organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Di­phenyl­phosphanyl-N-{[diphen­yl(2-pyridyl­imino)-λ5-phosphan­yl]meth­yl}pyridin-2-amine

aTianjin Kilo Pharmaceutical Sci-Tech Co. Ltd, Tianjin 300193, People's Republic of China, bKey Laboratory of Ethnic Medicine Resourse Chemistry, Yunnan University of Nationalities, Kunming Yunnan 650031, People's Republic of China, and cCollege of Life Science and Technology, Kunming University, Kunming Yunnan 650214, People's Republic of China
*Correspondence e-mail: yuanyan9876@163.com

(Received 9 August 2011; accepted 12 September 2011; online 17 September 2011)

In the title compound, C35H30N4P2, the diphenyl­phosphanyl and diphen­yl(2-pyridyl­imino)-λ5-phosphanyl groups are attached to the central methyl C atom with a P—C—N angle of 114.09 (16)°. The mol­ecules stack along the b axis and inter­connect through C—H(pyrid­yl)⋯N(pyrid­yl) inter­actions, forming an infinite chain structure. The parallel chains are further inter­connected via C—H(benzene)⋯N(amino) and C—H(benzene)⋯π inter­actions, forming a three-dimensional framework.

Related literature

For transition metal complexes with imino­phospho­ranyl derivatives, see: Avis et al. (1996[Avis, M. W., Elsevier, C. J., Veldman, N., Kooijman, H. & Speck, A. L. (1996). Inorg. Chem. 35, 1518-1528.], 1997[Avis, M. W., Goosen, M., Elsevier, C. & Veldman, N. (1997). Inorg. Chim. Acta, 264, 43-60.]). For the catalytic activity of bis­(imino­phospho­ran­yl)methane and its derivatives, see: Hill & Hitchcock (2002[Hill, M. S. & Hitchcock, P. B. (2002). J. Chem. Soc. Dalton Trans. pp. 4694-4702.]); Ma et al. (2011[Ma, W.-A., Wang, L. & Wang, Z.-X. (2011). Dalton Trans. 40, 4669-4677.]). For the crystal structure of an analogous compound, see: Hill & Hitchcock (2002[Hill, M. S. & Hitchcock, P. B. (2002). J. Chem. Soc. Dalton Trans. pp. 4694-4702.]).

[Scheme 1]

Experimental

Crystal data
  • C35H30N4P2

  • Mr = 568.57

  • Monoclinic, C 2/c

  • a = 22.505 (7) Å

  • b = 9.142 (3) Å

  • c = 29.606 (9) Å

  • β = 102.877 (5)°

  • V = 5938 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.753, Tmax = 1.000

  • 16500 measured reflections

  • 6035 independent reflections

  • 4510 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.126

  • S = 1.15

  • 6035 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroids of C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯N2i 0.93 2.71 3.577 (3) 155
C21—H21⋯N3ii 0.93 2.73 3.569 (4) 150
C28—H28⋯Cgiii 0.93 2.87 3.603 (3) 136
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bis(iminophosphorany)methane and its derivatives are attracting much attention due to their flexible coordination behavior (Avis et al., 1996, 1997) and the catalytic activity of their transition metal complexes (Hill & Hitchcock, 2002; Ma et al., 2011).Herein, we report the crystal structure of a mono-phosphinimine, namely ((N-2-pyridylimino)diphenylphosphoranyl)(N-2-pyridyl-N-diphenylphosphinoamino) methane.

In the crystal structure of the title compound, the (N-2-pyridylimino)diphenylphosphoranyl and the N-2-pyridyl-N-diphenylphosphinoamino groups are attached to the methyl with a P2—C6—N1 angle of 114.09 (2)°. The P2=N3 bond length of 1.593 (2) Å is comparable to that of P=N distances of 1.555 (3) and 1.573 (3) Å in bis(iminophosphorany)methane (Hill & Hitchcock, 2002). The molecules stack along the b axis and interconnect through C32—H32(pyridyl)···N2i(pyridyl) interactions (D···A 3.577 (3)Å, Table 1), forming an infinite chain. These parallel chains are further interconnected via C21—H21(benzene)··· N3ii(amino) and C28—H28(benzene)···Cgiii interactions to form a three-dimensional framework (Cg represents the C7 to C12 benzene ring, Table 1). Symmetry codes: i: x, y+1, z; ii: x, -y-1, z-0.5; iii: -x, y-1, -z+0.5.

Related literature top

For transition metal complexes with iminophosphoranyl derivatives, see: Avis et al. (1996, 1997). For the catalytic activity of bis(iminophosphoranyl)methane and its derivatives, see: Hill & Hitchcock (2002); Ma et al. (2011). For the crystal structure of an analogous compound, see: Hill & Hitchcock (2002).

Experimental top

To a solution of 0.4g (0.1 mmol) N-((pyridin-2-ylamino)methyl)pyridind-2-amine in 40 ml CH2Cl2 at room temperature a solution of 0.45 g (0.2 mmol) chlorodiphenylphosphine in the presence of Et3N in 10 ml toluene was added dropwise, during which N2 gas evolved. After 2 h stirring the resultant yellow solution was evaporated, giving a white powder. The white powder was then separated and purified by column chromatography on silica gel (column of 2 cm diameter, eluent: dichloromethane/acetate = 95:5, v/v), and the title compound was obtained in 60% yield. Orange crystals of the title compound having average dimensions of 0.40 × 0.30 × 0.20 mm3 were obtained by slow evaporation from a solution of dichloromethane/N,N-dimethylformamide 1/1 (v/v).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and 0.97 Å for aryl and methylene hydrogens, respectively. Uiso(H) = 1.2Ueq(C).

Structure description top

Bis(iminophosphorany)methane and its derivatives are attracting much attention due to their flexible coordination behavior (Avis et al., 1996, 1997) and the catalytic activity of their transition metal complexes (Hill & Hitchcock, 2002; Ma et al., 2011).Herein, we report the crystal structure of a mono-phosphinimine, namely ((N-2-pyridylimino)diphenylphosphoranyl)(N-2-pyridyl-N-diphenylphosphinoamino) methane.

In the crystal structure of the title compound, the (N-2-pyridylimino)diphenylphosphoranyl and the N-2-pyridyl-N-diphenylphosphinoamino groups are attached to the methyl with a P2—C6—N1 angle of 114.09 (2)°. The P2=N3 bond length of 1.593 (2) Å is comparable to that of P=N distances of 1.555 (3) and 1.573 (3) Å in bis(iminophosphorany)methane (Hill & Hitchcock, 2002). The molecules stack along the b axis and interconnect through C32—H32(pyridyl)···N2i(pyridyl) interactions (D···A 3.577 (3)Å, Table 1), forming an infinite chain. These parallel chains are further interconnected via C21—H21(benzene)··· N3ii(amino) and C28—H28(benzene)···Cgiii interactions to form a three-dimensional framework (Cg represents the C7 to C12 benzene ring, Table 1). Symmetry codes: i: x, y+1, z; ii: x, -y-1, z-0.5; iii: -x, y-1, -z+0.5.

For transition metal complexes with iminophosphoranyl derivatives, see: Avis et al. (1996, 1997). For the catalytic activity of bis(iminophosphoranyl)methane and its derivatives, see: Hill & Hitchcock (2002); Ma et al. (2011). For the crystal structure of an analogous compound, see: Hill & Hitchcock (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound. The red dashed lines represent C32—H32(pyridyl)···N2i(pyridyl) interactions that connect the molecules along the b axis (symmetry code: i: -x+1, -y, -z). The other interactions are omitted for clarity. Color codes: Green P, Blue N,Gray C.
N-Diphenylphosphanyl-N-{[diphenyl(2-pyridylimino)-λ5- phosphanyl]methyl}pyridin-2-amine top
Crystal data top
C35H30N4P2F(000) = 2384
Mr = 568.57Dx = 1.272 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.505 (7) ÅCell parameters from 241 reflections
b = 9.142 (3) Åθ = 2.1–26.3°
c = 29.606 (9) ŵ = 0.18 mm1
β = 102.877 (5)°T = 293 K
V = 5938 (3) Å3Block, orange
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6035 independent reflections
Radiation source: fine-focus sealed tube4510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 26.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2728
Tmin = 0.753, Tmax = 1.000k = 119
16500 measured reflectionsl = 3633
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0394P)2 + 6.1976P]
where P = (Fo2 + 2Fc2)/3
6035 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C35H30N4P2V = 5938 (3) Å3
Mr = 568.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.505 (7) ŵ = 0.18 mm1
b = 9.142 (3) ÅT = 293 K
c = 29.606 (9) Å0.40 × 0.30 × 0.20 mm
β = 102.877 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6035 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4510 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 1.000Rint = 0.041
16500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.15Δρmax = 0.39 e Å3
6035 reflectionsΔρmin = 0.28 e Å3
370 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.01563 (3)0.63607 (8)0.14930 (2)0.03712 (18)
P20.16356 (3)0.73616 (7)0.14753 (2)0.02853 (16)
N10.05842 (8)0.5832 (2)0.15430 (7)0.0323 (5)
N20.11485 (10)0.3691 (3)0.17411 (7)0.0408 (5)
N30.15628 (10)0.9082 (2)0.13974 (7)0.0357 (5)
N40.14031 (12)0.8766 (3)0.05916 (7)0.0501 (6)
C10.08083 (10)0.4717 (3)0.18710 (8)0.0320 (6)
C20.06822 (12)0.4749 (3)0.23102 (9)0.0411 (6)
H20.04480.54980.23930.049*
C30.09084 (13)0.3661 (4)0.26186 (10)0.0487 (7)
H30.08280.36610.29140.058*
C40.12536 (14)0.2572 (4)0.24880 (10)0.0550 (8)
H40.14100.18170.26900.066*
C50.13608 (14)0.2634 (4)0.20499 (10)0.0548 (8)
H50.15950.18960.19610.066*
C60.09627 (10)0.6230 (3)0.12172 (8)0.0320 (6)
H6A0.07130.67610.09600.038*
H6B0.11010.53410.10940.038*
C70.01288 (12)0.8317 (3)0.13863 (11)0.0451 (7)
C80.01064 (15)0.9233 (4)0.17666 (13)0.0719 (11)
H80.01210.88340.20530.086*
C90.0062 (2)1.0736 (5)0.1719 (2)0.110 (2)
H90.00431.13390.19750.132*
C100.00475 (19)1.1337 (5)0.1302 (2)0.113 (2)
H100.00171.23450.12730.135*
C110.00772 (16)1.0462 (5)0.09285 (19)0.0899 (14)
H110.00701.08770.06430.108*
C120.01182 (13)0.8961 (4)0.09660 (13)0.0601 (9)
H120.01390.83770.07060.072*
C130.05681 (12)0.5681 (3)0.09276 (9)0.0415 (6)
C140.03331 (15)0.4781 (4)0.06367 (11)0.0565 (8)
H140.00800.45570.07080.068*
C150.07070 (19)0.4202 (4)0.02363 (12)0.0731 (11)
H150.05410.36030.00420.088*
C160.1314 (2)0.4510 (5)0.01285 (13)0.0787 (12)
H160.15630.41200.01380.094*
C170.15543 (17)0.5391 (5)0.04118 (15)0.0806 (12)
H170.19690.56020.03380.097*
C180.11885 (14)0.5978 (4)0.08082 (12)0.0607 (9)
H180.13600.65810.09980.073*
C190.17852 (10)0.7135 (3)0.20950 (8)0.0297 (5)
C200.21447 (11)0.6004 (3)0.23177 (8)0.0373 (6)
H200.23240.53530.21470.045*
C210.22379 (12)0.5835 (4)0.27910 (9)0.0472 (7)
H210.24770.50700.29390.057*
C220.19752 (14)0.6807 (4)0.30441 (9)0.0545 (8)
H220.20400.66980.33640.065*
C230.16185 (14)0.7935 (4)0.28284 (10)0.0534 (8)
H230.14420.85840.30020.064*
C240.15210 (12)0.8109 (3)0.23526 (9)0.0403 (6)
H240.12800.88740.22070.048*
C250.22768 (11)0.6569 (3)0.12830 (8)0.0323 (6)
C260.23091 (12)0.5109 (3)0.11729 (9)0.0423 (7)
H260.19930.44780.11950.051*
C270.28149 (14)0.4588 (4)0.10292 (10)0.0559 (8)
H270.28310.36110.09450.067*
C280.32934 (14)0.5506 (4)0.10102 (11)0.0604 (9)
H280.36370.51430.09230.072*
C290.32629 (14)0.6950 (5)0.11197 (12)0.0644 (10)
H290.35860.75700.11050.077*
C300.27536 (12)0.7498 (4)0.12529 (10)0.0498 (7)
H300.27320.84870.13220.060*
C310.14809 (12)0.9659 (3)0.09597 (8)0.0365 (6)
C320.14870 (16)1.1179 (3)0.09068 (10)0.0561 (8)
H320.15321.17830.11650.067*
C330.14268 (19)1.1772 (4)0.04781 (11)0.0737 (11)
H330.14271.27820.04400.088*
C340.1366 (2)1.0861 (4)0.01011 (11)0.0878 (14)
H340.13331.12350.01960.105*
C350.1355 (2)0.9390 (4)0.01768 (10)0.0770 (12)
H350.13100.87760.00790.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0288 (3)0.0405 (4)0.0426 (4)0.0037 (3)0.0091 (3)0.0017 (3)
P20.0308 (3)0.0285 (4)0.0267 (3)0.0002 (3)0.0074 (2)0.0001 (3)
N10.0263 (10)0.0357 (13)0.0360 (11)0.0026 (9)0.0094 (8)0.0051 (9)
N20.0424 (12)0.0394 (14)0.0400 (12)0.0099 (11)0.0078 (10)0.0005 (10)
N30.0459 (12)0.0303 (12)0.0310 (11)0.0001 (10)0.0089 (9)0.0006 (9)
N40.0818 (18)0.0345 (14)0.0315 (12)0.0078 (13)0.0071 (11)0.0018 (10)
C10.0263 (12)0.0317 (14)0.0379 (14)0.0039 (11)0.0066 (10)0.0003 (11)
C20.0362 (14)0.0461 (18)0.0442 (15)0.0032 (13)0.0159 (12)0.0044 (13)
C30.0500 (17)0.056 (2)0.0418 (16)0.0007 (15)0.0136 (13)0.0111 (14)
C40.0609 (19)0.0467 (19)0.0528 (18)0.0083 (16)0.0030 (15)0.0159 (15)
C50.0578 (18)0.048 (2)0.0556 (18)0.0198 (16)0.0067 (14)0.0010 (15)
C60.0301 (12)0.0380 (15)0.0281 (12)0.0013 (11)0.0070 (10)0.0008 (11)
C70.0306 (14)0.0343 (16)0.0661 (19)0.0075 (12)0.0013 (13)0.0053 (14)
C80.058 (2)0.062 (2)0.082 (2)0.0150 (18)0.0128 (18)0.029 (2)
C90.079 (3)0.064 (3)0.156 (5)0.021 (2)0.042 (3)0.051 (3)
C100.066 (3)0.038 (2)0.201 (6)0.006 (2)0.038 (3)0.002 (3)
C110.048 (2)0.055 (3)0.157 (4)0.0017 (19)0.003 (2)0.035 (3)
C120.0427 (17)0.046 (2)0.090 (3)0.0077 (14)0.0112 (16)0.0131 (18)
C130.0417 (15)0.0305 (15)0.0494 (16)0.0043 (12)0.0041 (12)0.0082 (13)
C140.0552 (18)0.050 (2)0.063 (2)0.0137 (16)0.0117 (15)0.0091 (16)
C150.099 (3)0.059 (2)0.060 (2)0.030 (2)0.014 (2)0.0107 (18)
C160.095 (3)0.061 (3)0.062 (2)0.032 (2)0.020 (2)0.013 (2)
C170.059 (2)0.070 (3)0.093 (3)0.007 (2)0.026 (2)0.014 (2)
C180.0442 (17)0.054 (2)0.076 (2)0.0047 (15)0.0049 (15)0.0022 (17)
C190.0283 (12)0.0321 (14)0.0286 (12)0.0041 (10)0.0059 (9)0.0005 (10)
C200.0334 (13)0.0443 (17)0.0342 (14)0.0005 (12)0.0073 (11)0.0013 (12)
C210.0410 (15)0.057 (2)0.0401 (15)0.0001 (14)0.0013 (12)0.0097 (14)
C220.0610 (19)0.073 (2)0.0270 (14)0.0051 (18)0.0056 (13)0.0026 (15)
C230.0640 (19)0.061 (2)0.0374 (16)0.0020 (17)0.0171 (14)0.0099 (15)
C240.0469 (15)0.0382 (16)0.0357 (14)0.0028 (13)0.0088 (12)0.0018 (12)
C250.0311 (12)0.0385 (16)0.0284 (12)0.0005 (11)0.0085 (10)0.0032 (11)
C260.0397 (14)0.0426 (18)0.0480 (16)0.0052 (13)0.0167 (12)0.0013 (13)
C270.0609 (19)0.053 (2)0.0583 (19)0.0199 (17)0.0230 (15)0.0017 (15)
C280.0475 (18)0.085 (3)0.0563 (19)0.0178 (18)0.0281 (15)0.0078 (18)
C290.0432 (17)0.084 (3)0.073 (2)0.0059 (17)0.0275 (16)0.005 (2)
C300.0432 (15)0.0495 (19)0.0613 (19)0.0042 (14)0.0211 (14)0.0022 (15)
C310.0419 (14)0.0353 (16)0.0309 (13)0.0026 (12)0.0050 (11)0.0006 (11)
C320.097 (2)0.0338 (17)0.0373 (16)0.0079 (17)0.0133 (16)0.0033 (13)
C330.133 (3)0.0322 (18)0.051 (2)0.006 (2)0.010 (2)0.0100 (15)
C340.167 (4)0.055 (2)0.0338 (18)0.021 (3)0.006 (2)0.0096 (16)
C350.146 (4)0.049 (2)0.0304 (16)0.021 (2)0.0057 (18)0.0011 (15)
Geometric parameters (Å, º) top
P1—N11.710 (2)C14—H140.9300
P1—C71.820 (3)C15—C161.362 (6)
P1—C131.832 (3)C15—H150.9300
P2—N31.593 (2)C16—C171.359 (6)
P2—C191.802 (2)C16—H160.9300
P2—C251.816 (2)C17—C181.383 (5)
P2—C61.853 (2)C17—H170.9300
N1—C11.421 (3)C18—H180.9300
N1—C61.468 (3)C19—C201.386 (3)
N2—C11.321 (3)C19—C241.389 (3)
N2—C51.343 (4)C20—C211.379 (4)
N3—C311.373 (3)C20—H200.9300
N4—C351.336 (4)C21—C221.378 (4)
N4—C311.342 (3)C21—H210.9300
C1—C21.391 (3)C22—C231.374 (4)
C2—C31.369 (4)C22—H220.9300
C2—H20.9300C23—C241.386 (4)
C3—C41.370 (4)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.372 (4)C25—C261.379 (4)
C4—H40.9300C25—C301.387 (4)
C5—H50.9300C26—C271.386 (4)
C6—H6A0.9700C26—H260.9300
C6—H6B0.9700C27—C281.376 (5)
C7—C121.382 (4)C27—H270.9300
C7—C81.395 (4)C28—C291.365 (5)
C8—C91.388 (6)C28—H280.9300
C8—H80.9300C29—C301.386 (4)
C9—C101.359 (7)C29—H290.9300
C9—H90.9300C30—H300.9300
C10—C111.354 (7)C31—C321.399 (4)
C10—H100.9300C32—C331.359 (4)
C11—C121.382 (5)C32—H320.9300
C11—H110.9300C33—C341.375 (5)
C12—H120.9300C33—H330.9300
C13—C141.379 (4)C34—C351.364 (5)
C13—C181.389 (4)C34—H340.9300
C14—C151.396 (4)C35—H350.9300
N1—P1—C7102.86 (11)C14—C15—H15119.9
N1—P1—C13105.55 (12)C17—C16—C15119.6 (3)
C7—P1—C13101.82 (13)C17—C16—H16120.2
N3—P2—C19104.52 (11)C15—C16—H16120.2
N3—P2—C25114.34 (12)C16—C17—C18120.7 (4)
C19—P2—C25106.98 (11)C16—C17—H17119.6
N3—P2—C6116.32 (12)C18—C17—H17119.6
C19—P2—C6107.81 (11)C17—C18—C13121.0 (4)
C25—P2—C6106.35 (12)C17—C18—H18119.5
C1—N1—C6117.21 (19)C13—C18—H18119.5
C1—N1—P1116.91 (15)C20—C19—C24119.5 (2)
C6—N1—P1124.78 (16)C20—C19—P2121.79 (19)
C1—N2—C5117.0 (2)C24—C19—P2118.66 (19)
C31—N3—P2120.27 (18)C21—C20—C19120.5 (3)
C35—N4—C31117.1 (3)C21—C20—H20119.8
N2—C1—C2122.6 (2)C19—C20—H20119.8
N2—C1—N1116.8 (2)C22—C21—C20119.6 (3)
C2—C1—N1120.6 (2)C22—C21—H21120.2
C3—C2—C1119.0 (3)C20—C21—H21120.2
C3—C2—H2120.5C23—C22—C21120.6 (3)
C1—C2—H2120.5C23—C22—H22119.7
C2—C3—C4119.3 (3)C21—C22—H22119.7
C2—C3—H3120.4C22—C23—C24120.2 (3)
C4—C3—H3120.4C22—C23—H23119.9
C3—C4—C5117.9 (3)C24—C23—H23119.9
C3—C4—H4121.1C23—C24—C19119.6 (3)
C5—C4—H4121.1C23—C24—H24120.2
N2—C5—C4124.2 (3)C19—C24—H24120.2
N2—C5—H5117.9C26—C25—C30119.7 (2)
C4—C5—H5117.9C26—C25—P2123.20 (19)
N1—C6—P2114.09 (16)C30—C25—P2117.1 (2)
N1—C6—H6A108.7C25—C26—C27119.7 (3)
P2—C6—H6A108.7C25—C26—H26120.2
N1—C6—H6B108.7C27—C26—H26120.2
P2—C6—H6B108.7C28—C27—C26120.5 (3)
H6A—C6—H6B107.6C28—C27—H27119.8
C12—C7—C8117.8 (3)C26—C27—H27119.8
C12—C7—P1125.7 (2)C29—C28—C27119.9 (3)
C8—C7—P1116.5 (3)C29—C28—H28120.0
C9—C8—C7120.2 (4)C27—C28—H28120.0
C9—C8—H8119.9C28—C29—C30120.4 (3)
C7—C8—H8119.9C28—C29—H29119.8
C10—C9—C8120.6 (5)C30—C29—H29119.8
C10—C9—H9119.7C29—C30—C25119.8 (3)
C8—C9—H9119.7C29—C30—H30120.1
C11—C10—C9119.8 (4)C25—C30—H30120.1
C11—C10—H10120.1N4—C31—N3119.9 (2)
C9—C10—H10120.1N4—C31—C32121.1 (2)
C10—C11—C12120.9 (5)N3—C31—C32119.0 (2)
C10—C11—H11119.6C33—C32—C31120.0 (3)
C12—C11—H11119.6C33—C32—H32120.0
C11—C12—C7120.7 (4)C31—C32—H32120.0
C11—C12—H12119.7C32—C33—C34119.2 (3)
C7—C12—H12119.7C32—C33—H33120.4
C14—C13—C18117.5 (3)C34—C33—H33120.4
C14—C13—P1125.9 (2)C35—C34—C33117.8 (3)
C18—C13—P1116.2 (2)C35—C34—H34121.1
C13—C14—C15120.9 (3)C33—C34—H34121.1
C13—C14—H14119.5N4—C35—C34124.8 (3)
C15—C14—H14119.5N4—C35—H35117.6
C16—C15—C14120.3 (4)C34—C35—H35117.6
C16—C15—H15119.9
C7—P1—N1—C1143.92 (19)C14—C15—C16—C170.3 (6)
C13—P1—N1—C1109.72 (19)C15—C16—C17—C180.0 (6)
C7—P1—N1—C648.4 (2)C16—C17—C18—C130.2 (6)
C13—P1—N1—C658.0 (2)C14—C13—C18—C170.0 (5)
C19—P2—N3—C31175.99 (19)P1—C13—C18—C17173.4 (3)
C25—P2—N3—C3159.4 (2)N3—P2—C19—C20148.8 (2)
C6—P2—N3—C3165.3 (2)C25—P2—C19—C2027.2 (2)
C5—N2—C1—C21.7 (4)C6—P2—C19—C2086.8 (2)
C5—N2—C1—N1179.9 (2)N3—P2—C19—C2432.5 (2)
C6—N1—C1—N231.0 (3)C25—P2—C19—C24154.1 (2)
P1—N1—C1—N2137.68 (19)C6—P2—C19—C2491.9 (2)
C6—N1—C1—C2147.4 (2)C24—C19—C20—C210.4 (4)
P1—N1—C1—C243.9 (3)P2—C19—C20—C21178.3 (2)
N2—C1—C2—C31.3 (4)C19—C20—C21—C220.5 (4)
N1—C1—C2—C3179.6 (2)C20—C21—C22—C230.4 (5)
C1—C2—C3—C40.2 (4)C21—C22—C23—C240.2 (5)
C2—C3—C4—C50.5 (5)C22—C23—C24—C190.1 (4)
C1—N2—C5—C41.0 (5)C20—C19—C24—C230.2 (4)
C3—C4—C5—N20.1 (5)P2—C19—C24—C23178.5 (2)
C1—N1—C6—P275.7 (3)N3—P2—C25—C26157.5 (2)
P1—N1—C6—P2116.67 (18)C19—P2—C25—C2687.3 (2)
N3—P2—C6—N197.21 (19)C6—P2—C25—C2627.7 (2)
C19—P2—C6—N119.7 (2)N3—P2—C25—C3023.1 (2)
C25—P2—C6—N1134.16 (18)C19—P2—C25—C3092.1 (2)
N1—P1—C7—C1279.6 (3)C6—P2—C25—C30152.9 (2)
C13—P1—C7—C1229.6 (3)C30—C25—C26—C270.6 (4)
N1—P1—C7—C899.3 (2)P2—C25—C26—C27179.9 (2)
C13—P1—C7—C8151.5 (2)C25—C26—C27—C282.1 (4)
C12—C7—C8—C91.3 (5)C26—C27—C28—C292.0 (5)
P1—C7—C8—C9177.7 (3)C27—C28—C29—C300.4 (5)
C7—C8—C9—C100.8 (6)C28—C29—C30—C251.2 (5)
C8—C9—C10—C110.1 (7)C26—C25—C30—C291.0 (4)
C9—C10—C11—C120.5 (6)P2—C25—C30—C29178.3 (2)
C10—C11—C12—C70.1 (5)C35—N4—C31—N3176.9 (3)
C8—C7—C12—C111.0 (4)C35—N4—C31—C322.4 (5)
P1—C7—C12—C11177.9 (2)P2—N3—C31—N46.4 (3)
N1—P1—C13—C147.1 (3)P2—N3—C31—C32172.9 (2)
C7—P1—C13—C14114.2 (3)N4—C31—C32—C331.4 (5)
N1—P1—C13—C18179.8 (2)N3—C31—C32—C33177.8 (3)
C7—P1—C13—C1873.1 (3)C31—C32—C33—C340.5 (6)
C18—C13—C14—C150.4 (5)C32—C33—C34—C351.4 (7)
P1—C13—C14—C15173.0 (2)C31—N4—C35—C341.5 (6)
C13—C14—C15—C160.5 (5)C33—C34—C35—N40.4 (7)
Hydrogen-bond geometry (Å, º) top
Cg is the centroids of C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C32—H32···N2i0.932.713.577 (3)155
C21—H21···N3ii0.932.733.569 (4)150
C28—H28···Cgiii0.932.873.603 (3)136
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC35H30N4P2
Mr568.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.505 (7), 9.142 (3), 29.606 (9)
β (°) 102.877 (5)
V3)5938 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.753, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16500, 6035, 4510
Rint0.041
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.126, 1.15
No. of reflections6035
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroids of C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C32—H32···N2i0.932.713.577 (3)155.1
C21—H21···N3ii0.932.733.569 (4)150.2
C28—H28···Cgiii0.932.873.603 (3)136.4
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from Applied and Basic Research Foundation of Yunnan Province (No. 2009CD154), Open Foundation of Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities (No. MZY100101).

References

First citationAvis, M. W., Elsevier, C. J., Veldman, N., Kooijman, H. & Speck, A. L. (1996). Inorg. Chem. 35, 1518–1528.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationAvis, M. W., Goosen, M., Elsevier, C. & Veldman, N. (1997). Inorg. Chim. Acta, 264, 43–60.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, M. S. & Hitchcock, P. B. (2002). J. Chem. Soc. Dalton Trans. pp. 4694–4702.  Web of Science CSD CrossRef Google Scholar
First citationMa, W.-A., Wang, L. & Wang, Z.-X. (2011). Dalton Trans. 40, 4669–4677.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds