inorganic compounds
A new langbeinite-type phosphate: K2AlSn(PO4)3
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: henanligong1996@163.com
Single crystals of the title compound, dipotassium aluminium tin(IV) tris[phosphate(V)], K2AlSn(PO4)3, were synthesized by a high temperature reaction in a platinum crucible. In the structure, the AlIII and SnIV atoms occupy the same site on a threefold rotation axis with occupational disorder in a 1:1 ratio. In the three-dimensional structure, Al/SnO6 octahedra and PO4 tetrahedra are interconnected via their vertices, yielding a [Al/SnP3O12]n framework. The K atoms (site symmetry 3) reside in the large cavities delimited by the [Al/SnP3O12]n framework, and are surrounded by 12 O atoms.
Related literature
For the mineral langbeinite, K2Mg2(SO4)3, see: Zemann & Zemann (1957). For related langbeinite-type compounds, see: Aatiq et al. (2006); Norberg (2002); Ogorodnyk et al. (2006); Orlova et al. (2003); Zatovsky et al. (2007); Zhao et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811037263/fi2112sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037263/fi2112Isup2.hkl
Single crystals of K2AlSn(PO4)3 have been prepared by a high-temperature method in air. A powder mixture of K2CO3, Al2O3, SnO2 and NH4H2PO4 in the molar ratio of K: Al: Sn: P = 10: 1:: 1 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 673 K at the rate of 2 K h-1. It was kept at 673 K for another 10 h and then quenched to room temperature. The obtained crystals were colorless with a prismatic shape.
The atomic position and anisotropic displacement parameters of Al and Sn in the same sites were constrained to be identical, and the Al/Sn disorder with a relative occupancy of 1/1. The highest peak in the difference
equals to 0.53 e/Å3 at the distance of 1.09 Å from Al2/Sn2 site while the deepest hole equals to -0.60 e/Å3 at the distance of 1.78 Å from K2 site.Langbeinite-type (K2Mg2(SO4)3, Zemann & Zemann, 1957) compounds with the simplest generic formula A2B2(XO4)3 are an important and well studied family of inorganic solids with respect to minerals. Among Langbeinite-based phosphates, whose coordination networks are based on [M2(PO4)3] fragments, may result in diverse structure types due to the 'M2' sites occupied by various types of tetravalent and bi- or trivalent metal pairs. For example, the structures K2MTi(PO4)3(M = Y, Yb, Er) (Norberg, 2002), K2FeZr(PO4)3 (Orlova et al., 2003), K2MSn(PO4)3 (M = Fe, Yb) (Aatiq et al., 2006), K2AlTi(PO4)3 (Zhao et al., 2009), K2FeSn(PO4)3 (Zatovsky et al., 2007) and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006), have been reported. Herein we report the single-crystal growth and structure investigation of title compound K2AlSn(PO4)3.
In the structure of title compound, K, Al and Sn atoms lie on the 3-fold rotation axes in 4a positions, while P and O atoms are located at general 12b positions. Due to the similar ionic radii of Al and Sn atoms, they occupy the same sites in a substituent disordered manner, denoted as M atoms. The three-dimensional structure contains MO6 octahedra and PO4 tetrahedra which are connected via vertices. Two nearest [MO6] octahedra are joined to each other by three bridging orthophosphate tetrahedra forming [Al/SnP3O12]n framework, which penetrate with large closed cavities. Two independent potassium atoms are located in each cavity. K1 and K2 atoms are 12-coordinated by O atoms.
For Langbeinite-type K2Mg2(SO4)3, see: Zemann & Zemann (1957). For related Langbeinite-type compounds, see: Aatiq et al. (2006); Norberg (2002); Ogorodnyk et al. (2006); Orlova et al. (2003); Zatovsky et al. (2007); Zhao et al. (2009).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).K2AlSn(PO4)3 | Dx = 3.593 Mg m−3 |
Mr = 508.78 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, P213 | Cell parameters from 2030 reflections |
Hall symbol: P 2ac 2ab 3 | θ = 3.6–28.5° |
a = 9.7980 (8) Å | µ = 4.28 mm−1 |
V = 940.62 (13) Å3 | T = 296 K |
Z = 4 | Prism, colourless |
F(000) = 968 | 0.15 × 0.05 × 0.05 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 811 independent reflections |
Radiation source: fine-focus sealed tube | 782 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
Detector resolution: 83.33 pixels mm-1 | θmax = 28.5°, θmin = 2.9° |
ω scans | h = −13→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −12→12 |
Tmin = 0.566, Tmax = 0.815 | l = −12→10 |
6146 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0208P)2 + 3.2535P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.029 | (Δ/σ)max < 0.001 |
wR(F2) = 0.074 | Δρmax = 0.53 e Å−3 |
S = 1.18 | Δρmin = −0.60 e Å−3 |
811 reflections | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
59 parameters | Extinction coefficient: 0.0076 (10) |
0 restraints | Absolute structure: Flack (1983), 340 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (7) |
K2AlSn(PO4)3 | Z = 4 |
Mr = 508.78 | Mo Kα radiation |
Cubic, P213 | µ = 4.28 mm−1 |
a = 9.7980 (8) Å | T = 296 K |
V = 940.62 (13) Å3 | 0.15 × 0.05 × 0.05 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 811 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 782 reflections with I > 2σ(I) |
Tmin = 0.566, Tmax = 0.815 | Rint = 0.065 |
6146 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.074 | Δρmax = 0.53 e Å−3 |
S = 1.18 | Δρmin = −0.60 e Å−3 |
811 reflections | Absolute structure: Flack (1983), 340 Friedel pairs |
59 parameters | Absolute structure parameter: −0.05 (7) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn1 | 0.39682 (6) | 0.60318 (6) | 0.10318 (6) | 0.0091 (2) | 0.50 |
Sn2 | 0.16412 (6) | 0.16412 (6) | 0.16412 (6) | 0.0104 (2) | 0.50 |
Al1 | 0.39682 (6) | 0.60318 (6) | 0.10318 (6) | 0.0091 (2) | 0.50 |
Al2 | 0.16412 (6) | 0.16412 (6) | 0.16412 (6) | 0.0104 (2) | 0.50 |
P1 | 0.47928 (15) | 0.29006 (15) | 0.12495 (15) | 0.0133 (3) | |
K1 | 0.18221 (14) | 0.81779 (14) | 0.31779 (14) | 0.0268 (5) | |
K2 | 0.54175 (17) | −0.04175 (17) | 0.04175 (17) | 0.0305 (6) | |
O1 | 0.3329 (4) | 0.2484 (4) | 0.1004 (5) | 0.0231 (9) | |
O2 | 0.4861 (4) | 0.4378 (4) | 0.1734 (5) | 0.0198 (9) | |
O3 | 0.5491 (5) | 0.1991 (4) | 0.2297 (4) | 0.0214 (9) | |
O4 | 0.5569 (5) | 0.2684 (5) | −0.0094 (5) | 0.0276 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0091 (2) | 0.0091 (2) | 0.0091 (2) | 0.0000 (2) | 0.0000 (2) | 0.0000 (2) |
Sn2 | 0.0104 (2) | 0.0104 (2) | 0.0104 (2) | −0.0010 (2) | −0.0010 (2) | −0.0010 (2) |
Al1 | 0.0091 (2) | 0.0091 (2) | 0.0091 (2) | 0.0000 (2) | 0.0000 (2) | 0.0000 (2) |
Al2 | 0.0104 (2) | 0.0104 (2) | 0.0104 (2) | −0.0010 (2) | −0.0010 (2) | −0.0010 (2) |
P1 | 0.0142 (7) | 0.0131 (7) | 0.0126 (7) | 0.0002 (5) | −0.0001 (5) | 0.0010 (5) |
K1 | 0.0268 (5) | 0.0268 (5) | 0.0268 (5) | 0.0031 (6) | 0.0031 (6) | −0.0031 (6) |
K2 | 0.0305 (6) | 0.0305 (6) | 0.0305 (6) | 0.0013 (6) | −0.0013 (6) | 0.0013 (6) |
O1 | 0.016 (2) | 0.024 (2) | 0.030 (2) | −0.0048 (18) | −0.006 (2) | 0.0024 (19) |
O2 | 0.021 (2) | 0.014 (2) | 0.025 (2) | −0.0009 (16) | −0.0065 (19) | −0.0067 (17) |
O3 | 0.025 (2) | 0.021 (2) | 0.018 (2) | −0.0001 (18) | −0.0077 (18) | 0.0088 (18) |
O4 | 0.038 (3) | 0.028 (3) | 0.017 (2) | 0.007 (2) | 0.011 (2) | 0.003 (2) |
Sn1—O3i | 1.961 (4) | K1—O4xii | 3.011 (6) |
Sn1—O3ii | 1.961 (4) | K1—O4xi | 3.011 (6) |
Sn1—O3iii | 1.961 (4) | K1—O4ii | 3.208 (5) |
Sn1—O2iv | 1.966 (4) | K1—O4i | 3.208 (5) |
Sn1—O2v | 1.966 (4) | K1—O4iii | 3.208 (5) |
Sn1—O2 | 1.966 (4) | K2—O2xiii | 2.811 (5) |
Sn2—O1 | 1.951 (4) | K2—O2xiv | 2.811 (5) |
Sn2—O1ii | 1.951 (4) | K2—O2xv | 2.811 (5) |
Sn2—O1vi | 1.951 (4) | K2—O3ix | 2.994 (5) |
Sn2—O4vii | 1.960 (5) | K2—O3xvi | 2.994 (5) |
Sn2—O4viii | 1.960 (5) | K2—O3 | 2.994 (5) |
Sn2—O4ix | 1.960 (5) | K2—O4xvi | 3.084 (5) |
P1—O1 | 1.511 (4) | K2—O4ix | 3.084 (5) |
P1—O2 | 1.525 (4) | K2—O4 | 3.084 (5) |
P1—O3 | 1.521 (4) | O1—K1xvii | 2.847 (5) |
P1—O4 | 1.535 (5) | O2—K2xviii | 2.811 (5) |
K1—O1x | 2.847 (5) | O3—Al1vi | 1.961 (4) |
K1—O1xi | 2.847 (5) | O3—Sn1vi | 1.961 (4) |
K1—O1xii | 2.847 (5) | O3—K1vi | 2.915 (5) |
K1—O3ii | 2.916 (5) | O4—Al2xvi | 1.960 (5) |
K1—O3iii | 2.916 (5) | O4—Sn2xvi | 1.960 (5) |
K1—O3i | 2.916 (5) | O4—K1xvii | 3.011 (6) |
K1—O4x | 3.011 (6) | O4—K1vi | 3.208 (5) |
O3i—Sn1—O3ii | 87.42 (19) | O4x—K1—O4xii | 86.48 (14) |
O3i—Sn1—O3iii | 87.42 (19) | O1x—K1—O4xi | 52.14 (13) |
O3ii—Sn1—O3iii | 87.42 (19) | O1xi—K1—O4xi | 49.38 (13) |
O3i—Sn1—O2iv | 175.0 (2) | O1xii—K1—O4xi | 114.88 (15) |
O3ii—Sn1—O2iv | 89.00 (17) | O3ii—K1—O4xi | 132.86 (13) |
O3iii—Sn1—O2iv | 88.90 (18) | O3iii—K1—O4xi | 95.45 (12) |
O3i—Sn1—O2v | 88.90 (19) | O3i—K1—O4xi | 140.66 (13) |
O3ii—Sn1—O2v | 175.0 (2) | O4x—K1—O4xi | 86.48 (14) |
O3iii—Sn1—O2v | 89.00 (17) | O4xii—K1—O4xi | 86.48 (14) |
O2iv—Sn1—O2v | 94.46 (18) | O1x—K1—O4ii | 156.33 (13) |
O3i—Sn1—O2 | 88.99 (17) | O1xi—K1—O4ii | 55.82 (12) |
O3ii—Sn1—O2 | 88.90 (18) | O1xii—K1—O4ii | 86.26 (12) |
O3iii—Sn1—O2 | 175.0 (2) | O3ii—K1—O4ii | 46.65 (11) |
O2iv—Sn1—O2 | 94.46 (18) | O3iii—K1—O4ii | 88.29 (13) |
O2v—Sn1—O2 | 94.45 (18) | O3i—K1—O4ii | 100.74 (13) |
O3i—Sn1—K1 | 52.93 (13) | O4x—K1—O4ii | 136.85 (10) |
O3ii—Sn1—K1 | 52.93 (13) | O4xii—K1—O4ii | 53.57 (17) |
O3iii—Sn1—K1 | 52.93 (13) | O4xi—K1—O4ii | 104.39 (2) |
O2iv—Sn1—K1 | 122.05 (13) | O1x—K1—O4i | 86.26 (12) |
O2v—Sn1—K1 | 122.05 (13) | O1xi—K1—O4i | 156.33 (13) |
O2—Sn1—K1 | 122.05 (13) | O1xii—K1—O4i | 55.82 (12) |
O3i—Sn1—K2ii | 129.38 (14) | O3ii—K1—O4i | 88.29 (13) |
O3ii—Sn1—K2ii | 51.14 (14) | O3iii—K1—O4i | 100.74 (13) |
O3iii—Sn1—K2ii | 66.00 (13) | O3i—K1—O4i | 46.65 (11) |
O2iv—Sn1—K2ii | 45.73 (13) | O4x—K1—O4i | 53.57 (17) |
O2v—Sn1—K2ii | 130.02 (13) | O4xii—K1—O4i | 104.39 (3) |
O2—Sn1—K2ii | 114.01 (13) | O4xi—K1—O4i | 136.85 (10) |
K1—Sn1—K2ii | 77.229 (18) | O4ii—K1—O4i | 115.74 (6) |
O3i—Sn1—K2xix | 66.00 (13) | O1x—K1—O4iii | 55.82 (12) |
O3ii—Sn1—K2xix | 129.38 (14) | O1xi—K1—O4iii | 86.26 (12) |
O3iii—Sn1—K2xix | 51.14 (14) | O1xii—K1—O4iii | 156.33 (13) |
O2iv—Sn1—K2xix | 114.01 (13) | O3ii—K1—O4iii | 100.74 (13) |
O2v—Sn1—K2xix | 45.73 (13) | O3iii—K1—O4iii | 46.65 (11) |
O2—Sn1—K2xix | 130.02 (13) | O3i—K1—O4iii | 88.29 (13) |
K1—Sn1—K2xix | 77.229 (18) | O4x—K1—O4iii | 104.39 (2) |
K2ii—Sn1—K2xix | 115.259 (13) | O4xii—K1—O4iii | 136.85 (10) |
O3i—Sn1—K2xviii | 51.14 (14) | O4xi—K1—O4iii | 53.57 (17) |
O3ii—Sn1—K2xviii | 66.00 (13) | O4ii—K1—O4iii | 115.74 (6) |
O3iii—Sn1—K2xviii | 129.38 (14) | O4i—K1—O4iii | 115.74 (6) |
O2iv—Sn1—K2xviii | 130.02 (13) | O2xiii—K2—O2xiv | 91.85 (14) |
O2v—Sn1—K2xviii | 114.01 (13) | O2xiii—K2—O2xv | 91.85 (14) |
O2—Sn1—K2xviii | 45.73 (13) | O2xiv—K2—O2xv | 91.85 (14) |
K1—Sn1—K2xviii | 77.229 (18) | O2xiii—K2—O3ix | 147.18 (15) |
K2ii—Sn1—K2xviii | 115.259 (13) | O2xiv—K2—O3ix | 56.50 (11) |
K2xix—Sn1—K2xviii | 115.259 (13) | O2xv—K2—O3ix | 81.71 (12) |
O1—Sn2—O1ii | 92.8 (2) | O2xiii—K2—O3xvi | 56.50 (11) |
O1—Sn2—O1vi | 92.8 (2) | O2xiv—K2—O3xvi | 81.71 (12) |
O1ii—Sn2—O1vi | 92.8 (2) | O2xv—K2—O3xvi | 147.18 (15) |
O1—Sn2—O4vii | 93.7 (2) | O3ix—K2—O3xvi | 119.27 (3) |
O1ii—Sn2—O4vii | 82.5 (2) | O2xiii—K2—O3 | 81.71 (12) |
O1vi—Sn2—O4vii | 172.2 (2) | O2xiv—K2—O3 | 147.18 (15) |
O1—Sn2—O4viii | 172.2 (2) | O2xv—K2—O3 | 56.50 (11) |
O1ii—Sn2—O4viii | 93.7 (2) | O3ix—K2—O3 | 119.27 (3) |
O1vi—Sn2—O4viii | 82.5 (2) | O3xvi—K2—O3 | 119.27 (3) |
O4vii—Sn2—O4viii | 91.5 (2) | O2xiii—K2—O4xvi | 103.66 (12) |
O1—Sn2—O4ix | 82.5 (2) | O2xiv—K2—O4xvi | 82.44 (13) |
O1ii—Sn2—O4ix | 172.2 (2) | O2xv—K2—O4xvi | 163.58 (13) |
O1vi—Sn2—O4ix | 93.7 (2) | O3ix—K2—O4xvi | 82.31 (13) |
O4vii—Sn2—O4ix | 91.5 (2) | O3xvi—K2—O4xvi | 47.30 (12) |
O4viii—Sn2—O4ix | 91.5 (2) | O3—K2—O4xvi | 130.38 (15) |
O1—Sn2—K1xx | 128.15 (13) | O2xiii—K2—O4ix | 163.58 (13) |
O1ii—Sn2—K1xx | 49.01 (14) | O2xiv—K2—O4ix | 103.66 (12) |
O1vi—Sn2—K1xx | 118.40 (13) | O2xv—K2—O4ix | 82.44 (13) |
O4vii—Sn2—K1xx | 53.89 (16) | O3ix—K2—O4ix | 47.30 (12) |
O4viii—Sn2—K1xx | 59.65 (16) | O3xvi—K2—O4ix | 130.38 (15) |
O4ix—Sn2—K1xx | 130.31 (15) | O3—K2—O4ix | 82.31 (13) |
O1—Sn2—K1xxi | 118.40 (13) | O4xvi—K2—O4ix | 83.98 (16) |
O1ii—Sn2—K1xxi | 128.15 (13) | O2xiii—K2—O4 | 82.44 (13) |
O1vi—Sn2—K1xxi | 49.01 (14) | O2xiv—K2—O4 | 163.58 (13) |
O4vii—Sn2—K1xxi | 130.31 (15) | O2xv—K2—O4 | 103.66 (12) |
O4viii—Sn2—K1xxi | 53.89 (16) | O3ix—K2—O4 | 130.38 (15) |
O4ix—Sn2—K1xxi | 59.65 (16) | O3xvi—K2—O4 | 82.31 (13) |
K1xx—Sn2—K1xxi | 113.210 (15) | O3—K2—O4 | 47.30 (12) |
O1—Sn2—K1xvii | 49.01 (14) | O4xvi—K2—O4 | 83.98 (16) |
O1ii—Sn2—K1xvii | 118.40 (13) | O4ix—K2—O4 | 83.98 (16) |
O1vi—Sn2—K1xvii | 128.15 (13) | O2xiii—K2—P1 | 93.94 (9) |
O4vii—Sn2—K1xvii | 59.65 (16) | O2xiv—K2—P1 | 169.50 (10) |
O4viii—Sn2—K1xvii | 130.31 (15) | O2xv—K2—P1 | 79.23 (9) |
O4ix—Sn2—K1xvii | 53.89 (16) | O3ix—K2—P1 | 116.07 (10) |
K1xx—Sn2—K1xvii | 113.210 (15) | O3xvi—K2—P1 | 108.78 (10) |
K1xxi—Sn2—K1xvii | 113.210 (15) | O3—K2—P1 | 26.50 (8) |
O1—P1—O2 | 110.3 (3) | O4xvi—K2—P1 | 104.63 (13) |
O1—P1—O3 | 112.1 (3) | O4ix—K2—P1 | 69.91 (10) |
O2—P1—O3 | 109.1 (3) | O4—K2—P1 | 26.76 (9) |
O1—P1—O4 | 107.2 (3) | O2xiii—K2—P1ix | 169.50 (10) |
O2—P1—O4 | 112.1 (3) | O2xiv—K2—P1ix | 79.23 (9) |
O3—P1—O4 | 105.9 (3) | O2xv—K2—P1ix | 93.94 (9) |
O1—P1—K1vi | 168.93 (19) | O3ix—K2—P1ix | 26.50 (8) |
O2—P1—K1vi | 80.16 (17) | O3xvi—K2—P1ix | 116.07 (10) |
O3—P1—K1vi | 59.55 (18) | O3—K2—P1ix | 108.78 (10) |
O4—P1—K1vi | 70.5 (2) | O4xvi—K2—P1ix | 69.91 (10) |
O1—P1—K2 | 82.78 (18) | O4ix—K2—P1ix | 26.76 (9) |
O2—P1—K2 | 166.53 (19) | O4—K2—P1ix | 104.63 (13) |
O3—P1—K2 | 61.42 (18) | P1—K2—P1ix | 95.73 (6) |
O4—P1—K2 | 64.79 (19) | O2xiii—K2—P1xvi | 79.23 (9) |
K1vi—P1—K2 | 86.56 (5) | O2xiv—K2—P1xvi | 93.94 (9) |
O1—P1—K1xvii | 50.43 (19) | O2xv—K2—P1xvi | 169.50 (10) |
O2—P1—K1xvii | 124.36 (19) | O3ix—K2—P1xvi | 108.78 (10) |
O3—P1—K1xvii | 126.57 (19) | O3xvi—K2—P1xvi | 26.50 (8) |
O4—P1—K1xvii | 56.9 (2) | O3—K2—P1xvi | 116.07 (10) |
K1vi—P1—K1xvii | 126.95 (5) | O4xvi—K2—P1xvi | 26.76 (9) |
K2—P1—K1xvii | 66.07 (6) | O4ix—K2—P1xvi | 104.63 (13) |
O1—P1—K2xviii | 102.1 (2) | O4—K2—P1xvi | 69.91 (10) |
O2—P1—K2xviii | 45.40 (18) | P1—K2—P1xvi | 95.73 (6) |
O3—P1—K2xviii | 71.80 (18) | P1ix—K2—P1xvi | 95.73 (6) |
O4—P1—K2xviii | 148.7 (2) | P1—O1—Sn2 | 150.2 (3) |
K1vi—P1—K2xviii | 82.58 (4) | P1—O1—K1xvii | 105.4 (2) |
K2—P1—K2xviii | 130.74 (6) | Sn2—O1—K1xvii | 99.85 (17) |
K1xvii—P1—K2xviii | 149.53 (5) | P1—O2—Sn1 | 130.9 (3) |
O1x—K1—O1xi | 100.53 (12) | P1—O2—K2xviii | 111.9 (2) |
O1x—K1—O1xii | 100.53 (12) | Sn1—O2—K2xviii | 104.22 (16) |
O1xi—K1—O1xii | 100.53 (12) | P1—O3—Al1vi | 164.9 (3) |
O1x—K1—O3ii | 149.59 (14) | P1—O3—Sn1vi | 164.9 (3) |
O1xi—K1—O3ii | 96.38 (13) | Al1vi—O3—Sn1vi | 0.00 (5) |
O1xii—K1—O3ii | 100.99 (13) | P1—O3—K1vi | 93.7 (2) |
O1x—K1—O3iii | 96.38 (13) | Al1vi—O3—K1vi | 94.60 (17) |
O1xi—K1—O3iii | 100.99 (13) | Sn1vi—O3—K1vi | 94.60 (17) |
O1xii—K1—O3iii | 149.59 (14) | P1—O3—K2 | 92.1 (2) |
O3ii—K1—O3iii | 55.40 (14) | Al1vi—O3—K2 | 98.18 (17) |
O1x—K1—O3i | 100.99 (13) | Sn1vi—O3—K2 | 98.18 (17) |
O1xi—K1—O3i | 149.59 (14) | K1vi—O3—K2 | 103.77 (14) |
O1xii—K1—O3i | 96.38 (13) | P1—O4—Al2xvi | 152.0 (3) |
O3ii—K1—O3i | 55.40 (14) | P1—O4—Sn2xvi | 152.0 (3) |
O3iii—K1—O3i | 55.40 (14) | Al2xvi—O4—Sn2xvi | 0.000 (18) |
O1x—K1—O4x | 49.38 (13) | P1—O4—K1xvii | 97.8 (2) |
O1xi—K1—O4x | 114.88 (15) | Al2xvi—O4—K1xvii | 94.39 (18) |
O1xii—K1—O4x | 52.14 (13) | Sn2xvi—O4—K1xvii | 94.39 (18) |
O3ii—K1—O4x | 140.66 (13) | P1—O4—K2 | 88.5 (2) |
O3iii—K1—O4x | 132.86 (13) | Al2xvi—O4—K2 | 118.9 (2) |
O3i—K1—O4x | 95.45 (12) | Sn2xvi—O4—K2 | 118.9 (2) |
O1x—K1—O4xii | 114.88 (15) | K1xvii—O4—K2 | 77.14 (14) |
O1xi—K1—O4xii | 52.14 (13) | P1—O4—K1vi | 82.7 (2) |
O1xii—K1—O4xii | 49.38 (13) | Al2xvi—O4—K1vi | 88.54 (19) |
O3ii—K1—O4xii | 95.45 (12) | Sn2xvi—O4—K1vi | 88.54 (19) |
O3iii—K1—O4xii | 140.66 (13) | K1xvii—O4—K1vi | 172.37 (18) |
O3i—K1—O4xii | 132.86 (12) | K2—O4—K1vi | 95.27 (14) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) z, x, y; (iii) −y+1/2, −z+1, x−1/2; (iv) −z+1/2, −x+1, y−1/2; (v) −y+1, z+1/2, −x+1/2; (vi) y, z, x; (vii) x−1/2, −y+1/2, −z; (viii) −z, x−1/2, −y+1/2; (ix) −y+1/2, −z, x−1/2; (x) y, z+1, x; (xi) −z, x+1/2, −y+1/2; (xii) −x+1/2, −y+1, z+1/2; (xiii) −z+1, x−1/2, −y+1/2; (xiv) −y+1, z−1/2, −x+1/2; (xv) −x+1, y−1/2, −z+1/2; (xvi) z+1/2, −x+1/2, −y; (xvii) z, x, y−1; (xviii) −z+1/2, −x+1, y+1/2; (xix) x, y+1, z; (xx) y−1, z, x; (xxi) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | K2AlSn(PO4)3 |
Mr | 508.78 |
Crystal system, space group | Cubic, P213 |
Temperature (K) | 296 |
a (Å) | 9.7980 (8) |
V (Å3) | 940.62 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.28 |
Crystal size (mm) | 0.15 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.566, 0.815 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6146, 811, 782 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.074, 1.18 |
No. of reflections | 811 |
No. of parameters | 59 |
Δρmax, Δρmin (e Å−3) | 0.53, −0.60 |
Absolute structure | Flack (1983), 340 Friedel pairs |
Absolute structure parameter | −0.05 (7) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (grant No. B2010–92, 648483).
References
Aatiq, A., Haggouch, B., Bakri, R., Lakhdar, Y. & Saadoune, I. (2006). Powder Diffr. 21, 214–219. Web of Science CrossRef CAS Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Norberg, S. T. (2002). Acta Cryst. B58, 743–749. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466. Web of Science CrossRef CAS Google Scholar
Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvado, M. A., Garcia-Granda, S., Khainakov, S. A. & Garcia, J. R. (2003). J. Solid State Chem. 173, 314–318. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zatovsky, I. V., Yatskin, M. M., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2007). Acta Cryst. E63, i199. Web of Science CrossRef IUCr Journals Google Scholar
Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413. CrossRef CAS IUCr Journals Web of Science Google Scholar
Zhao, D., Zhang, H., Huang, S. P., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2009). J. Alloys Compd, 477, 795–799. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Langbeinite-type (K2Mg2(SO4)3, Zemann & Zemann, 1957) compounds with the simplest generic formula A2B2(XO4)3 are an important and well studied family of inorganic solids with respect to minerals. Among Langbeinite-based phosphates, whose coordination networks are based on [M2(PO4)3] fragments, may result in diverse structure types due to the 'M2' sites occupied by various types of tetravalent and bi- or trivalent metal pairs. For example, the structures K2MTi(PO4)3(M = Y, Yb, Er) (Norberg, 2002), K2FeZr(PO4)3 (Orlova et al., 2003), K2MSn(PO4)3 (M = Fe, Yb) (Aatiq et al., 2006), K2AlTi(PO4)3 (Zhao et al., 2009), K2FeSn(PO4)3 (Zatovsky et al., 2007) and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006), have been reported. Herein we report the single-crystal growth and structure investigation of title compound K2AlSn(PO4)3.
In the structure of title compound, K, Al and Sn atoms lie on the 3-fold rotation axes in 4a positions, while P and O atoms are located at general 12b positions. Due to the similar ionic radii of Al and Sn atoms, they occupy the same sites in a substituent disordered manner, denoted as M atoms. The three-dimensional structure contains MO6 octahedra and PO4 tetrahedra which are connected via vertices. Two nearest [MO6] octahedra are joined to each other by three bridging orthophosphate tetrahedra forming [Al/SnP3O12]n framework, which penetrate with large closed cavities. Two independent potassium atoms are located in each cavity. K1 and K2 atoms are 12-coordinated by O atoms.