organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­amino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium 2-propanamido­benzoate

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr, sams76@gmail.com

(Received 12 August 2011; accepted 31 August 2011; online 14 September 2011)

In the title salt, C12H14ClN4+·C10H10NO3, zwitterionic N—H⋯O inter­actions form an R22(8) ring. The crystal structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds involving two different eight-membered rings. An N—H⋯O inter­action occurs between the pyrimidine ring (donor) and carboxyl­ate group (acceptor) while the other ring is formed by N—H⋯N inter­actions, which form a dimer between two symmetry-related salts. An intra­molecular N—H⋯O hydrogen bond forms a six-membered ring in the benzoate. Inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For amino­pyrimidine carboxyl­ates, see: Chinnakali et al. (1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Stanley et al. (2005[Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.]). For amino­pyrimidine and benzoic acid adducts, see: Balasub­ram­ani et al. (2005[Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203-o4205.], 2006[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907-o2909.]); Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.], 2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212.]). For hydrogen bonding in mol­ecular recognition and crystal engin­eering, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.]). For puckering and asymmetry parameters, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN4+·C10H10NO3

  • Mr = 441.91

  • Monoclinic, C 2/c

  • a = 22.144 (3) Å

  • b = 9.4915 (14) Å

  • c = 21.844 (3) Å

  • β = 99.071 (3)°

  • V = 4533.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.50 × 0.45 × 0.42 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 17933 measured reflections

  • 5077 independent reflections

  • 2719 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.228

  • S = 1.06

  • 5077 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2 0.86 1.89 2.605 (4) 140
N2—H2A⋯O3i 0.86 2.15 2.977 (4) 163
N4—H4A⋯N1ii 0.86 2.16 2.988 (4) 163
N3—H3⋯O1iii 0.86 1.80 2.660 (4) 178
C14—H14C⋯O1iii 0.96 2.53 3.323 (6) 140
N2—H2B⋯O2iii 0.86 1.91 2.746 (4) 164
N4—H4B⋯O3iv 0.86 2.35 3.017 (3) 134
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminopyrimidine-Carboxylate interactions are important since they are involved in protein-nucleic acids recognition and protein-drug binding. Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). In general, aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which itself is a unique property. The adducts of carboxylic acid with 2-aminopyrimidine system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/carboxylates systems. The crystal structures of many aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystal structures (Chinnakali et al.,1999) have been reported. Many structures of aminopyrimidine and benzoic acid adducts are also have been reported. Few of them are 2-amino-4,6-dimethoxy pyrimidine: 4-aminobenzoic acid (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxypyrimidine: phthalic acid (Thanigaimani et al., 2007), 2-amino-4,6-dimethylpyrimidine: cinnamic acid (Balasubramani et al., 2005) and 2-amino-4,6-dimethylpyrimidine: 4-hydroxybenzoic acid (Balasubramani et al., 2006). All these reported structures have common features of heterosynthone formation. In the present study we report a salt (1:1) namely, 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-propanamidobenzoate which forms a zwitterionic interaction between the molecules of aminopyrimidine and benzoate exhibit a motif R22(8) ring.

The asymmetric unit of crystal contains a single molecule of each component of salt (Fig. 1). Interactions are found between the salt of aminopyrimidin-1-ium and benzoate via hydrogen bonds N2—H2B···O2 and N3—H3···O1 (Fig. 2). Here the pyrimidine acts as a donor which donates two H atoms to carboxylate O atoms (acceptor). In addition, a dimeric interaction through centre of inverted symmetry related salts via a hydrogen bond N4—H4A···N1 (Fig. 2) forms an eight membered ring. The dihedral angle between the rings, 4-chlorophenyl and 2,4-diaminopyrimidine is 63.8 (1)°. This value is higher than that in a biphenyl ring system. This may be due to the substitution of ethyl and amine groups at C4 and C6, respectively. An extended moiety of propanamido group is slightly deviating from the plane of benzoate moiety and the dihedral angle between these two is 10.8 (1)° (Cremer & Pople, 1975; Nardelli, 1995).

The packing diagram of the molecule viewed down b-axis is shown in Fig. 3. Two symmetry related molecules of salt form the dimer and organize as a sheet. This sheet like dimers are connected through the hydrogen bonds N4—H4B···O3 & N2—H2A···O3 interactions. In addition, a six membered ring is formed by an intra-molecular interaction (N5—H5···O2)in benzoate molecule which also controls the molecules in crystal packing. Molecular packing is stabilized by many N—H···O and N—H···N types intra and intermolecular interactions (Table 1, Fig. 2).

Related literature top

For aminopyrimidine carboxylates, see: Chinnakali et al. (1999); Lynch & Jones (2004); Stanley et al. (2005). For aminopyrimidine and benzoic acid adducts, see: Balasubramani et al. (2005, 2006); Thanigaimani et al. (2006, 2007). For hydrogen bonding in molecular recognition and crystal engineering, see: Desiraju (1989). For puckering and asymmetry parameters, see: Cremer & Pople, (1975); Nardelli (1995).

Experimental top

A hot methanolic solution (20 ml) of 2,4-diamino-5-(4-chlorophenyl)-6- ethylpyrimidine and 2-(propanoylamino)benzoic acid in the ratio of 1:1 was warmed for 0.5 h over a water bath. The mixture was cooled slowly and kept at room temperature and after a few days, colourless crystals were obtained

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and for aromatic NH2 and N—H = 0.86 Å. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Structure description top

Aminopyrimidine-Carboxylate interactions are important since they are involved in protein-nucleic acids recognition and protein-drug binding. Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). In general, aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which itself is a unique property. The adducts of carboxylic acid with 2-aminopyrimidine system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/carboxylates systems. The crystal structures of many aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystal structures (Chinnakali et al.,1999) have been reported. Many structures of aminopyrimidine and benzoic acid adducts are also have been reported. Few of them are 2-amino-4,6-dimethoxy pyrimidine: 4-aminobenzoic acid (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxypyrimidine: phthalic acid (Thanigaimani et al., 2007), 2-amino-4,6-dimethylpyrimidine: cinnamic acid (Balasubramani et al., 2005) and 2-amino-4,6-dimethylpyrimidine: 4-hydroxybenzoic acid (Balasubramani et al., 2006). All these reported structures have common features of heterosynthone formation. In the present study we report a salt (1:1) namely, 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-propanamidobenzoate which forms a zwitterionic interaction between the molecules of aminopyrimidine and benzoate exhibit a motif R22(8) ring.

The asymmetric unit of crystal contains a single molecule of each component of salt (Fig. 1). Interactions are found between the salt of aminopyrimidin-1-ium and benzoate via hydrogen bonds N2—H2B···O2 and N3—H3···O1 (Fig. 2). Here the pyrimidine acts as a donor which donates two H atoms to carboxylate O atoms (acceptor). In addition, a dimeric interaction through centre of inverted symmetry related salts via a hydrogen bond N4—H4A···N1 (Fig. 2) forms an eight membered ring. The dihedral angle between the rings, 4-chlorophenyl and 2,4-diaminopyrimidine is 63.8 (1)°. This value is higher than that in a biphenyl ring system. This may be due to the substitution of ethyl and amine groups at C4 and C6, respectively. An extended moiety of propanamido group is slightly deviating from the plane of benzoate moiety and the dihedral angle between these two is 10.8 (1)° (Cremer & Pople, 1975; Nardelli, 1995).

The packing diagram of the molecule viewed down b-axis is shown in Fig. 3. Two symmetry related molecules of salt form the dimer and organize as a sheet. This sheet like dimers are connected through the hydrogen bonds N4—H4B···O3 & N2—H2A···O3 interactions. In addition, a six membered ring is formed by an intra-molecular interaction (N5—H5···O2)in benzoate molecule which also controls the molecules in crystal packing. Molecular packing is stabilized by many N—H···O and N—H···N types intra and intermolecular interactions (Table 1, Fig. 2).

For aminopyrimidine carboxylates, see: Chinnakali et al. (1999); Lynch & Jones (2004); Stanley et al. (2005). For aminopyrimidine and benzoic acid adducts, see: Balasubramani et al. (2005, 2006); Thanigaimani et al. (2006, 2007). For hydrogen bonding in molecular recognition and crystal engineering, see: Desiraju (1989). For puckering and asymmetry parameters, see: Cremer & Pople, (1975); Nardelli (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level.
[Figure 2] Fig. 2. Dimer interaction between the symmetry related salts of title compound. Dashed lines indicate the intra and intermolecular hydrogen bonds.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the b-axis. Dashed lines indicate the intra and intermolecular interactions between the molecules.
2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-propanamidobenzoate top
Crystal data top
C12H14ClN4+·C10H10NO3F(000) = 1856
Mr = 441.91Dx = 1.295 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.144 (3) ÅCell parameters from 17933 reflections
b = 9.4915 (14) Åθ = 1.9–28.0°
c = 21.844 (3) ŵ = 0.20 mm1
β = 99.071 (3)°T = 293 K
V = 4533.7 (12) Å3Block, colorless
Z = 80.50 × 0.45 × 0.42 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2719 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ω scansh = 2829
17933 measured reflectionsk = 1012
5077 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1005P)2 + 1.940P]
where P = (Fo2 + 2Fc2)/3
5077 reflections(Δ/σ)max = 0.002
281 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H14ClN4+·C10H10NO3V = 4533.7 (12) Å3
Mr = 441.91Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.144 (3) ŵ = 0.20 mm1
b = 9.4915 (14) ÅT = 293 K
c = 21.844 (3) Å0.50 × 0.45 × 0.42 mm
β = 99.071 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2719 reflections with I > 2σ(I)
17933 measured reflectionsRint = 0.039
5077 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
5077 reflectionsΔρmin = 0.24 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62790 (7)0.12826 (18)0.25493 (7)0.1465 (7)
O10.25218 (12)0.3854 (3)0.05381 (12)0.0926 (9)
O20.25430 (14)0.2607 (4)0.13892 (13)0.1067 (11)
O30.37717 (11)0.3960 (3)0.33389 (11)0.0809 (7)
N10.43891 (11)0.3633 (3)0.01402 (11)0.0567 (7)
N20.34901 (13)0.3749 (3)0.08192 (12)0.0708 (8)
H2A0.36260.44690.09940.085*
H2B0.31300.34300.09530.085*
N30.36043 (12)0.2008 (3)0.00894 (12)0.0640 (7)
H30.32370.17380.02280.077*
N40.52835 (12)0.3481 (3)0.05255 (12)0.0654 (7)
H4A0.53990.42200.03480.078*
H4B0.55250.30930.08250.078*
N50.32811 (13)0.3417 (3)0.23743 (12)0.0763 (9)
H50.29900.29000.21880.092*
C20.38321 (14)0.3137 (3)0.03469 (14)0.0567 (8)
C40.39373 (15)0.1283 (4)0.03825 (14)0.0620 (9)
C50.45211 (14)0.1711 (3)0.06071 (13)0.0562 (8)
C60.47322 (14)0.2937 (3)0.03366 (13)0.0544 (8)
C70.49398 (15)0.0933 (4)0.10941 (14)0.0590 (8)
C80.51370 (18)0.0416 (4)0.09988 (16)0.0780 (10)
H80.49950.08730.06270.094*
C90.5542 (2)0.1100 (4)0.1447 (2)0.0925 (13)
H90.56660.20140.13780.111*
C100.57609 (18)0.0431 (5)0.19934 (18)0.0828 (11)
C110.55717 (17)0.0894 (5)0.21009 (16)0.0770 (11)
H110.57220.13410.24730.092*
C120.51563 (16)0.1586 (4)0.16609 (15)0.0676 (9)
H120.50210.24840.17420.081*
C130.36238 (19)0.0048 (4)0.06172 (18)0.0857 (12)
H13A0.38750.03020.09900.103*
H13B0.32380.03600.07290.103*
C140.3503 (3)0.1118 (5)0.0168 (3)0.1222 (18)
H14A0.33000.18700.03480.183*
H14B0.38830.14550.00640.183*
H14C0.32470.07880.02000.183*
C150.33329 (14)0.4293 (4)0.13458 (15)0.0596 (8)
C160.36330 (15)0.5078 (4)0.09550 (16)0.0663 (9)
H160.34670.51320.05370.080*
C170.41712 (16)0.5788 (4)0.11626 (18)0.0754 (10)
H170.43640.63130.08910.090*
C180.44141 (17)0.5700 (4)0.17795 (19)0.0833 (11)
H180.47770.61690.19270.100*
C190.41304 (16)0.4932 (4)0.21807 (18)0.0774 (10)
H190.43030.48880.25970.093*
C200.35892 (15)0.4216 (4)0.19784 (15)0.0620 (8)
C210.27569 (16)0.3551 (4)0.10749 (16)0.0687 (9)
C220.33649 (17)0.3327 (4)0.29967 (16)0.0758 (10)
C230.2921 (2)0.2325 (7)0.3252 (2)0.1161 (17)
H23A0.25830.21260.29240.139*
H23B0.31310.14420.33630.139*
C240.2684 (5)0.2828 (11)0.3771 (4)0.247 (6)
H24A0.24120.21390.38980.371*
H24B0.24650.36890.36650.371*
H24C0.30140.29990.41040.371*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1356 (12)0.1739 (14)0.1179 (10)0.0501 (10)0.0176 (8)0.0603 (10)
O10.0793 (17)0.122 (2)0.0646 (15)0.0330 (16)0.0247 (13)0.0108 (15)
O20.097 (2)0.132 (3)0.0758 (17)0.0575 (19)0.0334 (15)0.0152 (17)
O30.0685 (15)0.104 (2)0.0626 (14)0.0039 (14)0.0119 (12)0.0153 (14)
N10.0503 (14)0.0625 (16)0.0522 (14)0.0062 (13)0.0077 (11)0.0027 (12)
N20.0611 (16)0.0756 (19)0.0667 (17)0.0151 (15)0.0177 (14)0.0160 (15)
N30.0519 (15)0.0730 (19)0.0613 (16)0.0176 (14)0.0093 (12)0.0036 (14)
N40.0542 (15)0.0687 (18)0.0675 (17)0.0089 (14)0.0082 (13)0.0185 (14)
N50.0629 (17)0.100 (2)0.0574 (17)0.0223 (17)0.0183 (14)0.0015 (16)
C20.0562 (19)0.0574 (19)0.0522 (17)0.0120 (16)0.0045 (15)0.0012 (15)
C40.062 (2)0.067 (2)0.0534 (18)0.0103 (17)0.0020 (15)0.0032 (16)
C50.0576 (18)0.061 (2)0.0484 (16)0.0032 (16)0.0024 (14)0.0017 (14)
C60.0513 (17)0.060 (2)0.0494 (17)0.0062 (16)0.0014 (14)0.0001 (14)
C70.0579 (18)0.065 (2)0.0528 (18)0.0041 (16)0.0051 (15)0.0059 (15)
C80.098 (3)0.072 (3)0.061 (2)0.006 (2)0.005 (2)0.0003 (18)
C90.116 (4)0.078 (3)0.085 (3)0.033 (3)0.020 (3)0.019 (2)
C100.075 (2)0.104 (3)0.068 (2)0.014 (2)0.005 (2)0.026 (2)
C110.072 (2)0.099 (3)0.055 (2)0.005 (2)0.0049 (18)0.009 (2)
C120.069 (2)0.073 (2)0.058 (2)0.0008 (18)0.0028 (17)0.0016 (17)
C130.081 (3)0.089 (3)0.080 (2)0.021 (2)0.009 (2)0.016 (2)
C140.132 (4)0.085 (3)0.139 (4)0.026 (3)0.013 (4)0.007 (3)
C150.0490 (17)0.063 (2)0.0607 (19)0.0016 (16)0.0089 (15)0.0106 (16)
C160.061 (2)0.076 (2)0.0568 (18)0.0003 (18)0.0051 (16)0.0004 (17)
C170.055 (2)0.084 (3)0.084 (3)0.0058 (19)0.0027 (18)0.006 (2)
C180.061 (2)0.090 (3)0.091 (3)0.017 (2)0.013 (2)0.002 (2)
C190.065 (2)0.086 (3)0.071 (2)0.012 (2)0.0202 (18)0.000 (2)
C200.0519 (18)0.066 (2)0.0625 (19)0.0002 (17)0.0091 (15)0.0040 (17)
C210.062 (2)0.078 (2)0.060 (2)0.0134 (19)0.0081 (17)0.0059 (19)
C220.065 (2)0.095 (3)0.061 (2)0.008 (2)0.0099 (18)0.005 (2)
C230.100 (3)0.174 (5)0.073 (3)0.012 (3)0.009 (2)0.015 (3)
C240.312 (13)0.252 (10)0.206 (9)0.147 (10)0.126 (9)0.044 (8)
Geometric parameters (Å, º) top
Cl1—C101.734 (4)C10—C111.357 (6)
O1—C211.240 (4)C11—C121.387 (5)
O2—C211.265 (4)C11—H110.9300
O3—C221.232 (4)C12—H120.9300
N1—C21.331 (4)C13—C141.475 (6)
N1—C61.360 (4)C13—H13A0.9700
N2—C21.315 (4)C13—H13B0.9700
N2—H2A0.8600C14—H14A0.9600
N2—H2B0.8600C14—H14B0.9600
N3—C21.345 (4)C14—H14C0.9600
N3—C41.356 (4)C15—C161.380 (5)
N3—H30.8600C15—C201.410 (4)
N4—C61.330 (4)C15—C211.495 (5)
N4—H4A0.8600C16—C171.382 (5)
N4—H4B0.8600C16—H160.9300
N5—C221.346 (4)C17—C181.372 (5)
N5—C201.405 (4)C17—H170.9300
N5—H50.8600C18—C191.366 (5)
C4—C51.370 (4)C18—H180.9300
C4—C131.494 (5)C19—C201.388 (5)
C5—C61.417 (4)C19—H190.9300
C5—C71.492 (4)C22—C231.534 (6)
C7—C81.379 (5)C23—C241.406 (9)
C7—C121.400 (4)C23—H23A0.9700
C8—C91.381 (5)C23—H23B0.9700
C8—H80.9300C24—H24A0.9600
C9—C101.372 (6)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
C2—N1—C6117.6 (3)C14—C13—H13B108.8
C2—N2—H2A120.0C4—C13—H13B108.8
C2—N2—H2B120.0H13A—C13—H13B107.7
H2A—N2—H2B120.0C13—C14—H14A109.5
C2—N3—C4121.8 (3)C13—C14—H14B109.5
C2—N3—H3119.1H14A—C14—H14B109.5
C4—N3—H3119.1C13—C14—H14C109.5
C6—N4—H4A120.0H14A—C14—H14C109.5
C6—N4—H4B120.0H14B—C14—H14C109.5
H4A—N4—H4B120.0C16—C15—C20118.4 (3)
C22—N5—C20130.8 (3)C16—C15—C21118.3 (3)
C22—N5—H5114.6C20—C15—C21123.4 (3)
C20—N5—H5114.6C15—C16—C17122.3 (3)
N2—C2—N1119.9 (3)C15—C16—H16118.8
N2—C2—N3118.2 (3)C17—C16—H16118.8
N1—C2—N3121.9 (3)C18—C17—C16118.5 (4)
N3—C4—C5119.4 (3)C18—C17—H17120.8
N3—C4—C13115.6 (3)C16—C17—H17120.8
C5—C4—C13125.0 (3)C19—C18—C17120.9 (3)
C4—C5—C6116.6 (3)C19—C18—H18119.5
C4—C5—C7123.6 (3)C17—C18—H18119.5
C6—C5—C7119.7 (3)C18—C19—C20121.2 (3)
N4—C6—N1115.1 (3)C18—C19—H19119.4
N4—C6—C5122.4 (3)C20—C19—H19119.4
N1—C6—C5122.5 (3)C19—C20—N5123.1 (3)
C8—C7—C12118.2 (3)C19—C20—C15118.7 (3)
C8—C7—C5121.9 (3)N5—C20—C15118.1 (3)
C12—C7—C5119.9 (3)O1—C21—O2122.7 (3)
C7—C8—C9121.0 (4)O1—C21—C15118.0 (3)
C7—C8—H8119.5O2—C21—C15119.2 (3)
C9—C8—H8119.5O3—C22—N5123.6 (4)
C10—C9—C8120.0 (4)O3—C22—C23122.0 (3)
C10—C9—H9120.0N5—C22—C23114.4 (3)
C8—C9—H9120.0C24—C23—C22115.1 (6)
C11—C10—C9120.2 (4)C24—C23—H23A108.5
C11—C10—Cl1120.0 (3)C22—C23—H23A108.5
C9—C10—Cl1119.9 (4)C24—C23—H23B108.5
C10—C11—C12120.5 (4)C22—C23—H23B108.5
C10—C11—H11119.7H23A—C23—H23B107.5
C12—C11—H11119.7C23—C24—H24A109.5
C11—C12—C7120.0 (4)C23—C24—H24B109.5
C11—C12—H12120.0H24A—C24—H24B109.5
C7—C12—H12120.0C23—C24—H24C109.5
C14—C13—C4114.0 (4)H24A—C24—H24C109.5
C14—C13—H13A108.8H24B—C24—H24C109.5
C4—C13—H13A108.8
C6—N1—C2—N2178.0 (3)C10—C11—C12—C71.6 (5)
C6—N1—C2—N31.5 (5)C8—C7—C12—C111.9 (5)
C4—N3—C2—N2177.3 (3)C5—C7—C12—C11176.4 (3)
C4—N3—C2—N12.2 (5)N3—C4—C13—C1467.1 (5)
C2—N3—C4—C50.3 (5)C5—C4—C13—C14112.8 (4)
C2—N3—C4—C13179.6 (3)C20—C15—C16—C170.1 (5)
N3—C4—C5—C62.0 (5)C21—C15—C16—C17179.3 (3)
C13—C4—C5—C6178.1 (3)C15—C16—C17—C180.2 (6)
N3—C4—C5—C7175.7 (3)C16—C17—C18—C190.2 (6)
C13—C4—C5—C74.2 (5)C17—C18—C19—C200.1 (6)
C2—N1—C6—N4179.8 (3)C18—C19—C20—N5179.8 (3)
C2—N1—C6—C51.0 (4)C18—C19—C20—C150.0 (6)
C4—C5—C6—N4178.1 (3)C22—N5—C20—C1910.9 (6)
C7—C5—C6—N44.1 (5)C22—N5—C20—C15168.9 (4)
C4—C5—C6—N12.7 (5)C16—C15—C20—C190.0 (5)
C7—C5—C6—N1175.0 (3)C21—C15—C20—C19179.2 (3)
C4—C5—C7—C863.2 (5)C16—C15—C20—N5179.9 (3)
C6—C5—C7—C8114.4 (4)C21—C15—C20—N51.0 (5)
C4—C5—C7—C12118.5 (4)C16—C15—C21—O111.5 (5)
C6—C5—C7—C1263.9 (4)C20—C15—C21—O1169.3 (3)
C12—C7—C8—C90.7 (5)C16—C15—C21—O2165.7 (3)
C5—C7—C8—C9177.6 (3)C20—C15—C21—O213.5 (5)
C7—C8—C9—C100.9 (6)C20—N5—C22—O32.3 (6)
C8—C9—C10—C111.3 (6)C20—N5—C22—C23179.6 (4)
C8—C9—C10—Cl1178.9 (3)O3—C22—C23—C2444.3 (8)
C9—C10—C11—C120.1 (6)N5—C22—C23—C24137.5 (7)
Cl1—C10—C11—C12179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O20.861.892.605 (4)140
N2—H2A···O3i0.862.152.977 (4)163
N4—H4A···N1ii0.862.162.988 (4)163
N3—H3···O1iii0.861.802.660 (4)178
C14—H14C···O1iii0.962.533.323 (6)140
N2—H2B···O2iii0.861.912.746 (4)164
N4—H4B···O3iv0.862.353.017 (3)134
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14ClN4+·C10H10NO3
Mr441.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.144 (3), 9.4915 (14), 21.844 (3)
β (°) 99.071 (3)
V3)4533.7 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.45 × 0.42
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17933, 5077, 2719
Rint0.039
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.228, 1.06
No. of reflections5077
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O20.861.892.605 (4)140
N2—H2A···O3i0.862.152.977 (4)163
N4—H4A···N1ii0.862.162.988 (4)163
N3—H3···O1iii0.861.802.660 (4)178
C14—H14C···O1iii0.962.533.323 (6)140
N2—H2B···O2iii0.861.912.746 (4)164
N4—H4B···O3iv0.862.353.017 (3)134
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z+1/2.
 

References

First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.  Web of Science CSD CrossRef CAS Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds