8)0.0526 (7)0.0057 (5)0.0122 (5)0.0049 (6)
N30.0386 (7)0.0435 (8)0.0461 (8)0.0001 (6)0.0018 (6)0.0117 (6)
C110.0363 (7)0.0343 (7)0.0348 (7)0.0028 (6)0.0068 (6)0.0003 (6)
C100.0601 (11)0.0424 (9)0.0524 (10)0.0035 (8)0.0127 (9)0.0093 (8)
N20.0341 (6)0.0336 (7)0.0376 (7)0.0028 (5)0.0007 (5)0.0029 (5)
S10.0429 (3)0.0374 (3)0.0500 (3)0.00315 (15)0.0100 (2)0.00632 (16)
C60.0337 (7)0.0356 (7)0.0349 (8)0.0001 (6)0.0021 (6)0.0054 (6)
C90.0431 (8)0.0352 (7)0.0344 (8)0.0013 (6)0.0077 (6)0.0005 (6)
C70.0318 (7)0.0365 (8)0.0398 (8)0.0019 (6)0.0002 (6)0.0022 (6)
C80.0436 (9)0.0357 (8)0.0491 (10)0.0028 (6)0.0036 (8)0.0045 (7)
C10.0366 (8)0.0482 (9)0.0399 (9)0.0050 (7)0.0046 (6)0.0004 (7)
C30.0708 (12)0.0495 (10)0.0395 (9)0.0022 (9)0.0116 (8)0.0033 (8)
C50.0452 (8)0.0446 (9)0.0511 (10)0.0049 (7)0.0161 (7)0.0040 (8)
C20.0511 (9)0.0516 (10)0.0428 (9)0.0108 (8)0.0031 (7)0.0042 (8)
C40.0659 (12)0.0559 (11)0.0502 (10)0.0065 (9)0.0273 (10)0.0070 (8)
Geometric parameters (Å, º) top
N1—C91.279 (2)C6—C51.387 (2)
N1—N21.4062 (18)C6—C71.520 (2)
O1—C71.397 (2)C9—C81.493 (2)
O1—H1O0.93 (3)C7—C81.535 (2)
N3—C111.334 (2)C8—H8A0.97
N3—H3B0.87 (2)C8—H8B0.97
N3—H3A0.89 (3)C1—C21.384 (3)
C11—N21.340 (2)C1—H20.93
C11—S11.6958 (16)C3—C21.373 (3)
C10—C91.481 (2)C3—C41.382 (3)
C10—H10C0.96C3—H40.93
C10—H10A0.96C5—C41.384 (3)
C10—H10B0.96C5—H60.93
N2—C71.5077 (18)C2—H30.93
C6—C11.387 (2)C4—H50.93
C9—N1—N2108.12 (12)N2—C7—C6110.55 (12)
C7—O1—H1O105.7 (15)O1—C7—C8108.45 (14)
C11—N3—H3B117.4 (14)N2—C7—C8100.40 (12)
C11—N3—H3A121.5 (15)C6—C7—C8112.34 (14)
H3B—N3—H3A121 (2)C9—C8—C7104.14 (13)
N3—C11—N2116.99 (15)C9—C8—H8A110.9
N3—C11—S1120.81 (13)C7—C8—H8A110.9
N2—C11—S1122.18 (11)C9—C8—H8B110.9
C9—C10—H10C109.5C7—C8—H8B110.9
C9—C10—H10A109.5H8A—C8—H8B108.9
H10C—C10—H10A109.5C2—C1—C6120.76 (17)
C9—C10—H10B109.5C2—C1—H2119.6
H10C—C10—H10B109.5C6—C1—H2119.6
H10A—C10—H10B109.5C2—C3—C4119.37 (18)
C11—N2—N1119.56 (12)C2—C3—H4120.3
C11—N2—C7127.61 (13)C4—C3—H4120.3
N1—N2—C7112.54 (12)C4—C5—C6120.67 (17)
C1—C6—C5118.38 (16)C4—C5—H6119.7
C1—C6—C7121.50 (15)C6—C5—H6119.7
C5—C6—C7119.93 (14)C3—C2—C1120.45 (17)
N1—C9—C10122.10 (15)C3—C2—H3119.8
N1—C9—C8114.56 (15)C1—C2—H3119.8
C10—C9—C8123.34 (15)C3—C4—C5120.35 (19)
O1—C7—N2110.74 (13)C3—C4—H5119.8
O1—C7—C6113.58 (13)C5—C4—H5119.8
N3—C11—N2—N16.3 (2)C5—C6—C7—N253.08 (19)
S1—C11—N2—N1172.51 (12)C1—C6—C7—C8116.66 (17)
N3—C11—N2—C7179.61 (16)C5—C6—C7—C858.17 (19)
S1—C11—N2—C70.8 (2)N1—C9—C8—C74.7 (2)
C9—N1—N2—C11173.10 (14)C10—C9—C8—C7175.24 (16)
C9—N1—N2—C71.16 (18)O1—C7—C8—C9120.77 (15)
N2—N1—C9—C10177.61 (15)N2—C7—C8—C94.61 (18)
N2—N1—C9—C82.3 (2)C6—C7—C8—C9112.86 (15)
C11—N2—C7—O155.5 (2)C5—C6—C1—C21.1 (2)
N1—N2—C7—O1118.22 (15)C7—C6—C1—C2175.99 (15)
C11—N2—C7—C671.3 (2)C1—C6—C5—C40.1 (3)
N1—N2—C7—C6115.00 (14)C7—C6—C5—C4175.07 (16)
C11—N2—C7—C8169.90 (16)C4—C3—C2—C11.1 (3)
N1—N2—C7—C83.79 (18)C6—C1—C2—C31.6 (3)
C1—C6—C7—O16.9 (2)C2—C3—C4—C50.1 (3)
C5—C6—C7—O1178.28 (14)C6—C5—C4—C30.4 (3)
C1—C6—C7—N2132.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S10.93 (3)2.35 (3)3.1256 (15)141 (2)
N3—H3A···S1i0.89 (2)2.81 (2)3.5827 (17)145.9 (19)
N3—H3B···N1ii0.87 (2)2.30 (2)3.158 (2)168 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13N3OS
Mr235.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.6955 (6), 7.6889 (4), 13.7588 (10)
β (°) 111.978 (7)
V3)1147.35 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.43 × 0.41 × 0.39
Data collection
DiffractometerOxford Diffraction Gemini E CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.541, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19392, 2326, 2161
Rint0.069
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.07
No. of reflections2326
No. of parameters157
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S10.93 (3)2.35 (3)3.1256 (15)141 (2)
N3—H3A···S1i0.89 (2)2.81 (2)3.5827 (17)145.9 (19)
N3—H3B···N1ii0.87 (2)2.30 (2)3.158 (2)168 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the UGC, Bangladesh, for the award of a fellowship to BG and thank the TWAS, Trieste, Italy, for awarding a TWAS–UNESCO Associateship to TGR. They are also grateful to ANPCyT for a grant (PME–2006–01113) and to R. Baggio for his helpful suggestions.

References

First citationBrockaman, R. W., Thomas, J. R., Bell, M. J. & Skipper, H. E. (1959). Cancer Res. 16, 167–170.  Google Scholar
First citationDavis, Parke & Co. (1957). Chem. Abstr. 66, 18720g.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreedlander, B. L. & French, F. A. (1958). Cancer Res. 16, 1286–89.  Google Scholar
First citationFrench, F. A. & Blang, E. J. (1965). Cancer Res. 25, 1454–58.  CAS PubMed Web of Science Google Scholar
First citationFrench, F. A. & Blang, E. J. (1966). J. Med. Chem. 9, 585–589.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGrii, S. & Khare, R. K. (1976). J. Antibact. Antifung. Agents Jpn, 4, 11–15.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVattum, S. & Rao, S. (1959). Proc. Indian Acad. Sci. 40, 56–64.  Google Scholar
First citationWilder Smith, A. E. (1964). Chem. Abstr. 61, 3118g–?.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds