organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Bis(3-phenyl-1H-pyrazol-1-yl)meth­yl]benzene-1,2-diol

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 14 September 2011; accepted 16 September 2011; online 30 September 2011)

The title compound, C25H20N4O2, is a ditopic ortho-hydro­quinone-based bis­(pyrazol-1-yl)methane ligand. The dihedral angles between the planes of the pyrazole rings and their attached phenyl rings are 17.4 (3) and 5.9 (4)°. The pyrazole rings make a dihedral angle of 87.84 (16)°. One of the two hy­droxy groups forms an intra­molecular hydrogen bond to the other hy­droxy group, whereas the second is involved in an inter­molecular O—H⋯N hydrogen bond. As a result of these inter­molecular hydrogen bonds, helical chains running along the b axis are formed.

Related literature

For the synthesis, structural characterization and coordination behavior of ditopic ortho-hydro­quinone-based bis­(pyrazol-1-yl)methane ligands, see: Blasberg et al. (2011[Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. doi:10.1016/j.jorganchem.2011.08.002.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N4O2

  • Mr = 408.45

  • Monoclinic, P 21 /n

  • a = 13.493 (3) Å

  • b = 5.6288 (11) Å

  • c = 26.309 (5) Å

  • β = 100.87 (3)°

  • V = 1962.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.40 × 0.15 × 0.10 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 16343 measured reflections

  • 3450 independent reflections

  • 1434 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.121

  • S = 0.82

  • 3450 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23⋯O24 0.84 2.21 2.646 (5) 113
O24—H24⋯N12i 0.84 2.08 2.853 (5) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Very recently we have reported on the synthesis, structural characterization, and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands (Blasberg et al., 2011). In this report, we have already noted ortho-(OH)2C6H3-4-CH(3-Phpz)2, but metric parameters will be discussed here. The bis(pyrazol-1-yl)methane derivative (I) was prepared in a three-step one-pot procedure as shown in Fig. 1.

The dihedral angles between the planes of the pyrazol rings and the attached phenyl rings are 20.9 (3)° and 5.9 (4)°. One of the two hydroxy groups forms an intramolecular hydrogen bond to the other hydroxy group, whereas the second one is involved in an intermolecular O—H···N hydrogen bond. As a result of these intermolecular hydrogen bonds, helical chains running along the b axis are formed.

Related literature top

For the synthesis, structural characterization and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands, see: Blasberg et al. (2011).

Experimental top

Neat 3-phenylpyrazole (2.00 g, 13.87 mmol) was added to NaH (0.33 g, 13.87 mmol) suspended in THF (60 ml) at r.t. After 30 min SOCl2 (0.50 ml, 0.83 g, 6.94 mmol) was added in one portion and the resulting mixture stirred at r.t. for 5 min. After 3,4-dihydroxybenzaldehyde (0.96 g, 6.94 mmol) and pyridine (5.60 ml, 4.78 g, 60.40 mmol) were added, the reaction mixture was kept at reflux temperature for 16 h. H2O (50 ml) was added and the aqueous phase extracted into CH2Cl2 (3×50 ml). The combined organic extracts were washed with brine, dried (MgSO4), filtered, and the filtrate was evaporated to dryness in vacuo. The crude product was purified by column chromatography (silica gel; CHCl3/EtOAc 1:1) and all product-containing fractions were concentrated by rotary evaporation at 40°C to ca. half of the original volume. Upon cooling to r.t. colorless crystals of the title compound precipitated, which were isolated by filtration and washed with Et2O. Yield: 1.53 g (54%). Single crystals suitable for X-ray diffraction were obtained by repeatedly dissolving the compound in refluxing MeCN and letting the clear colorless solution cool to room temperature. After three cycles needles of sufficient size were obtained. R</f = 0.63 (silica gel, CHCl3/EtOAc 1:1). 1H NMR (400.1 MHz, d6-DMSO) δ = 6.48 (dd, 3JHH = 8.3, 4JHH = 2.0, 1 H; HQ—H6), 6.66 (d, 4JHH = 2.0, 1 H; HQ—H2), 6.76 (d, 3JHH = 8.3, 1 H; HQ—H5), 6.84 (d, 3JHH = 2.5, 2 H; pz-H4), 7.31 (m, 2 H; Ph—H4), 7.41 (m, 4 H; Ph—H3), 7.82 (m, 4 H; Ph—H2), 7.91 (s, 1H, CH), 7.94 (d, 3JHH = 2.5, 2 H; pz-H5), 9.15 (bs, 2 H; OH). 13C NMR (100.6 MHz, d6-DMSO) δ = 76.7 (Cpz2), 103.5 (pz-C4), 114.4 (HQ—C2), 115.5 (HQ—C5), 118.2 (HQ—C6), 125.3 (Ph—C2), 127.2 (HQ—C1), 127.8 (Ph—C4), 128.7 (Ph—C3), 131.9 (pz-C5), 132.8 (Ph—C1), 145.3, 146.1 (HQ—C3,4), 151.0 (pz-C3). ESI-MS: m/z (%) 263 (67) [M—Phpz]-, 408 (100) [M—H]-. Anal. Calcd (%) for C25H20N4O2 (408.45): C 73.51, H 4.94, N 13.72. Found: C 73.22, H 4.86, N 13.67.

Refinement top

All H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(O, Cmethyl)] using a riding model with O—H = 0.84 Å, C—H(aromatic) = 0.95Å or C—H(methine) = 1.00 Å, respectively. The H—O—C—C torsions angles of the hydroxy groups were refined.

Structure description top

Very recently we have reported on the synthesis, structural characterization, and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands (Blasberg et al., 2011). In this report, we have already noted ortho-(OH)2C6H3-4-CH(3-Phpz)2, but metric parameters will be discussed here. The bis(pyrazol-1-yl)methane derivative (I) was prepared in a three-step one-pot procedure as shown in Fig. 1.

The dihedral angles between the planes of the pyrazol rings and the attached phenyl rings are 20.9 (3)° and 5.9 (4)°. One of the two hydroxy groups forms an intramolecular hydrogen bond to the other hydroxy group, whereas the second one is involved in an intermolecular O—H···N hydrogen bond. As a result of these intermolecular hydrogen bonds, helical chains running along the b axis are formed.

For the synthesis, structural characterization and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands, see: Blasberg et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Synthesis and numbering scheme of ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligand (I). (a) (i) NaH, THF, 30 min; (ii) SOCl2, THF, 5 min; (iii) 3,4-dihydroxybenzaldehyde, pyridine, THF, reflux, over night.
[Figure 2] Fig. 2. Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level.
4-[Bis(3-phenyl-1H-pyrazol-1-yl)methyl]benzene-1,2-diol top
Crystal data top
C25H20N4O2F(000) = 856
Mr = 408.45Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2882 reflections
a = 13.493 (3) Åθ = 3.7–25.8°
b = 5.6288 (11) ŵ = 0.09 mm1
c = 26.309 (5) ÅT = 173 K
β = 100.87 (3)°Needle, colourless
V = 1962.3 (7) Å30.40 × 0.15 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
1434 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.111
Graphite monochromatorθmax = 25.0°, θmin = 3.7°
ω scansh = 1616
16343 measured reflectionsk = 66
3450 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.003P)2]
where P = (Fo2 + 2Fc2)/3
3450 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C25H20N4O2V = 1962.3 (7) Å3
Mr = 408.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.493 (3) ŵ = 0.09 mm1
b = 5.6288 (11) ÅT = 173 K
c = 26.309 (5) Å0.40 × 0.15 × 0.10 mm
β = 100.87 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1434 reflections with I > 2σ(I)
16343 measured reflectionsRint = 0.111
3450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.82Δρmax = 0.22 e Å3
3450 reflectionsΔρmin = 0.27 e Å3
282 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6081 (3)0.2494 (7)0.30782 (15)0.0162 (10)
C10.5052 (4)0.2507 (9)0.31608 (19)0.0199 (12)
H10.48730.08470.32450.024*
N20.6784 (3)0.1200 (7)0.34051 (15)0.0181 (9)
C30.7672 (4)0.1933 (8)0.33129 (19)0.0189 (12)
C40.7529 (4)0.3725 (8)0.29212 (19)0.0216 (12)
H40.80370.45300.27820.026*
C50.6523 (4)0.4033 (9)0.27902 (19)0.0224 (12)
H50.61840.51270.25420.027*
N110.4994 (3)0.4008 (7)0.36107 (14)0.0171 (9)
N120.4236 (3)0.3584 (6)0.38778 (15)0.0165 (10)
C130.4318 (4)0.5389 (8)0.42204 (18)0.0171 (12)
C140.5103 (4)0.6909 (8)0.4161 (2)0.0214 (12)
H140.53080.83020.43560.026*
C150.5517 (4)0.6011 (9)0.37699 (19)0.0239 (12)
H150.60640.66590.36350.029*
C210.4313 (4)0.3296 (8)0.26841 (19)0.0179 (12)
C220.4107 (4)0.1733 (8)0.22619 (19)0.0209 (12)
H220.44640.02730.22720.025*
C230.3402 (4)0.2291 (9)0.1838 (2)0.0214 (12)
O230.3195 (3)0.0753 (6)0.14321 (13)0.0287 (9)
H230.26400.11160.12450.043*
C240.2880 (4)0.4488 (8)0.18097 (19)0.0168 (11)
O240.2181 (3)0.4800 (6)0.13669 (13)0.0237 (9)
H240.18160.59760.14020.036*
C250.3102 (4)0.6034 (8)0.22209 (18)0.0196 (12)
H250.27680.75250.22060.024*
C260.3800 (4)0.5442 (8)0.26527 (19)0.0193 (12)
H260.39350.65230.29350.023*
C310.8626 (4)0.0957 (8)0.36075 (19)0.0190 (11)
C320.9534 (4)0.2161 (8)0.3623 (2)0.0238 (13)
H320.95400.35770.34270.029*
C331.0414 (4)0.1348 (9)0.3913 (2)0.0312 (14)
H331.10210.22120.39190.037*
C341.0433 (4)0.0750 (10)0.4203 (2)0.0317 (14)
H341.10420.13180.44090.038*
C350.9530 (5)0.1962 (9)0.4177 (2)0.0332 (15)
H350.95310.34060.43640.040*
C360.8634 (4)0.1155 (9)0.38900 (19)0.0249 (13)
H360.80270.20210.38840.030*
C410.3634 (4)0.5541 (8)0.45945 (19)0.0176 (12)
C420.3673 (4)0.7591 (9)0.4918 (2)0.0263 (13)
H420.41390.88300.48910.032*
C430.3040 (4)0.7773 (9)0.5268 (2)0.0272 (14)
H430.30780.91330.54850.033*
C440.2345 (4)0.6001 (9)0.53102 (19)0.0239 (12)
H440.19050.61540.55510.029*
C450.2296 (4)0.4007 (9)0.49981 (19)0.0248 (12)
H450.18200.27900.50230.030*
C460.2950 (4)0.3786 (8)0.46467 (19)0.0223 (12)
H460.29220.23960.44400.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.019 (3)0.014 (2)0.016 (2)0.0032 (19)0.0029 (19)0.0009 (17)
C10.019 (3)0.021 (3)0.021 (3)0.001 (2)0.006 (2)0.003 (2)
N20.019 (2)0.017 (2)0.019 (2)0.0002 (19)0.0042 (19)0.0018 (18)
C30.019 (3)0.016 (2)0.022 (3)0.000 (2)0.005 (2)0.004 (2)
C40.016 (3)0.026 (3)0.025 (3)0.002 (2)0.010 (2)0.001 (2)
C50.031 (3)0.018 (3)0.019 (3)0.003 (2)0.004 (2)0.004 (2)
N110.019 (2)0.019 (2)0.016 (2)0.005 (2)0.0077 (19)0.0038 (18)
N120.021 (3)0.014 (2)0.014 (2)0.0026 (18)0.0023 (19)0.0035 (17)
C130.018 (3)0.019 (3)0.013 (3)0.002 (2)0.000 (2)0.002 (2)
C140.022 (3)0.019 (3)0.023 (3)0.005 (2)0.004 (2)0.012 (2)
C150.020 (3)0.022 (3)0.027 (3)0.006 (2)0.001 (2)0.002 (2)
C210.015 (3)0.023 (3)0.018 (3)0.002 (2)0.008 (2)0.000 (2)
C220.027 (3)0.015 (2)0.021 (3)0.002 (2)0.006 (3)0.006 (2)
C230.021 (3)0.020 (3)0.024 (3)0.005 (2)0.005 (2)0.009 (2)
O230.032 (2)0.024 (2)0.025 (2)0.0058 (18)0.0061 (18)0.0090 (17)
C240.009 (3)0.020 (3)0.023 (3)0.005 (2)0.005 (2)0.002 (2)
O240.026 (2)0.0201 (19)0.022 (2)0.0082 (16)0.0056 (17)0.0014 (14)
C250.018 (3)0.016 (2)0.024 (3)0.002 (2)0.000 (2)0.001 (2)
C260.020 (3)0.017 (3)0.024 (3)0.002 (2)0.011 (2)0.008 (2)
C310.020 (3)0.020 (2)0.018 (3)0.005 (2)0.008 (2)0.007 (2)
C320.025 (3)0.021 (3)0.025 (3)0.010 (2)0.004 (3)0.005 (2)
C330.020 (3)0.036 (3)0.038 (4)0.007 (3)0.008 (3)0.000 (3)
C340.022 (3)0.037 (3)0.034 (3)0.012 (3)0.002 (3)0.006 (3)
C350.034 (4)0.027 (3)0.039 (4)0.003 (3)0.007 (3)0.012 (3)
C360.024 (3)0.020 (3)0.029 (3)0.002 (2)0.003 (3)0.001 (2)
C410.020 (3)0.014 (3)0.019 (3)0.001 (2)0.001 (2)0.002 (2)
C420.032 (3)0.022 (3)0.027 (3)0.001 (3)0.008 (3)0.002 (2)
C430.032 (4)0.025 (3)0.027 (3)0.001 (3)0.012 (3)0.010 (2)
C440.030 (3)0.026 (3)0.017 (3)0.002 (3)0.008 (2)0.002 (2)
C450.026 (3)0.028 (3)0.022 (3)0.006 (3)0.010 (2)0.003 (3)
C460.027 (3)0.016 (2)0.024 (3)0.005 (2)0.003 (2)0.006 (2)
Geometric parameters (Å, º) top
N1—C51.360 (6)C24—C251.377 (7)
N1—N21.364 (5)O24—H240.8400
N1—C11.445 (7)C25—C261.373 (7)
C1—N111.468 (6)C25—H250.9500
C1—C211.515 (6)C26—H260.9500
C1—H11.0000C31—C321.394 (7)
N2—C31.333 (7)C31—C361.401 (7)
C3—C41.429 (7)C32—C331.364 (7)
C3—C311.477 (7)C32—H320.9500
C4—C51.348 (7)C33—C341.403 (7)
C4—H40.9500C33—H330.9500
C5—H50.9500C34—C351.387 (8)
N11—C151.354 (6)C34—H340.9500
N11—N121.367 (6)C35—C361.376 (7)
N12—C131.349 (6)C35—H350.9500
C13—C141.392 (7)C36—H360.9500
C13—C411.473 (7)C41—C461.376 (7)
C14—C151.358 (7)C41—C421.430 (7)
C14—H140.9500C42—C431.373 (7)
C15—H150.9500C42—H420.9500
C21—C261.386 (6)C43—C441.388 (7)
C21—C221.403 (6)C43—H430.9500
C22—C231.360 (7)C44—C451.385 (7)
C22—H220.9500C44—H440.9500
C23—O231.362 (6)C45—C461.398 (8)
C23—C241.418 (6)C45—H450.9500
O23—H230.8400C46—H460.9500
C24—O241.365 (6)
C5—N1—N2111.4 (4)C25—C24—C23118.6 (4)
C5—N1—C1128.0 (4)C24—O24—H24109.5
N2—N1—C1118.7 (4)C26—C25—C24120.7 (5)
N1—C1—N11108.8 (4)C26—C25—H25119.7
N1—C1—C21112.2 (4)C24—C25—H25119.7
N11—C1—C21111.8 (4)C25—C26—C21121.2 (4)
N1—C1—H1107.9C25—C26—H26119.4
N11—C1—H1107.9C21—C26—H26119.4
C21—C1—H1107.9C32—C31—C36118.6 (5)
C3—N2—N1105.2 (4)C32—C31—C3120.5 (4)
N2—C3—C4110.2 (5)C36—C31—C3120.8 (5)
N2—C3—C31120.9 (4)C33—C32—C31121.4 (5)
C4—C3—C31128.8 (5)C33—C32—H32119.3
C5—C4—C3105.5 (5)C31—C32—H32119.3
C5—C4—H4127.2C32—C33—C34120.7 (5)
C3—C4—H4127.2C32—C33—H33119.6
C4—C5—N1107.6 (4)C34—C33—H33119.6
C4—C5—H5126.2C35—C34—C33117.5 (5)
N1—C5—H5126.2C35—C34—H34121.3
C15—N11—N12112.5 (4)C33—C34—H34121.3
C15—N11—C1128.7 (4)C36—C35—C34122.6 (5)
N12—N11—C1118.2 (4)C36—C35—H35118.7
C13—N12—N11103.7 (4)C34—C35—H35118.7
N12—C13—C14110.9 (5)C35—C36—C31119.2 (5)
N12—C13—C41120.5 (4)C35—C36—H36120.4
C14—C13—C41128.7 (4)C31—C36—H36120.4
C15—C14—C13106.7 (4)C46—C41—C42118.1 (5)
C15—C14—H14126.7C46—C41—C13122.8 (4)
C13—C14—H14126.7C42—C41—C13119.1 (5)
N11—C15—C14106.2 (5)C43—C42—C41120.1 (5)
N11—C15—H15126.9C43—C42—H42119.9
C14—C15—H15126.9C41—C42—H42119.9
C26—C21—C22118.5 (5)C42—C43—C44121.0 (5)
C26—C21—C1123.3 (4)C42—C43—H43119.5
C22—C21—C1118.2 (4)C44—C43—H43119.5
C23—C22—C21120.5 (5)C45—C44—C43119.5 (5)
C23—C22—H22119.7C45—C44—H44120.3
C21—C22—H22119.7C43—C44—H44120.3
C22—C23—O23120.3 (5)C44—C45—C46119.9 (5)
C22—C23—C24120.6 (4)C44—C45—H45120.0
O23—C23—C24119.1 (4)C46—C45—H45120.0
C23—O23—H23109.5C41—C46—C45121.4 (5)
O24—C24—C25127.0 (4)C41—C46—H46119.3
O24—C24—C23114.4 (4)C45—C46—H46119.3
C5—N1—C1—N1188.4 (5)C22—C23—C24—O24178.9 (5)
N2—N1—C1—N1174.6 (5)O23—C23—C24—O241.8 (7)
C5—N1—C1—C2135.9 (6)C22—C23—C24—C250.2 (8)
N2—N1—C1—C21161.0 (4)O23—C23—C24—C25179.6 (5)
C5—N1—N2—C30.7 (5)O24—C24—C25—C26177.4 (5)
C1—N1—N2—C3166.4 (4)C23—C24—C25—C261.1 (8)
N1—N2—C3—C40.1 (5)C24—C25—C26—C211.0 (8)
N1—N2—C3—C31178.5 (4)C22—C21—C26—C250.4 (8)
N2—C3—C4—C50.6 (6)C1—C21—C26—C25176.9 (5)
C31—C3—C4—C5177.7 (5)N2—C3—C31—C32161.3 (5)
C3—C4—C5—N11.0 (6)C4—C3—C31—C3216.8 (8)
N2—N1—C5—C41.1 (5)N2—C3—C31—C3616.7 (7)
C1—N1—C5—C4165.2 (4)C4—C3—C31—C36165.2 (5)
N1—C1—N11—C1534.3 (6)C36—C31—C32—C331.3 (8)
C21—C1—N11—C1590.2 (6)C3—C31—C32—C33176.8 (5)
N1—C1—N11—N12155.2 (4)C31—C32—C33—C340.6 (9)
C21—C1—N11—N1280.2 (5)C32—C33—C34—C350.7 (9)
C15—N11—N12—C131.2 (5)C33—C34—C35—C361.4 (9)
C1—N11—N12—C13173.1 (4)C34—C35—C36—C310.7 (9)
N11—N12—C13—C140.7 (5)C32—C31—C36—C350.6 (8)
N11—N12—C13—C41178.6 (4)C3—C31—C36—C35177.4 (5)
N12—C13—C14—C150.0 (6)N12—C13—C41—C465.9 (7)
C41—C13—C14—C15179.3 (5)C14—C13—C41—C46173.3 (5)
N12—N11—C15—C141.2 (5)N12—C13—C41—C42173.9 (4)
C1—N11—C15—C14172.1 (5)C14—C13—C41—C426.8 (8)
C13—C14—C15—N110.7 (5)C46—C41—C42—C430.1 (8)
N1—C1—C21—C26110.4 (6)C13—C41—C42—C43179.7 (5)
N11—C1—C21—C2612.2 (7)C41—C42—C43—C440.8 (8)
N1—C1—C21—C2272.2 (6)C42—C43—C44—C450.7 (8)
N11—C1—C21—C22165.1 (5)C43—C44—C45—C460.4 (8)
C26—C21—C22—C231.7 (8)C42—C41—C46—C451.2 (7)
C1—C21—C22—C23175.8 (5)C13—C41—C46—C45178.6 (5)
C21—C22—C23—O23179.1 (5)C44—C45—C46—C411.4 (8)
C21—C22—C23—C241.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23···O240.842.212.646 (5)113
O24—H24···N12i0.842.082.853 (5)153
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H20N4O2
Mr408.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.493 (3), 5.6288 (11), 26.309 (5)
β (°) 100.87 (3)
V3)1962.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.15 × 0.10
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16343, 3450, 1434
Rint0.111
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.121, 0.82
No. of reflections3450
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23···O240.842.212.646 (5)112.8
O24—H24···N12i0.842.082.853 (5)153.3
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationBlasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. doi:10.1016/j.jorganchem.2011.08.002.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds