inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium ditin(IV) tris­­[phosphate(V)], KSn2(PO4)3

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: zhj@hpu.edu.cn

(Received 16 June 2011; accepted 1 September 2011; online 14 September 2011)

The title compound, KSn2(PO4)3, belongs to the NASICON-type family of phosphates with the space group R[\overline{3}]. Its structure is constructed by very regular [with P—O distances ranging from 1.513 (6) to 1.522 (6) Å] PO4 tetra­hedra and SnO6 octa­hedra on the 3. axis, which are linked by O atoms, forming an [Sn2(PO4)3] framework. The K atoms occupy the [\overline{3}]. axis sites and are located in the voids of this arrangement. The crystal studied was a merohedral twin with twin law (010 100 00[\overline{1}]) and a component ratio of 0.580 (7):0.420 (7).

Related literature

For related NASICON-type compounds, see: Alamo & Rodrigo (1992[Alamo, J. & Rodrigo, J. L. (1992). Mater. Res. Bull. 27, 1091-1098.]); Boilot et al. (1987[Boilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669-676.]); Boujelben et al. (2007[Boujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157.]); Zatovskii et al. (2006[Zatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41-46.]); Zhao et al. (2011[Zhao, D., Li, F. F., Qiu, S., Jiao, J. & Ren, J. (2011). Acta Cryst. E67, i32.]).

Experimental

Crystal data
  • KSn2(PO4)3

  • Mr = 561.39

  • Trigonal, [R \overline 3]

  • a = 8.3381 (1) Å

  • c = 23.5508 (3) Å

  • V = 1417.98 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 6.30 mm−1

  • T = 296 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.366, Tmax = 0.744

  • 2168 measured reflections

  • 597 independent reflections

  • 591 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.137

  • S = 1.24

  • 597 reflections

  • 58 parameters

  • Δρmax = 2.23 e Å−3

  • Δρmin = −2.99 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past, the family of AM2(PO4)3 (A = alkali metals; M = Ti, Zr, Ge, Sn) compounds with the NASICON-type (Na3Zr2Si2PO12: Boilot, et al., 1987) structure have been extensively investigated for their intriguing properities, such as the ionic conductivity properities which may due to the complex and subtle interactions between NASICON framework and mobile ions. The NASICON-type structure with a flexible three-dimensional framework of PO4 tetrahedra sharing comers with MO6 octahedra, is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO4)3 (Zatovskii, et al., 2006) and K2Ca2(SO4)3 (Boujelben, et al., 2007). In order to inrich this family of compounds, we synthesis the compound KSn2(PO4)3 by the high-temperature reaction and determine the crystal structure from single-crystal X-ray diffraction analysis.KSn2(PO4)3 is isostructure with Na (Alamo & Rodrigo, 1992) and Rb (Zhao et al., 2011) analog crystals which crystallizes in the trigonal space group R-3.

A projection of the crystal structure of KSn2(PO4)3 is given in Fig. 2. It is characterized by the presence of PO4 tetrahedra and SnO6 octahedra, linked by sharing corner O atoms, to establish a three-dimentional [Sn2(PO4)3] framework. Furthermore, this framwork delimits two types of channels in which the K atoms are located to compensate the negative charges. The PO4 tetrahedra are quite regular, with the P–O distance ranging from 1.513 (6) to 1.522 (6) Å, while the SnO6 octahedra is quite regular too, with the Sn–O distance ranging from 2.003 (6) to 2.045 (6) Å.

Related literature top

For related NASICON-type compounds, see: Alamo & Rodrigo (1992); Boilot et al. (1987); Boujelben et al. (2007); Zatovskii et al. (2006); Zhao et al. (2011).

Experimental top

Compound KSn2(PO4)3 has been prepared by a high-temperature method in air. A powder mixture of K2CO3, SnO2 and NH4H2PO4 in the molar ratio of K: Sn: P = 15: 1: 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 773 K at the rate of 2 K h-1, and finally quenched to room temperature. The obtained crystals were colorless with a prismatic shape.

Refinement top

The KSn2(PO4)3 crystal studies was twinned by merohedry. For refinement the twin law (0 1 0 1 0 0 0 0 1) was used; the twin component ratio refined to 0.580 (7): 0.420 (7). The highest peak in the difference electron density map equals to 2.23 e/Å3 at the distance of 0.05 Å from Sn1 site while the deepest hole equals to -2.99 e/Å3 at the distance of 0.99 Å from Sn2 site.

Structure description top

In the past, the family of AM2(PO4)3 (A = alkali metals; M = Ti, Zr, Ge, Sn) compounds with the NASICON-type (Na3Zr2Si2PO12: Boilot, et al., 1987) structure have been extensively investigated for their intriguing properities, such as the ionic conductivity properities which may due to the complex and subtle interactions between NASICON framework and mobile ions. The NASICON-type structure with a flexible three-dimensional framework of PO4 tetrahedra sharing comers with MO6 octahedra, is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO4)3 (Zatovskii, et al., 2006) and K2Ca2(SO4)3 (Boujelben, et al., 2007). In order to inrich this family of compounds, we synthesis the compound KSn2(PO4)3 by the high-temperature reaction and determine the crystal structure from single-crystal X-ray diffraction analysis.KSn2(PO4)3 is isostructure with Na (Alamo & Rodrigo, 1992) and Rb (Zhao et al., 2011) analog crystals which crystallizes in the trigonal space group R-3.

A projection of the crystal structure of KSn2(PO4)3 is given in Fig. 2. It is characterized by the presence of PO4 tetrahedra and SnO6 octahedra, linked by sharing corner O atoms, to establish a three-dimentional [Sn2(PO4)3] framework. Furthermore, this framwork delimits two types of channels in which the K atoms are located to compensate the negative charges. The PO4 tetrahedra are quite regular, with the P–O distance ranging from 1.513 (6) to 1.522 (6) Å, while the SnO6 octahedra is quite regular too, with the Sn–O distance ranging from 2.003 (6) to 2.045 (6) Å.

For related NASICON-type compounds, see: Alamo & Rodrigo (1992); Boilot et al. (1987); Boujelben et al. (2007); Zatovskii et al. (2006); Zhao et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The expanded asymmetric unit of KSn2(PO4)3 showing the coordination environments of the P and Sn atoms. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + y, -x, z; (ii) -y, x-y, z; (iii) y - 1/3, -x + y - 2/3, -z + 1/3; (v) -x - 1/3, -y + 1/3, -z + 1/3; (vi) -x, -y + 1, -z; (vii) x-y + 1, x + 1, -z; (viii) y, -x + y, -z; (x) -y + 1, x-y + 1, z.]
[Figure 2] Fig. 2. View of the crystal structure of KSn2(PO4)3 along [010]. PO4 and SnO6 units are given in the polyhedral representation.
Potassium ditin(IV) tris[phosphate(V)] top
Crystal data top
KSn2(PO4)3Dx = 3.945 Mg m3
Mr = 561.39Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 256 reflections
Hall symbol: -R 3θ = 2.6–23.6°
a = 8.3381 (1) ŵ = 6.30 mm1
c = 23.5508 (3) ÅT = 296 K
V = 1417.98 (3) Å3Prism, colourless
Z = 60.20 × 0.05 × 0.05 mm
F(000) = 1560
Data collection top
Bruker SMART 1K CCD
diffractometer
597 independent reflections
Radiation source: fine-focus sealed tube591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
\ scansθmax = 25.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.366, Tmax = 0.744k = 1010
2168 measured reflectionsl = 1728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0764P)2 + 11.5796P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 1.24Δρmax = 2.23 e Å3
597 reflectionsΔρmin = 2.99 e Å3
58 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0063 (7)
Crystal data top
KSn2(PO4)3Z = 6
Mr = 561.39Mo Kα radiation
Trigonal, R3µ = 6.30 mm1
a = 8.3381 (1) ÅT = 296 K
c = 23.5508 (3) Å0.20 × 0.05 × 0.05 mm
V = 1417.98 (3) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
591 reflections with I > 2σ(I)
Tmin = 0.366, Tmax = 0.744Rint = 0.098
2168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0764P)2 + 11.5796P]
where P = (Fo2 + 2Fc2)/3
S = 1.24Δρmax = 2.23 e Å3
597 reflectionsΔρmin = 2.99 e Å3
58 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.00000.15357 (4)0.0107 (5)
Sn20.33330.66670.01858 (4)0.0103 (5)
K10.33330.66670.16670.0273 (12)
K20.00000.00000.00000.0378 (14)
P30.0441 (3)0.3326 (4)0.08384 (9)0.0117 (6)
O50.0732 (11)0.1435 (9)0.1006 (2)0.0174 (15)
O70.1043 (9)0.4149 (9)0.1310 (2)0.0154 (14)
O80.1477 (9)0.3069 (10)0.0284 (3)0.0208 (15)
O90.1599 (8)0.4650 (8)0.0738 (2)0.0140 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0111 (6)0.0111 (6)0.0099 (6)0.0056 (3)0.0000.000
Sn20.0108 (5)0.0108 (5)0.0093 (6)0.0054 (3)0.0000.000
K10.0332 (17)0.0332 (17)0.015 (2)0.0166 (9)0.0000.000
K20.050 (2)0.050 (2)0.014 (2)0.0248 (11)0.0000.000
P30.0115 (12)0.0118 (11)0.0109 (11)0.0052 (9)0.0006 (9)0.0003 (9)
O50.024 (4)0.018 (4)0.017 (3)0.015 (3)0.001 (3)0.001 (2)
O70.023 (3)0.009 (3)0.016 (3)0.009 (3)0.006 (3)0.000 (3)
O80.020 (4)0.032 (4)0.011 (3)0.013 (3)0.003 (3)0.002 (3)
O90.016 (3)0.014 (3)0.012 (3)0.006 (3)0.000 (2)0.003 (2)
Geometric parameters (Å, º) top
Sn1—O5i2.023 (6)K1—O7iv3.282 (7)
Sn1—O5ii2.023 (6)K1—O7xii3.282 (7)
Sn1—O52.023 (6)K1—O7xi3.282 (7)
Sn1—O7iii2.032 (6)K1—O7x3.282 (7)
Sn1—O7iv2.033 (6)K2—O52.853 (6)
Sn1—O7v2.033 (6)K2—O5xiii2.854 (6)
Sn1—K23.6167 (9)K2—O5i2.854 (6)
Sn2—O8vi2.003 (6)K2—O5viii2.854 (6)
Sn2—O8vii2.003 (6)K2—O5ii2.854 (6)
Sn2—O8viii2.003 (6)K2—O5xiv2.854 (6)
Sn2—O9ix2.045 (6)K2—O8xiii3.416 (7)
Sn2—O92.045 (6)K2—O8i3.416 (7)
Sn2—O9x2.045 (6)K2—O8viii3.416 (7)
Sn2—K13.4876 (9)K2—O8ii3.416 (7)
K1—O9xi2.696 (6)K2—O8xiv3.416 (7)
K1—O9xii2.696 (6)K2—O83.416 (7)
K1—O9iv2.696 (6)P3—O91.513 (6)
K1—O9ix2.696 (6)P3—O71.516 (6)
K1—O92.696 (6)P3—O81.520 (6)
K1—O9x2.696 (6)P3—O51.522 (6)
K1—O7ix3.282 (7)O7—Sn1v2.033 (6)
K1—O73.282 (7)O8—Sn2vi2.003 (6)
O5i—Sn1—O5ii85.9 (2)O9—K1—O7x76.59 (17)
O5i—Sn1—O585.9 (2)O9x—K1—O7x46.76 (15)
O5ii—Sn1—O585.9 (2)O7ix—K1—O7x113.67 (8)
O5i—Sn1—O7iii90.7 (2)O7—K1—O7x113.67 (8)
O5ii—Sn1—O7iii92.1 (2)O7iv—K1—O7x66.33 (8)
O5—Sn1—O7iii176.2 (2)O7xii—K1—O7x66.33 (8)
O5i—Sn1—O7iv92.1 (2)O7xi—K1—O7x180.00 (14)
O5ii—Sn1—O7iv176.2 (2)O5—K2—O5xiii122.2 (2)
O5—Sn1—O7iv90.7 (2)O5—K2—O5i57.8 (2)
O7iii—Sn1—O7iv91.2 (2)O5xiii—K2—O5i180.0 (6)
O5i—Sn1—O7v176.2 (2)O5—K2—O5viii122.2 (2)
O5ii—Sn1—O7v90.7 (2)O5xiii—K2—O5viii57.8 (2)
O5—Sn1—O7v92.1 (2)O5i—K2—O5viii122.2 (2)
O7iii—Sn1—O7v91.2 (2)O5—K2—O5ii57.8 (2)
O7iv—Sn1—O7v91.2 (2)O5xiii—K2—O5ii122.2 (2)
O5i—Sn1—K251.89 (17)O5i—K2—O5ii57.8 (2)
O5ii—Sn1—K251.89 (17)O5viii—K2—O5ii180.0 (3)
O5—Sn1—K251.89 (17)O5—K2—O5xiv180.000 (1)
O7iii—Sn1—K2124.44 (17)O5xiii—K2—O5xiv57.8 (2)
O7iv—Sn1—K2124.43 (17)O5i—K2—O5xiv122.2 (2)
O7v—Sn1—K2124.43 (17)O5viii—K2—O5xiv57.8 (2)
O8vi—Sn2—O8vii92.4 (2)O5ii—K2—O5xiv122.2 (2)
O8vi—Sn2—O8viii92.4 (2)O5—K2—O8xiii83.25 (18)
O8vii—Sn2—O8viii92.4 (2)O5xiii—K2—O8xiii44.79 (16)
O8vi—Sn2—O9ix84.6 (3)O5i—K2—O8xiii135.21 (16)
O8vii—Sn2—O9ix100.0 (3)O5viii—K2—O8xiii95.98 (17)
O8viii—Sn2—O9ix167.3 (3)O5ii—K2—O8xiii84.02 (17)
O8vi—Sn2—O9100.0 (3)O5xiv—K2—O8xiii96.75 (18)
O8vii—Sn2—O9167.3 (3)O5—K2—O8i96.75 (18)
O8viii—Sn2—O984.6 (3)O5xiii—K2—O8i135.21 (16)
O9ix—Sn2—O983.8 (2)O5i—K2—O8i44.79 (16)
O8vi—Sn2—O9x167.3 (3)O5viii—K2—O8i84.02 (17)
O8vii—Sn2—O9x84.6 (3)O5ii—K2—O8i95.98 (17)
O8viii—Sn2—O9x100.0 (3)O5xiv—K2—O8i83.25 (18)
O9ix—Sn2—O9x83.8 (2)O8xiii—K2—O8i180.0 (3)
O9—Sn2—O9x83.8 (2)O5—K2—O8viii84.02 (17)
O8vi—Sn2—K1123.56 (18)O5xiii—K2—O8viii96.75 (18)
O8vii—Sn2—K1123.56 (18)O5i—K2—O8viii83.25 (18)
O8viii—Sn2—K1123.56 (18)O5viii—K2—O8viii44.79 (16)
O9ix—Sn2—K150.48 (17)O5ii—K2—O8viii135.21 (16)
O9—Sn2—K150.48 (17)O5xiv—K2—O8viii95.98 (17)
O9x—Sn2—K150.48 (17)O8xiii—K2—O8viii116.25 (7)
O9xi—K1—O9xii60.9 (2)O8i—K2—O8viii63.75 (7)
O9xi—K1—O9iv60.9 (2)O5—K2—O8ii95.98 (17)
O9xii—K1—O9iv60.9 (2)O5xiii—K2—O8ii83.25 (18)
O9xi—K1—O9ix119.1 (2)O5i—K2—O8ii96.75 (18)
O9xii—K1—O9ix119.1 (2)O5viii—K2—O8ii135.21 (16)
O9iv—K1—O9ix179.999 (1)O5ii—K2—O8ii44.79 (16)
O9xi—K1—O9119.1 (2)O5xiv—K2—O8ii84.02 (17)
O9xii—K1—O9179.999 (1)O8xiii—K2—O8ii63.75 (7)
O9iv—K1—O9119.1 (2)O8i—K2—O8ii116.25 (7)
O9ix—K1—O960.9 (2)O8viii—K2—O8ii180.0 (3)
O9xi—K1—O9x179.999 (1)O5—K2—O8xiv135.21 (16)
O9xii—K1—O9x119.1 (2)O5xiii—K2—O8xiv95.98 (17)
O9iv—K1—O9x119.1 (2)O5i—K2—O8xiv84.02 (17)
O9ix—K1—O9x60.9 (2)O5viii—K2—O8xiv96.75 (18)
O9—K1—O9x60.9 (2)O5ii—K2—O8xiv83.25 (18)
O9xi—K1—O7ix103.41 (17)O5xiv—K2—O8xiv44.79 (16)
O9xii—K1—O7ix72.93 (16)O8xiii—K2—O8xiv116.25 (7)
O9iv—K1—O7ix133.24 (16)O8i—K2—O8xiv63.75 (7)
O9ix—K1—O7ix46.76 (16)O8viii—K2—O8xiv116.25 (7)
O9—K1—O7ix107.07 (16)O8ii—K2—O8xiv63.75 (7)
O9x—K1—O7ix76.59 (17)O5—K2—O844.79 (16)
O9xi—K1—O772.93 (16)O5xiii—K2—O884.02 (17)
O9xii—K1—O7133.23 (16)O5i—K2—O895.98 (17)
O9iv—K1—O7103.41 (17)O5viii—K2—O883.25 (18)
O9ix—K1—O776.59 (17)O5ii—K2—O896.75 (18)
O9—K1—O746.76 (16)O5xiv—K2—O8135.21 (16)
O9x—K1—O7107.07 (16)O8xiii—K2—O863.75 (7)
O7ix—K1—O7113.68 (8)O8i—K2—O8116.25 (7)
O9xi—K1—O7iv76.59 (17)O8viii—K2—O863.75 (7)
O9xii—K1—O7iv107.07 (16)O8ii—K2—O8116.25 (7)
O9iv—K1—O7iv46.76 (16)O8xiv—K2—O8180.0
O9ix—K1—O7iv133.24 (16)O9—P3—O7106.8 (4)
O9—K1—O7iv72.93 (16)O9—P3—O8108.8 (4)
O9x—K1—O7iv103.41 (17)O7—P3—O8113.5 (4)
O7ix—K1—O7iv180.0O9—P3—O5109.6 (4)
O7—K1—O7iv66.32 (8)O7—P3—O5111.2 (3)
O9xi—K1—O7xii107.07 (16)O8—P3—O5106.9 (4)
O9xii—K1—O7xii46.76 (16)O9—P3—K144.3 (2)
O9iv—K1—O7xii76.59 (17)O7—P3—K167.0 (3)
O9ix—K1—O7xii103.41 (17)O8—P3—K1142.9 (3)
O9—K1—O7xii133.24 (16)O5—P3—K1106.8 (3)
O9x—K1—O7xii72.93 (16)O9—P3—K288.0 (2)
O7ix—K1—O7xii66.32 (8)O7—P3—K2160.5 (3)
O7—K1—O7xii180.0O8—P3—K271.8 (3)
O7iv—K1—O7xii113.68 (8)O5—P3—K250.5 (2)
O9xi—K1—O7xi46.76 (16)K1—P3—K2121.08 (7)
O9xii—K1—O7xi76.59 (17)P3—O5—Sn1146.4 (4)
O9iv—K1—O7xi107.07 (16)P3—O5—K2105.3 (3)
O9ix—K1—O7xi72.93 (16)Sn1—O5—K294.2 (2)
O9—K1—O7xi103.41 (17)P3—O7—Sn1v136.9 (4)
O9x—K1—O7xi133.24 (16)P3—O7—K187.9 (3)
O7ix—K1—O7xi66.33 (8)Sn1v—O7—K1128.9 (2)
O7—K1—O7xi66.33 (8)P3—O8—Sn2vi151.1 (4)
O7iv—K1—O7xi113.67 (8)P3—O8—K283.2 (3)
O7xii—K1—O7xi113.67 (8)Sn2vi—O8—K2124.2 (3)
O9xi—K1—O7x133.24 (16)P3—O9—Sn2140.7 (4)
O9xii—K1—O7x103.41 (17)P3—O9—K1112.7 (3)
O9iv—K1—O7x72.93 (16)Sn2—O9—K193.7 (2)
O9ix—K1—O7x107.07 (16)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z; (iii) y1/3, x+y2/3, z+1/3; (iv) xy+2/3, x+1/3, z+1/3; (v) x1/3, y+1/3, z+1/3; (vi) x, y+1, z; (vii) xy+1, x+1, z; (viii) y, x+y, z; (ix) x+y, x+1, z; (x) y+1, xy+1, z; (xi) y1/3, x+y+1/3, z+1/3; (xii) x+2/3, y+4/3, z+1/3; (xiii) xy, x, z; (xiv) x, y, z.

Experimental details

Crystal data
Chemical formulaKSn2(PO4)3
Mr561.39
Crystal system, space groupTrigonal, R3
Temperature (K)296
a, c (Å)8.3381 (1), 23.5508 (3)
V3)1417.98 (3)
Z6
Radiation typeMo Kα
µ (mm1)6.30
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.366, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
2168, 597, 591
Rint0.098
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.137, 1.24
No. of reflections597
No. of parameters58
w = 1/[σ2(Fo2) + (0.0764P)2 + 11.5796P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.23, 2.99

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

 

References

First citationAlamo, J. & Rodrigo, J. L. (1992). Mater. Res. Bull. 27, 1091–1098.  CrossRef CAS Google Scholar
First citationBoilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669–676.  CrossRef CAS Web of Science Google Scholar
First citationBoujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41–46.  CAS Google Scholar
First citationZhao, D., Li, F. F., Qiu, S., Jiao, J. & Ren, J. (2011). Acta Cryst. E67, i32.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds