inorganic compounds
Potassium ditin(IV) tris[phosphate(V)], KSn2(PO4)3
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: zhj@hpu.edu.cn
The title compound, KSn2(PO4)3, belongs to the NASICON-type family of phosphates with the R. Its structure is constructed by very regular [with P—O distances ranging from 1.513 (6) to 1.522 (6) Å] PO4 tetrahedra and SnO6 octahedra on the 3. axis, which are linked by O atoms, forming an [Sn2(PO4)3] framework. The K atoms occupy the . axis sites and are located in the voids of this arrangement. The crystal studied was a twin with (010 100 00) and a component ratio of 0.580 (7):0.420 (7).
Related literature
For related NASICON-type compounds, see: Alamo & Rodrigo (1992); Boilot et al. (1987); Boujelben et al. (2007); Zatovskii et al. (2006); Zhao et al. (2011).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536811035604/fi2111sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811035604/fi2111Isup2.hkl
Compound KSn2(PO4)3 has been prepared by a high-temperature method in air. A powder mixture of K2CO3, SnO2 and NH4H2PO4 in the molar ratio of K: Sn: P = 15: 1: 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 773 K at the rate of 2 K h-1, and finally quenched to room temperature. The obtained crystals were colorless with a prismatic shape.
The KSn2(PO4)3 crystal studies was twinned by
For the (0 1 0 1 0 0 0 0 1) was used; the twin component ratio refined to 0.580 (7): 0.420 (7). The highest peak in the difference equals to 2.23 e/Å3 at the distance of 0.05 Å from Sn1 site while the deepest hole equals to -2.99 e/Å3 at the distance of 0.99 Å from Sn2 site.In the past, the family of AM2(PO4)3 (A = alkali metals; M = Ti, Zr, Ge, Sn) compounds with the NASICON-type (Na3Zr2Si2PO12: Boilot, et al., 1987) structure have been extensively investigated for their intriguing properities, such as the
properities which may due to the complex and subtle interactions between NASICON framework and mobile ions. The NASICON-type structure with a flexible three-dimensional framework of PO4 tetrahedra sharing comers with MO6 octahedra, is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO4)3 (Zatovskii, et al., 2006) and K2Ca2(SO4)3 (Boujelben, et al., 2007). In order to inrich this family of compounds, we synthesis the compound KSn2(PO4)3 by the high-temperature reaction and determine the from single-crystal X-ray diffraction analysis.KSn2(PO4)3 is isostructure with Na (Alamo & Rodrigo, 1992) and Rb (Zhao et al., 2011) analog crystals which crystallizes in the trigonal R-3.A projection of the
of KSn2(PO4)3 is given in Fig. 2. It is characterized by the presence of PO4 tetrahedra and SnO6 octahedra, linked by sharing corner O atoms, to establish a three-dimentional [Sn2(PO4)3] framework. Furthermore, this framwork delimits two types of channels in which the K atoms are located to compensate the negative charges. The PO4 tetrahedra are quite regular, with the P–O distance ranging from 1.513 (6) to 1.522 (6) Å, while the SnO6 octahedra is quite regular too, with the Sn–O distance ranging from 2.003 (6) to 2.045 (6) Å.For related NASICON-type compounds, see: Alamo & Rodrigo (1992); Boilot et al. (1987); Boujelben et al. (2007); Zatovskii et al. (2006); Zhao et al. (2011).
Data collection: SMART (Bruker, 1997); cell
SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).KSn2(PO4)3 | Dx = 3.945 Mg m−3 |
Mr = 561.39 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 256 reflections |
Hall symbol: -R 3 | θ = 2.6–23.6° |
a = 8.3381 (1) Å | µ = 6.30 mm−1 |
c = 23.5508 (3) Å | T = 296 K |
V = 1417.98 (3) Å3 | Prism, colourless |
Z = 6 | 0.20 × 0.05 × 0.05 mm |
F(000) = 1560 |
Bruker SMART 1K CCD diffractometer | 597 independent reflections |
Radiation source: fine-focus sealed tube | 591 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
\ scans | θmax = 25.7°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −10→10 |
Tmin = 0.366, Tmax = 0.744 | k = −10→10 |
2168 measured reflections | l = −17→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0764P)2 + 11.5796P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.137 | (Δ/σ)max < 0.001 |
S = 1.24 | Δρmax = 2.23 e Å−3 |
597 reflections | Δρmin = −2.99 e Å−3 |
58 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0063 (7) |
KSn2(PO4)3 | Z = 6 |
Mr = 561.39 | Mo Kα radiation |
Trigonal, R3 | µ = 6.30 mm−1 |
a = 8.3381 (1) Å | T = 296 K |
c = 23.5508 (3) Å | 0.20 × 0.05 × 0.05 mm |
V = 1417.98 (3) Å3 |
Bruker SMART 1K CCD diffractometer | 597 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 591 reflections with I > 2σ(I) |
Tmin = 0.366, Tmax = 0.744 | Rint = 0.098 |
2168 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.0764P)2 + 11.5796P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | Δρmax = 2.23 e Å−3 |
597 reflections | Δρmin = −2.99 e Å−3 |
58 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.0000 | 0.0000 | 0.15357 (4) | 0.0107 (5) | |
Sn2 | 0.3333 | 0.6667 | 0.01858 (4) | 0.0103 (5) | |
K1 | 0.3333 | 0.6667 | 0.1667 | 0.0273 (12) | |
K2 | 0.0000 | 0.0000 | 0.0000 | 0.0378 (14) | |
P3 | −0.0441 (3) | 0.3326 (4) | 0.08384 (9) | 0.0117 (6) | |
O5 | −0.0732 (11) | 0.1435 (9) | 0.1006 (2) | 0.0174 (15) | |
O7 | −0.1043 (9) | 0.4149 (9) | 0.1310 (2) | 0.0154 (14) | |
O8 | −0.1477 (9) | 0.3069 (10) | 0.0284 (3) | 0.0208 (15) | |
O9 | 0.1599 (8) | 0.4650 (8) | 0.0738 (2) | 0.0140 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0111 (6) | 0.0111 (6) | 0.0099 (6) | 0.0056 (3) | 0.000 | 0.000 |
Sn2 | 0.0108 (5) | 0.0108 (5) | 0.0093 (6) | 0.0054 (3) | 0.000 | 0.000 |
K1 | 0.0332 (17) | 0.0332 (17) | 0.015 (2) | 0.0166 (9) | 0.000 | 0.000 |
K2 | 0.050 (2) | 0.050 (2) | 0.014 (2) | 0.0248 (11) | 0.000 | 0.000 |
P3 | 0.0115 (12) | 0.0118 (11) | 0.0109 (11) | 0.0052 (9) | 0.0006 (9) | 0.0003 (9) |
O5 | 0.024 (4) | 0.018 (4) | 0.017 (3) | 0.015 (3) | 0.001 (3) | 0.001 (2) |
O7 | 0.023 (3) | 0.009 (3) | 0.016 (3) | 0.009 (3) | 0.006 (3) | 0.000 (3) |
O8 | 0.020 (4) | 0.032 (4) | 0.011 (3) | 0.013 (3) | −0.003 (3) | 0.002 (3) |
O9 | 0.016 (3) | 0.014 (3) | 0.012 (3) | 0.006 (3) | 0.000 (2) | −0.003 (2) |
Sn1—O5i | 2.023 (6) | K1—O7iv | 3.282 (7) |
Sn1—O5ii | 2.023 (6) | K1—O7xii | 3.282 (7) |
Sn1—O5 | 2.023 (6) | K1—O7xi | 3.282 (7) |
Sn1—O7iii | 2.032 (6) | K1—O7x | 3.282 (7) |
Sn1—O7iv | 2.033 (6) | K2—O5 | 2.853 (6) |
Sn1—O7v | 2.033 (6) | K2—O5xiii | 2.854 (6) |
Sn1—K2 | 3.6167 (9) | K2—O5i | 2.854 (6) |
Sn2—O8vi | 2.003 (6) | K2—O5viii | 2.854 (6) |
Sn2—O8vii | 2.003 (6) | K2—O5ii | 2.854 (6) |
Sn2—O8viii | 2.003 (6) | K2—O5xiv | 2.854 (6) |
Sn2—O9ix | 2.045 (6) | K2—O8xiii | 3.416 (7) |
Sn2—O9 | 2.045 (6) | K2—O8i | 3.416 (7) |
Sn2—O9x | 2.045 (6) | K2—O8viii | 3.416 (7) |
Sn2—K1 | 3.4876 (9) | K2—O8ii | 3.416 (7) |
K1—O9xi | 2.696 (6) | K2—O8xiv | 3.416 (7) |
K1—O9xii | 2.696 (6) | K2—O8 | 3.416 (7) |
K1—O9iv | 2.696 (6) | P3—O9 | 1.513 (6) |
K1—O9ix | 2.696 (6) | P3—O7 | 1.516 (6) |
K1—O9 | 2.696 (6) | P3—O8 | 1.520 (6) |
K1—O9x | 2.696 (6) | P3—O5 | 1.522 (6) |
K1—O7ix | 3.282 (7) | O7—Sn1v | 2.033 (6) |
K1—O7 | 3.282 (7) | O8—Sn2vi | 2.003 (6) |
O5i—Sn1—O5ii | 85.9 (2) | O9—K1—O7x | 76.59 (17) |
O5i—Sn1—O5 | 85.9 (2) | O9x—K1—O7x | 46.76 (15) |
O5ii—Sn1—O5 | 85.9 (2) | O7ix—K1—O7x | 113.67 (8) |
O5i—Sn1—O7iii | 90.7 (2) | O7—K1—O7x | 113.67 (8) |
O5ii—Sn1—O7iii | 92.1 (2) | O7iv—K1—O7x | 66.33 (8) |
O5—Sn1—O7iii | 176.2 (2) | O7xii—K1—O7x | 66.33 (8) |
O5i—Sn1—O7iv | 92.1 (2) | O7xi—K1—O7x | 180.00 (14) |
O5ii—Sn1—O7iv | 176.2 (2) | O5—K2—O5xiii | 122.2 (2) |
O5—Sn1—O7iv | 90.7 (2) | O5—K2—O5i | 57.8 (2) |
O7iii—Sn1—O7iv | 91.2 (2) | O5xiii—K2—O5i | 180.0 (6) |
O5i—Sn1—O7v | 176.2 (2) | O5—K2—O5viii | 122.2 (2) |
O5ii—Sn1—O7v | 90.7 (2) | O5xiii—K2—O5viii | 57.8 (2) |
O5—Sn1—O7v | 92.1 (2) | O5i—K2—O5viii | 122.2 (2) |
O7iii—Sn1—O7v | 91.2 (2) | O5—K2—O5ii | 57.8 (2) |
O7iv—Sn1—O7v | 91.2 (2) | O5xiii—K2—O5ii | 122.2 (2) |
O5i—Sn1—K2 | 51.89 (17) | O5i—K2—O5ii | 57.8 (2) |
O5ii—Sn1—K2 | 51.89 (17) | O5viii—K2—O5ii | 180.0 (3) |
O5—Sn1—K2 | 51.89 (17) | O5—K2—O5xiv | 180.000 (1) |
O7iii—Sn1—K2 | 124.44 (17) | O5xiii—K2—O5xiv | 57.8 (2) |
O7iv—Sn1—K2 | 124.43 (17) | O5i—K2—O5xiv | 122.2 (2) |
O7v—Sn1—K2 | 124.43 (17) | O5viii—K2—O5xiv | 57.8 (2) |
O8vi—Sn2—O8vii | 92.4 (2) | O5ii—K2—O5xiv | 122.2 (2) |
O8vi—Sn2—O8viii | 92.4 (2) | O5—K2—O8xiii | 83.25 (18) |
O8vii—Sn2—O8viii | 92.4 (2) | O5xiii—K2—O8xiii | 44.79 (16) |
O8vi—Sn2—O9ix | 84.6 (3) | O5i—K2—O8xiii | 135.21 (16) |
O8vii—Sn2—O9ix | 100.0 (3) | O5viii—K2—O8xiii | 95.98 (17) |
O8viii—Sn2—O9ix | 167.3 (3) | O5ii—K2—O8xiii | 84.02 (17) |
O8vi—Sn2—O9 | 100.0 (3) | O5xiv—K2—O8xiii | 96.75 (18) |
O8vii—Sn2—O9 | 167.3 (3) | O5—K2—O8i | 96.75 (18) |
O8viii—Sn2—O9 | 84.6 (3) | O5xiii—K2—O8i | 135.21 (16) |
O9ix—Sn2—O9 | 83.8 (2) | O5i—K2—O8i | 44.79 (16) |
O8vi—Sn2—O9x | 167.3 (3) | O5viii—K2—O8i | 84.02 (17) |
O8vii—Sn2—O9x | 84.6 (3) | O5ii—K2—O8i | 95.98 (17) |
O8viii—Sn2—O9x | 100.0 (3) | O5xiv—K2—O8i | 83.25 (18) |
O9ix—Sn2—O9x | 83.8 (2) | O8xiii—K2—O8i | 180.0 (3) |
O9—Sn2—O9x | 83.8 (2) | O5—K2—O8viii | 84.02 (17) |
O8vi—Sn2—K1 | 123.56 (18) | O5xiii—K2—O8viii | 96.75 (18) |
O8vii—Sn2—K1 | 123.56 (18) | O5i—K2—O8viii | 83.25 (18) |
O8viii—Sn2—K1 | 123.56 (18) | O5viii—K2—O8viii | 44.79 (16) |
O9ix—Sn2—K1 | 50.48 (17) | O5ii—K2—O8viii | 135.21 (16) |
O9—Sn2—K1 | 50.48 (17) | O5xiv—K2—O8viii | 95.98 (17) |
O9x—Sn2—K1 | 50.48 (17) | O8xiii—K2—O8viii | 116.25 (7) |
O9xi—K1—O9xii | 60.9 (2) | O8i—K2—O8viii | 63.75 (7) |
O9xi—K1—O9iv | 60.9 (2) | O5—K2—O8ii | 95.98 (17) |
O9xii—K1—O9iv | 60.9 (2) | O5xiii—K2—O8ii | 83.25 (18) |
O9xi—K1—O9ix | 119.1 (2) | O5i—K2—O8ii | 96.75 (18) |
O9xii—K1—O9ix | 119.1 (2) | O5viii—K2—O8ii | 135.21 (16) |
O9iv—K1—O9ix | 179.999 (1) | O5ii—K2—O8ii | 44.79 (16) |
O9xi—K1—O9 | 119.1 (2) | O5xiv—K2—O8ii | 84.02 (17) |
O9xii—K1—O9 | 179.999 (1) | O8xiii—K2—O8ii | 63.75 (7) |
O9iv—K1—O9 | 119.1 (2) | O8i—K2—O8ii | 116.25 (7) |
O9ix—K1—O9 | 60.9 (2) | O8viii—K2—O8ii | 180.0 (3) |
O9xi—K1—O9x | 179.999 (1) | O5—K2—O8xiv | 135.21 (16) |
O9xii—K1—O9x | 119.1 (2) | O5xiii—K2—O8xiv | 95.98 (17) |
O9iv—K1—O9x | 119.1 (2) | O5i—K2—O8xiv | 84.02 (17) |
O9ix—K1—O9x | 60.9 (2) | O5viii—K2—O8xiv | 96.75 (18) |
O9—K1—O9x | 60.9 (2) | O5ii—K2—O8xiv | 83.25 (18) |
O9xi—K1—O7ix | 103.41 (17) | O5xiv—K2—O8xiv | 44.79 (16) |
O9xii—K1—O7ix | 72.93 (16) | O8xiii—K2—O8xiv | 116.25 (7) |
O9iv—K1—O7ix | 133.24 (16) | O8i—K2—O8xiv | 63.75 (7) |
O9ix—K1—O7ix | 46.76 (16) | O8viii—K2—O8xiv | 116.25 (7) |
O9—K1—O7ix | 107.07 (16) | O8ii—K2—O8xiv | 63.75 (7) |
O9x—K1—O7ix | 76.59 (17) | O5—K2—O8 | 44.79 (16) |
O9xi—K1—O7 | 72.93 (16) | O5xiii—K2—O8 | 84.02 (17) |
O9xii—K1—O7 | 133.23 (16) | O5i—K2—O8 | 95.98 (17) |
O9iv—K1—O7 | 103.41 (17) | O5viii—K2—O8 | 83.25 (18) |
O9ix—K1—O7 | 76.59 (17) | O5ii—K2—O8 | 96.75 (18) |
O9—K1—O7 | 46.76 (16) | O5xiv—K2—O8 | 135.21 (16) |
O9x—K1—O7 | 107.07 (16) | O8xiii—K2—O8 | 63.75 (7) |
O7ix—K1—O7 | 113.68 (8) | O8i—K2—O8 | 116.25 (7) |
O9xi—K1—O7iv | 76.59 (17) | O8viii—K2—O8 | 63.75 (7) |
O9xii—K1—O7iv | 107.07 (16) | O8ii—K2—O8 | 116.25 (7) |
O9iv—K1—O7iv | 46.76 (16) | O8xiv—K2—O8 | 180.0 |
O9ix—K1—O7iv | 133.24 (16) | O9—P3—O7 | 106.8 (4) |
O9—K1—O7iv | 72.93 (16) | O9—P3—O8 | 108.8 (4) |
O9x—K1—O7iv | 103.41 (17) | O7—P3—O8 | 113.5 (4) |
O7ix—K1—O7iv | 180.0 | O9—P3—O5 | 109.6 (4) |
O7—K1—O7iv | 66.32 (8) | O7—P3—O5 | 111.2 (3) |
O9xi—K1—O7xii | 107.07 (16) | O8—P3—O5 | 106.9 (4) |
O9xii—K1—O7xii | 46.76 (16) | O9—P3—K1 | 44.3 (2) |
O9iv—K1—O7xii | 76.59 (17) | O7—P3—K1 | 67.0 (3) |
O9ix—K1—O7xii | 103.41 (17) | O8—P3—K1 | 142.9 (3) |
O9—K1—O7xii | 133.24 (16) | O5—P3—K1 | 106.8 (3) |
O9x—K1—O7xii | 72.93 (16) | O9—P3—K2 | 88.0 (2) |
O7ix—K1—O7xii | 66.32 (8) | O7—P3—K2 | 160.5 (3) |
O7—K1—O7xii | 180.0 | O8—P3—K2 | 71.8 (3) |
O7iv—K1—O7xii | 113.68 (8) | O5—P3—K2 | 50.5 (2) |
O9xi—K1—O7xi | 46.76 (16) | K1—P3—K2 | 121.08 (7) |
O9xii—K1—O7xi | 76.59 (17) | P3—O5—Sn1 | 146.4 (4) |
O9iv—K1—O7xi | 107.07 (16) | P3—O5—K2 | 105.3 (3) |
O9ix—K1—O7xi | 72.93 (16) | Sn1—O5—K2 | 94.2 (2) |
O9—K1—O7xi | 103.41 (17) | P3—O7—Sn1v | 136.9 (4) |
O9x—K1—O7xi | 133.24 (16) | P3—O7—K1 | 87.9 (3) |
O7ix—K1—O7xi | 66.33 (8) | Sn1v—O7—K1 | 128.9 (2) |
O7—K1—O7xi | 66.33 (8) | P3—O8—Sn2vi | 151.1 (4) |
O7iv—K1—O7xi | 113.67 (8) | P3—O8—K2 | 83.2 (3) |
O7xii—K1—O7xi | 113.67 (8) | Sn2vi—O8—K2 | 124.2 (3) |
O9xi—K1—O7x | 133.24 (16) | P3—O9—Sn2 | 140.7 (4) |
O9xii—K1—O7x | 103.41 (17) | P3—O9—K1 | 112.7 (3) |
O9iv—K1—O7x | 72.93 (16) | Sn2—O9—K1 | 93.7 (2) |
O9ix—K1—O7x | 107.07 (16) |
Symmetry codes: (i) −x+y, −x, z; (ii) −y, x−y, z; (iii) y−1/3, −x+y−2/3, −z+1/3; (iv) x−y+2/3, x+1/3, −z+1/3; (v) −x−1/3, −y+1/3, −z+1/3; (vi) −x, −y+1, −z; (vii) x−y+1, x+1, −z; (viii) y, −x+y, −z; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z; (xi) y−1/3, −x+y+1/3, −z+1/3; (xii) −x+2/3, −y+4/3, −z+1/3; (xiii) x−y, x, −z; (xiv) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | KSn2(PO4)3 |
Mr | 561.39 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 296 |
a, c (Å) | 8.3381 (1), 23.5508 (3) |
V (Å3) | 1417.98 (3) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 6.30 |
Crystal size (mm) | 0.20 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.366, 0.744 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2168, 597, 591 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.137, 1.24 |
No. of reflections | 597 |
No. of parameters | 58 |
w = 1/[σ2(Fo2) + (0.0764P)2 + 11.5796P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.23, −2.99 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).
References
Alamo, J. & Rodrigo, J. L. (1992). Mater. Res. Bull. 27, 1091–1098. CrossRef CAS Google Scholar
Boilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669–676. CrossRef CAS Web of Science Google Scholar
Boujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41–46. CAS Google Scholar
Zhao, D., Li, F. F., Qiu, S., Jiao, J. & Ren, J. (2011). Acta Cryst. E67, i32. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past, the family of AM2(PO4)3 (A = alkali metals; M = Ti, Zr, Ge, Sn) compounds with the NASICON-type (Na3Zr2Si2PO12: Boilot, et al., 1987) structure have been extensively investigated for their intriguing properities, such as the ionic conductivity properities which may due to the complex and subtle interactions between NASICON framework and mobile ions. The NASICON-type structure with a flexible three-dimensional framework of PO4 tetrahedra sharing comers with MO6 octahedra, is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO4)3 (Zatovskii, et al., 2006) and K2Ca2(SO4)3 (Boujelben, et al., 2007). In order to inrich this family of compounds, we synthesis the compound KSn2(PO4)3 by the high-temperature reaction and determine the crystal structure from single-crystal X-ray diffraction analysis.KSn2(PO4)3 is isostructure with Na (Alamo & Rodrigo, 1992) and Rb (Zhao et al., 2011) analog crystals which crystallizes in the trigonal space group R-3.
A projection of the crystal structure of KSn2(PO4)3 is given in Fig. 2. It is characterized by the presence of PO4 tetrahedra and SnO6 octahedra, linked by sharing corner O atoms, to establish a three-dimentional [Sn2(PO4)3] framework. Furthermore, this framwork delimits two types of channels in which the K atoms are located to compensate the negative charges. The PO4 tetrahedra are quite regular, with the P–O distance ranging from 1.513 (6) to 1.522 (6) Å, while the SnO6 octahedra is quite regular too, with the Sn–O distance ranging from 2.003 (6) to 2.045 (6) Å.