organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Imino-3-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore-54600, Pakistan, bChemistry Department, Loughborough University, Loughborough LE11 3TU, England, cX-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia.
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 3 August 2011; accepted 18 August 2011; online 14 September 2011)

In the title compound, C9H7N3O3S, the nitro and thia­zolidinone moieties are inclined with respect to the aromatic ring at dihedral angles of 9.57 (16) and 78.42 (4)°, respectively. In the crystal, N—H⋯O hydrogen bonding connects the mol­ecules along the c and a axes to form a two-dimensional polymeric network. A weak S⋯O inter­action [3.2443 (11) Å] and phenyl ring to phenyl ring off-set ππ stacking [with centroid–centroid separation of 3.6890 (7) Å and ring slippage of 1.479 Å] link the polymeric chains along the b and a axes, respectively.

Related literature

For the biological activities of thia­zolidinones, see: Barreca et al. (2001[Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A. M., Monforte, P., Rao, A., Zappalà, M., Balzarini, J., Clercq, E. D., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. 11, 1793-1796.]); Shah & Desai (2007[Shah, T. J. & Desai, V. A. (2007). Arkivoc, xiv, 218-228.]); Mehta et al. (2006[Mehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. & Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103-106.]); Vazzana et al. (2004[Vazzana, I., Terranova, E., Mattioli, F. & Sparatore, F. (2004). Arkivoc, v, 364-374.]); Wrobel et al. (2006[Wrobel, J., Jetter, J., Kao, W., Rogers, J., Di, L., Chi, J., Peréz, M. C., Chen, G.-C. & Shen, E. S. (2006). Bioorg. Med. Chem. 14, 5729-5741.]). For related structures, see: Shahwar et al. (2009[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009). Acta Cryst. E65, o2917.], 2011[Shahwar, D., Tahir, M. N., Raza, M. A., Ahmad, N. & Aslam, S. (2011). Acta Cryst. E67, o133.]); Zhou et al. (2008[Zhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. 51, 1242-125.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the comparative C—C separation in graphite, see: Trucano & Chen (1975[Trucano, P. & Chen, R. (1975). Nature (London), 258, 136-137.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N3O3S

  • Mr = 237.24

  • Monoclinic, P 21 /n

  • a = 7.3036 (5) Å

  • b = 16.4409 (10) Å

  • c = 8.2455 (5) Å

  • β = 102.1321 (9)°

  • V = 967.99 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 150 K

  • 0.70 × 0.61 × 0.40 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.802, Tmax = 0.880

  • 11000 measured reflections

  • 2938 independent reflections

  • 2675 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.03

  • 2938 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.886 (18) 2.334 (18) 3.0337 (13) 135.9 (14)
N1—H1⋯O2ii 0.886 (18) 2.439 (17) 3.1416 (14) 136.5 (14)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Thiazolidinones are well known heterocyclic compounds, familiar for their anti-bacterial (Shah & Desai, 2007), anti-fungal (Mehta et al., 2006), anti-HIV (Barreca et al., 2001), anti-iflammatory (Vazzana et al., 2004), anti-cancer (Zhou et al., 2008) and FSH receptor agonist (Wrobel et al., 2006) activities. Herein, we report the synthesis and crystal structure of a new example of this class of compound, I (Fig. 1 & Scheme).

The structure of the title compound correlates with the crystal structures of other thiazolidinones (Shahwar, et al., 2009 & Shahwar, et al., 2011). The nitro group is inclined at a dihedral angle of 9.57 (16)° with respect to the phenyl ring. The thiazolidinone ring is essentially planar with an r.m.s. deviation of 0.0144 Å with the maximum deviation at the carbon atoms (C2 = 0.0196 (6) Å & C3 = -0.0193 (7) Å). The dihedral angle between the two planes C4 to C9 and N1/C3/C2/S1/C1 is 78.42 (4)°. The amino group is involved in two unique N—H···O intermolecular hydrogen bonding interactions. The first results in zigzag C(8) chains (Bernstein et al., 1995) along the c axis; the second in C(6) chains along the a axis (Table 1, Fig. 2). Weak S···O interactions link sheets together in the b direction with S1···O3 = 3.244 Å (Fig. 3). Off-set π···π stacking connects the chain along the a axis involving C5/C6/C7 with separations of ca. 3.41–3.53 Å (Figures 3 & 4). This is slightly longer than the ca 3.35 Å separation in graphite (Trucano & Chen, 1975).

Related literature top

For the biological activities of thiazolidinones, see: Barreca et al. (2001); Shah & Desai (2007); Mehta et al. (2006); Vazzana et al. (2004); Wrobel et al. (2006). For related structures, see: Shahwar et al. (2009, 2011); Zhou et al. (2008). For graph-set notation, see: Bernstein et al. (1995). For the comparative C—C separation in graphite, see: Trucano & Chen (1975).

Experimental top

A mixture of 1-isothiocyanato-2-nitrobenzene (8.0 mmoles), dichloromethane (20 ml), and anhydrous ammonium carbonate (8.0 mmoles) was stirred at room temperature under inert atmosphere (nitrogen) for 2 h. Paraformaldehyde (4 mmoles) was added to it portion wise, and the contents were allowed to stir for 10 h; cooled to 0°C, followed by addition of 0.5 M aqueous sodium hydroxide (20 ml) over 30 minutes. The cloudy solution was heated to reflux for 2 h and the reaction mixture was neutralized with dilute hydrochloric acid. The aqueous layer was extracted with ethyl acetate (3 x 30 ml); washed with water and brine and dried over sodium sulfate. Slow evaporation of the solvent furnished pale yellow crystals.

Refinement top

All the CH hydrogen atoms were located via a difference map and refined with a constrained, riding model with aromatic CH = 0.95 and CH2 0.99 Å. The NH hydrogen has coordinates freely refined. Uiso(H) was set to 1.2Ueq of that of the carrier atom..

Structure description top

Thiazolidinones are well known heterocyclic compounds, familiar for their anti-bacterial (Shah & Desai, 2007), anti-fungal (Mehta et al., 2006), anti-HIV (Barreca et al., 2001), anti-iflammatory (Vazzana et al., 2004), anti-cancer (Zhou et al., 2008) and FSH receptor agonist (Wrobel et al., 2006) activities. Herein, we report the synthesis and crystal structure of a new example of this class of compound, I (Fig. 1 & Scheme).

The structure of the title compound correlates with the crystal structures of other thiazolidinones (Shahwar, et al., 2009 & Shahwar, et al., 2011). The nitro group is inclined at a dihedral angle of 9.57 (16)° with respect to the phenyl ring. The thiazolidinone ring is essentially planar with an r.m.s. deviation of 0.0144 Å with the maximum deviation at the carbon atoms (C2 = 0.0196 (6) Å & C3 = -0.0193 (7) Å). The dihedral angle between the two planes C4 to C9 and N1/C3/C2/S1/C1 is 78.42 (4)°. The amino group is involved in two unique N—H···O intermolecular hydrogen bonding interactions. The first results in zigzag C(8) chains (Bernstein et al., 1995) along the c axis; the second in C(6) chains along the a axis (Table 1, Fig. 2). Weak S···O interactions link sheets together in the b direction with S1···O3 = 3.244 Å (Fig. 3). Off-set π···π stacking connects the chain along the a axis involving C5/C6/C7 with separations of ca. 3.41–3.53 Å (Figures 3 & 4). This is slightly longer than the ca 3.35 Å separation in graphite (Trucano & Chen, 1975).

For the biological activities of thiazolidinones, see: Barreca et al. (2001); Shah & Desai (2007); Mehta et al. (2006); Vazzana et al. (2004); Wrobel et al. (2006). For related structures, see: Shahwar et al. (2009, 2011); Zhou et al. (2008). For graph-set notation, see: Bernstein et al. (1995). For the comparative C—C separation in graphite, see: Trucano & Chen (1975).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The labelled molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Packing plot parallel to b which shows the polymeric network through N—H···O hydrogen bonds (drawn as dashed lines).
[Figure 3] Fig. 3. Packing plot viewed parallel to c showing N—H···O hydrogen bonds, weak S···O interactions (drawn as dashed lines) and stacked aromatic moieties.
[Figure 4] Fig. 4. Packing plot viewed parallel to a showing N—H···O hydrogen bonds, weak S···O interactions (drawn as dashed lines) and stacked aromatic moieties
2-Imino-3-(2-nitrophenyl)-1,3-thiazolidin-4-one top
Crystal data top
C9H7N3O3SF(000) = 488
Mr = 237.24Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6547 reflections
a = 7.3036 (5) Åθ = 2.5–30.5°
b = 16.4409 (10) ŵ = 0.33 mm1
c = 8.2455 (5) ÅT = 150 K
β = 102.1321 (9)°Block, light yellow
V = 967.99 (11) Å30.70 × 0.61 × 0.40 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2938 independent reflections
Radiation source: fine-focus sealed tube2675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω rotation with narrow frames scansθmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.802, Tmax = 0.880k = 2323
11000 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.3974P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H7N3O3SV = 967.99 (11) Å3
Mr = 237.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3036 (5) ŵ = 0.33 mm1
b = 16.4409 (10) ÅT = 150 K
c = 8.2455 (5) Å0.70 × 0.61 × 0.40 mm
β = 102.1321 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2675 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.880Rint = 0.018
11000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
2938 reflectionsΔρmin = 0.25 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43457 (15)0.75201 (6)0.52262 (14)0.0182 (2)
N10.58325 (14)0.79287 (6)0.55992 (14)0.0239 (2)
H10.686 (2)0.7635 (10)0.564 (2)0.029*
S10.40353 (4)0.646740 (16)0.48418 (4)0.02236 (9)
C20.15109 (16)0.65317 (6)0.44907 (16)0.0213 (2)
H2A0.09370.63190.33760.026*
H2B0.10440.62070.53300.026*
C30.10139 (15)0.74173 (6)0.46228 (14)0.0186 (2)
O10.05729 (12)0.76769 (5)0.43725 (12)0.02667 (19)
N20.25861 (12)0.78966 (5)0.50525 (12)0.01726 (18)
C40.24651 (14)0.87451 (6)0.53960 (13)0.01660 (19)
C50.26722 (14)0.93712 (6)0.42976 (13)0.01709 (19)
C60.25532 (15)1.01822 (7)0.47384 (14)0.0206 (2)
H60.27021.06010.39840.025*
C70.22162 (16)1.03764 (7)0.62847 (15)0.0233 (2)
H70.21421.09300.65950.028*
C80.19873 (17)0.97645 (7)0.73760 (15)0.0243 (2)
H80.17400.98990.84300.029*
C90.21179 (16)0.89517 (7)0.69338 (14)0.0215 (2)
H90.19680.85350.76930.026*
N30.30099 (14)0.92086 (6)0.26329 (12)0.02117 (19)
O20.33657 (15)0.85158 (5)0.22577 (12)0.0294 (2)
O30.29218 (19)0.97834 (6)0.16775 (13)0.0414 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0191 (5)0.0140 (4)0.0231 (5)0.0032 (4)0.0083 (4)0.0021 (4)
N10.0180 (4)0.0189 (4)0.0361 (5)0.0019 (3)0.0085 (4)0.0007 (4)
S10.02110 (15)0.01369 (14)0.03376 (17)0.00281 (9)0.00911 (11)0.00049 (10)
C20.0203 (5)0.0130 (4)0.0310 (6)0.0007 (4)0.0060 (4)0.0002 (4)
C30.0191 (5)0.0148 (4)0.0231 (5)0.0007 (4)0.0072 (4)0.0011 (4)
O10.0182 (4)0.0202 (4)0.0424 (5)0.0015 (3)0.0081 (3)0.0003 (4)
N20.0164 (4)0.0119 (4)0.0249 (4)0.0013 (3)0.0074 (3)0.0004 (3)
C40.0153 (4)0.0125 (4)0.0224 (5)0.0018 (3)0.0049 (4)0.0003 (4)
C50.0167 (4)0.0150 (4)0.0194 (4)0.0005 (3)0.0035 (3)0.0003 (4)
C60.0212 (5)0.0138 (5)0.0256 (5)0.0011 (4)0.0020 (4)0.0009 (4)
C70.0233 (5)0.0157 (5)0.0294 (6)0.0019 (4)0.0023 (4)0.0047 (4)
C80.0274 (5)0.0219 (5)0.0245 (5)0.0043 (4)0.0073 (4)0.0043 (4)
C90.0249 (5)0.0181 (5)0.0232 (5)0.0032 (4)0.0091 (4)0.0018 (4)
N30.0243 (5)0.0192 (4)0.0201 (4)0.0040 (3)0.0049 (3)0.0003 (3)
O20.0430 (5)0.0220 (4)0.0257 (4)0.0011 (4)0.0125 (4)0.0036 (3)
O30.0751 (8)0.0249 (5)0.0263 (5)0.0035 (5)0.0156 (5)0.0074 (4)
Geometric parameters (Å, º) top
C1—N11.2589 (15)C4—C51.4002 (14)
C1—N21.4064 (13)C5—C61.3895 (14)
C1—S11.7655 (11)C5—N31.4693 (14)
N1—H10.886 (18)C6—C71.3857 (17)
S1—C21.8083 (12)C6—H60.9500
C2—C31.5100 (14)C7—C81.3831 (17)
C2—H2A0.9900C7—H70.9500
C2—H2B0.9900C8—C91.3938 (15)
C3—O11.2113 (14)C8—H80.9500
C3—N21.3762 (14)C9—H90.9500
N2—C41.4299 (13)N3—O21.2225 (13)
C4—C91.3866 (15)N3—O31.2234 (13)
N1—C1—N2120.86 (10)C5—C4—N2124.72 (9)
N1—C1—S1129.69 (9)C6—C5—C4121.00 (10)
N2—C1—S1109.45 (8)C6—C5—N3116.81 (9)
C1—N1—H1113.5 (11)C4—C5—N3122.19 (9)
C1—S1—C293.42 (5)C7—C6—C5119.65 (10)
C3—C2—S1107.29 (7)C7—C6—H6120.2
C3—C2—H2A110.3C5—C6—H6120.2
S1—C2—H2A110.3C8—C7—C6120.02 (10)
C3—C2—H2B110.3C8—C7—H7120.0
S1—C2—H2B110.3C6—C7—H7120.0
H2A—C2—H2B108.5C7—C8—C9120.19 (11)
O1—C3—N2123.96 (10)C7—C8—H8119.9
O1—C3—C2124.29 (10)C9—C8—H8119.9
N2—C3—C2111.75 (9)C4—C9—C8120.65 (11)
C3—N2—C1117.99 (9)C4—C9—H9119.7
C3—N2—C4121.79 (9)C8—C9—H9119.7
C1—N2—C4120.16 (9)O2—N3—O3122.83 (11)
C9—C4—C5118.48 (10)O2—N3—C5119.50 (9)
C9—C4—N2116.80 (9)O3—N3—C5117.68 (10)
N1—C1—S1—C2178.92 (12)C1—N2—C4—C580.50 (14)
N2—C1—S1—C21.26 (9)C9—C4—C5—C60.66 (16)
C1—S1—C2—C32.58 (9)N2—C4—C5—C6179.31 (10)
S1—C2—C3—O1176.24 (10)C9—C4—C5—N3178.92 (10)
S1—C2—C3—N23.36 (12)N2—C4—C5—N31.11 (16)
O1—C3—N2—C1176.90 (11)C4—C5—C6—C70.29 (16)
C2—C3—N2—C12.70 (14)N3—C5—C6—C7179.30 (10)
O1—C3—N2—C46.11 (17)C5—C6—C7—C80.45 (17)
C2—C3—N2—C4174.29 (9)C6—C7—C8—C90.81 (18)
N1—C1—N2—C3179.21 (11)C5—C4—C9—C80.29 (17)
S1—C1—N2—C30.64 (12)N2—C4—C9—C8179.68 (10)
N1—C1—N2—C43.75 (16)C7—C8—C9—C40.44 (18)
S1—C1—N2—C4176.40 (8)C6—C5—N3—O2170.66 (11)
C3—N2—C4—C977.45 (13)C4—C5—N3—O29.75 (16)
C1—N2—C4—C999.47 (12)C6—C5—N3—O39.25 (16)
C3—N2—C4—C5102.57 (13)C4—C5—N3—O3170.35 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.886 (18)2.334 (18)3.0337 (13)135.9 (14)
N1—H1···O2ii0.886 (18)2.439 (17)3.1416 (14)136.5 (14)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H7N3O3S
Mr237.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.3036 (5), 16.4409 (10), 8.2455 (5)
β (°) 102.1321 (9)
V3)967.99 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.70 × 0.61 × 0.40
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.802, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
11000, 2938, 2675
Rint0.018
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.03
No. of reflections2938
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.886 (18)2.334 (18)3.0337 (13)135.9 (14)
N1—H1···O2ii0.886 (18)2.439 (17)3.1416 (14)136.5 (14)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the PCSIR Laboratories Complex, Lahore, and the Chemistry Department, Loughborough University, for the provision of chemicals and X-ray facilities.

References

First citationBarreca, M. L., Chimirri, A., Luca, L. D., Monforte, A. M., Monforte, P., Rao, A., Zappalà, M., Balzarini, J., Clercq, E. D., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. 11, 1793–1796.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. & Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103–106.  CrossRef CAS Google Scholar
First citationShah, T. J. & Desai, V. A. (2007). Arkivoc, xiv, 218–228.  CrossRef Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Ahmad, N. & Aslam, S. (2011). Acta Cryst. E67, o133.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009). Acta Cryst. E65, o2917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrucano, P. & Chen, R. (1975). Nature (London), 258, 136–137.  CrossRef CAS Google Scholar
First citationVazzana, I., Terranova, E., Mattioli, F. & Sparatore, F. (2004). Arkivoc, v, 364–374.  CrossRef Google Scholar
First citationWrobel, J., Jetter, J., Kao, W., Rogers, J., Di, L., Chi, J., Peréz, M. C., Chen, G.-C. & Shen, E. S. (2006). Bioorg. Med. Chem. 14, 5729–5741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. 51, 1242–125.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds