inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new langbeinite-type phosphate: K2AlSn(PO4)3

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: henanligong1996@163.com

(Received 30 July 2011; accepted 13 September 2011; online 20 September 2011)

Single crystals of the title compound, dipotassium aluminium tin(IV) tris­[phosphate(V)], K2AlSn(PO4)3, were synthesized by a high temperature reaction in a platinum crucible. In the structure, the AlIII and SnIV atoms occupy the same site on a threefold rotation axis with occupational disorder in a 1:1 ratio. In the three-dimensional structure, Al/SnO6 octa­hedra and PO4 tetra­hedra are inter­connected via their vertices, yielding a [Al/SnP3O12]n framework. The K atoms (site symmetry 3) reside in the large cavities delimited by the [Al/SnP3O12]n framework, and are surrounded by 12 O atoms.

Related literature

For the mineral langbeinite, K2Mg2(SO4)3, see: Zemann & Zemann (1957[Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.]). For related langbeinite-type compounds, see: Aatiq et al. (2006[Aatiq, A., Haggouch, B., Bakri, R., Lakhdar, Y. & Saadoune, I. (2006). Powder Diffr. 21, 214-219.]); Norberg (2002[Norberg, S. T. (2002). Acta Cryst. B58, 743-749.]); Ogorodnyk et al. (2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]); Orlova et al. (2003[Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvado, M. A., Garcia-Granda, S., Khainakov, S. A. & Garcia, J. R. (2003). J. Solid State Chem. 173, 314-318.]); Zatovsky et al. (2007[Zatovsky, I. V., Yatskin, M. M., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2007). Acta Cryst. E63, i199.]); Zhao et al. (2009[Zhao, D., Zhang, H., Huang, S. P., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2009). J. Alloys Compd, 477, 795-799.]).

Experimental

Crystal data
  • K2AlSn(PO4)3

  • Mr = 508.78

  • Cubic, P 21 3

  • a = 9.7980 (8) Å

  • V = 940.62 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.28 mm−1

  • T = 296 K

  • 0.15 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.566, Tmax = 0.815

  • 6146 measured reflections

  • 811 independent reflections

  • 782 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.18

  • 811 reflections

  • 59 parameters

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.60 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 340 Friedel pairs

  • Flack parameter: −0.05 (7)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Langbeinite-type (K2Mg2(SO4)3, Zemann & Zemann, 1957) compounds with the simplest generic formula A2B2(XO4)3 are an important and well studied family of inorganic solids with respect to minerals. Among Langbeinite-based phosphates, whose coordination networks are based on [M2(PO4)3] fragments, may result in diverse structure types due to the 'M2' sites occupied by various types of tetravalent and bi- or trivalent metal pairs. For example, the structures K2MTi(PO4)3(M = Y, Yb, Er) (Norberg, 2002), K2FeZr(PO4)3 (Orlova et al., 2003), K2MSn(PO4)3 (M = Fe, Yb) (Aatiq et al., 2006), K2AlTi(PO4)3 (Zhao et al., 2009), K2FeSn(PO4)3 (Zatovsky et al., 2007) and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006), have been reported. Herein we report the single-crystal growth and structure investigation of title compound K2AlSn(PO4)3.

In the structure of title compound, K, Al and Sn atoms lie on the 3-fold rotation axes in 4a positions, while P and O atoms are located at general 12b positions. Due to the similar ionic radii of Al and Sn atoms, they occupy the same sites in a substituent disordered manner, denoted as M atoms. The three-dimensional structure contains MO6 octahedra and PO4 tetrahedra which are connected via vertices. Two nearest [MO6] octahedra are joined to each other by three bridging orthophosphate tetrahedra forming [Al/SnP3O12]n framework, which penetrate with large closed cavities. Two independent potassium atoms are located in each cavity. K1 and K2 atoms are 12-coordinated by O atoms.

Related literature top

For Langbeinite-type K2Mg2(SO4)3, see: Zemann & Zemann (1957). For related Langbeinite-type compounds, see: Aatiq et al. (2006); Norberg (2002); Ogorodnyk et al. (2006); Orlova et al. (2003); Zatovsky et al. (2007); Zhao et al. (2009).

Experimental top

Single crystals of K2AlSn(PO4)3 have been prepared by a high-temperature method in air. A powder mixture of K2CO3, Al2O3, SnO2 and NH4H2PO4 in the molar ratio of K: Al: Sn: P = 10: 1:: 1 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 673 K at the rate of 2 K h-1. It was kept at 673 K for another 10 h and then quenched to room temperature. The obtained crystals were colorless with a prismatic shape.

Refinement top

The atomic position and anisotropic displacement parameters of Al and Sn in the same sites were constrained to be identical, and the Al/Sn disorder with a relative occupancy of 1/1. The highest peak in the difference electron density map equals to 0.53 e/Å3 at the distance of 1.09 Å from Al2/Sn2 site while the deepest hole equals to -0.60 e/Å3 at the distance of 1.78 Å from K2 site.

Structure description top

Langbeinite-type (K2Mg2(SO4)3, Zemann & Zemann, 1957) compounds with the simplest generic formula A2B2(XO4)3 are an important and well studied family of inorganic solids with respect to minerals. Among Langbeinite-based phosphates, whose coordination networks are based on [M2(PO4)3] fragments, may result in diverse structure types due to the 'M2' sites occupied by various types of tetravalent and bi- or trivalent metal pairs. For example, the structures K2MTi(PO4)3(M = Y, Yb, Er) (Norberg, 2002), K2FeZr(PO4)3 (Orlova et al., 2003), K2MSn(PO4)3 (M = Fe, Yb) (Aatiq et al., 2006), K2AlTi(PO4)3 (Zhao et al., 2009), K2FeSn(PO4)3 (Zatovsky et al., 2007) and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006), have been reported. Herein we report the single-crystal growth and structure investigation of title compound K2AlSn(PO4)3.

In the structure of title compound, K, Al and Sn atoms lie on the 3-fold rotation axes in 4a positions, while P and O atoms are located at general 12b positions. Due to the similar ionic radii of Al and Sn atoms, they occupy the same sites in a substituent disordered manner, denoted as M atoms. The three-dimensional structure contains MO6 octahedra and PO4 tetrahedra which are connected via vertices. Two nearest [MO6] octahedra are joined to each other by three bridging orthophosphate tetrahedra forming [Al/SnP3O12]n framework, which penetrate with large closed cavities. Two independent potassium atoms are located in each cavity. K1 and K2 atoms are 12-coordinated by O atoms.

For Langbeinite-type K2Mg2(SO4)3, see: Zemann & Zemann (1957). For related Langbeinite-type compounds, see: Aatiq et al. (2006); Norberg (2002); Ogorodnyk et al. (2006); Orlova et al. (2003); Zatovsky et al. (2007); Zhao et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of K2AlSn(PO4)3 showing the coordination environments of the P and Al/Sn atoms.. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) z, x, y; (iii) -y + 1/2, -z + 1, x - 1/2; (iv) -z + 1/2, -x + 1, y - 1/2; (v) -y + 1, z + 1/2, -x + 1/2; (viii) y, z, x; (ix) -z, x - 1/2, -y + 1/2; (x) -y + 1/2, -z, x - 1/2; (xi) x - 1/2, -y + 1/2, -z.]
[Figure 2] Fig. 2. View of the crystal structure of K2AlSn(PO4)3 along [010]. PO4 and Al/SnO6 units are given in the polyhedral representation.
Dipotassium aluminium tin(IV) tris[phosphate(V)] top
Crystal data top
K2AlSn(PO4)3Dx = 3.593 Mg m3
Mr = 508.78Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 2030 reflections
Hall symbol: P 2ac 2ab 3θ = 3.6–28.5°
a = 9.7980 (8) ŵ = 4.28 mm1
V = 940.62 (13) Å3T = 296 K
Z = 4Prism, colourless
F(000) = 9680.15 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
811 independent reflections
Radiation source: fine-focus sealed tube782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 83.33 pixels mm-1θmax = 28.5°, θmin = 2.9°
ω scansh = 136
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.566, Tmax = 0.815l = 1210
6146 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0208P)2 + 3.2535P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.074Δρmax = 0.53 e Å3
S = 1.18Δρmin = 0.60 e Å3
811 reflectionsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
59 parametersExtinction coefficient: 0.0076 (10)
0 restraintsAbsolute structure: Flack (1983), 340 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
K2AlSn(PO4)3Z = 4
Mr = 508.78Mo Kα radiation
Cubic, P213µ = 4.28 mm1
a = 9.7980 (8) ÅT = 296 K
V = 940.62 (13) Å30.15 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
811 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
782 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.815Rint = 0.065
6146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074Δρmax = 0.53 e Å3
S = 1.18Δρmin = 0.60 e Å3
811 reflectionsAbsolute structure: Flack (1983), 340 Friedel pairs
59 parametersAbsolute structure parameter: 0.05 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.39682 (6)0.60318 (6)0.10318 (6)0.0091 (2)0.50
Sn20.16412 (6)0.16412 (6)0.16412 (6)0.0104 (2)0.50
Al10.39682 (6)0.60318 (6)0.10318 (6)0.0091 (2)0.50
Al20.16412 (6)0.16412 (6)0.16412 (6)0.0104 (2)0.50
P10.47928 (15)0.29006 (15)0.12495 (15)0.0133 (3)
K10.18221 (14)0.81779 (14)0.31779 (14)0.0268 (5)
K20.54175 (17)0.04175 (17)0.04175 (17)0.0305 (6)
O10.3329 (4)0.2484 (4)0.1004 (5)0.0231 (9)
O20.4861 (4)0.4378 (4)0.1734 (5)0.0198 (9)
O30.5491 (5)0.1991 (4)0.2297 (4)0.0214 (9)
O40.5569 (5)0.2684 (5)0.0094 (5)0.0276 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0091 (2)0.0091 (2)0.0091 (2)0.0000 (2)0.0000 (2)0.0000 (2)
Sn20.0104 (2)0.0104 (2)0.0104 (2)0.0010 (2)0.0010 (2)0.0010 (2)
Al10.0091 (2)0.0091 (2)0.0091 (2)0.0000 (2)0.0000 (2)0.0000 (2)
Al20.0104 (2)0.0104 (2)0.0104 (2)0.0010 (2)0.0010 (2)0.0010 (2)
P10.0142 (7)0.0131 (7)0.0126 (7)0.0002 (5)0.0001 (5)0.0010 (5)
K10.0268 (5)0.0268 (5)0.0268 (5)0.0031 (6)0.0031 (6)0.0031 (6)
K20.0305 (6)0.0305 (6)0.0305 (6)0.0013 (6)0.0013 (6)0.0013 (6)
O10.016 (2)0.024 (2)0.030 (2)0.0048 (18)0.006 (2)0.0024 (19)
O20.021 (2)0.014 (2)0.025 (2)0.0009 (16)0.0065 (19)0.0067 (17)
O30.025 (2)0.021 (2)0.018 (2)0.0001 (18)0.0077 (18)0.0088 (18)
O40.038 (3)0.028 (3)0.017 (2)0.007 (2)0.011 (2)0.003 (2)
Geometric parameters (Å, º) top
Sn1—O3i1.961 (4)K1—O4xii3.011 (6)
Sn1—O3ii1.961 (4)K1—O4xi3.011 (6)
Sn1—O3iii1.961 (4)K1—O4ii3.208 (5)
Sn1—O2iv1.966 (4)K1—O4i3.208 (5)
Sn1—O2v1.966 (4)K1—O4iii3.208 (5)
Sn1—O21.966 (4)K2—O2xiii2.811 (5)
Sn2—O11.951 (4)K2—O2xiv2.811 (5)
Sn2—O1ii1.951 (4)K2—O2xv2.811 (5)
Sn2—O1vi1.951 (4)K2—O3ix2.994 (5)
Sn2—O4vii1.960 (5)K2—O3xvi2.994 (5)
Sn2—O4viii1.960 (5)K2—O32.994 (5)
Sn2—O4ix1.960 (5)K2—O4xvi3.084 (5)
P1—O11.511 (4)K2—O4ix3.084 (5)
P1—O21.525 (4)K2—O43.084 (5)
P1—O31.521 (4)O1—K1xvii2.847 (5)
P1—O41.535 (5)O2—K2xviii2.811 (5)
K1—O1x2.847 (5)O3—Al1vi1.961 (4)
K1—O1xi2.847 (5)O3—Sn1vi1.961 (4)
K1—O1xii2.847 (5)O3—K1vi2.915 (5)
K1—O3ii2.916 (5)O4—Al2xvi1.960 (5)
K1—O3iii2.916 (5)O4—Sn2xvi1.960 (5)
K1—O3i2.916 (5)O4—K1xvii3.011 (6)
K1—O4x3.011 (6)O4—K1vi3.208 (5)
O3i—Sn1—O3ii87.42 (19)O4x—K1—O4xii86.48 (14)
O3i—Sn1—O3iii87.42 (19)O1x—K1—O4xi52.14 (13)
O3ii—Sn1—O3iii87.42 (19)O1xi—K1—O4xi49.38 (13)
O3i—Sn1—O2iv175.0 (2)O1xii—K1—O4xi114.88 (15)
O3ii—Sn1—O2iv89.00 (17)O3ii—K1—O4xi132.86 (13)
O3iii—Sn1—O2iv88.90 (18)O3iii—K1—O4xi95.45 (12)
O3i—Sn1—O2v88.90 (19)O3i—K1—O4xi140.66 (13)
O3ii—Sn1—O2v175.0 (2)O4x—K1—O4xi86.48 (14)
O3iii—Sn1—O2v89.00 (17)O4xii—K1—O4xi86.48 (14)
O2iv—Sn1—O2v94.46 (18)O1x—K1—O4ii156.33 (13)
O3i—Sn1—O288.99 (17)O1xi—K1—O4ii55.82 (12)
O3ii—Sn1—O288.90 (18)O1xii—K1—O4ii86.26 (12)
O3iii—Sn1—O2175.0 (2)O3ii—K1—O4ii46.65 (11)
O2iv—Sn1—O294.46 (18)O3iii—K1—O4ii88.29 (13)
O2v—Sn1—O294.45 (18)O3i—K1—O4ii100.74 (13)
O3i—Sn1—K152.93 (13)O4x—K1—O4ii136.85 (10)
O3ii—Sn1—K152.93 (13)O4xii—K1—O4ii53.57 (17)
O3iii—Sn1—K152.93 (13)O4xi—K1—O4ii104.39 (2)
O2iv—Sn1—K1122.05 (13)O1x—K1—O4i86.26 (12)
O2v—Sn1—K1122.05 (13)O1xi—K1—O4i156.33 (13)
O2—Sn1—K1122.05 (13)O1xii—K1—O4i55.82 (12)
O3i—Sn1—K2ii129.38 (14)O3ii—K1—O4i88.29 (13)
O3ii—Sn1—K2ii51.14 (14)O3iii—K1—O4i100.74 (13)
O3iii—Sn1—K2ii66.00 (13)O3i—K1—O4i46.65 (11)
O2iv—Sn1—K2ii45.73 (13)O4x—K1—O4i53.57 (17)
O2v—Sn1—K2ii130.02 (13)O4xii—K1—O4i104.39 (3)
O2—Sn1—K2ii114.01 (13)O4xi—K1—O4i136.85 (10)
K1—Sn1—K2ii77.229 (18)O4ii—K1—O4i115.74 (6)
O3i—Sn1—K2xix66.00 (13)O1x—K1—O4iii55.82 (12)
O3ii—Sn1—K2xix129.38 (14)O1xi—K1—O4iii86.26 (12)
O3iii—Sn1—K2xix51.14 (14)O1xii—K1—O4iii156.33 (13)
O2iv—Sn1—K2xix114.01 (13)O3ii—K1—O4iii100.74 (13)
O2v—Sn1—K2xix45.73 (13)O3iii—K1—O4iii46.65 (11)
O2—Sn1—K2xix130.02 (13)O3i—K1—O4iii88.29 (13)
K1—Sn1—K2xix77.229 (18)O4x—K1—O4iii104.39 (2)
K2ii—Sn1—K2xix115.259 (13)O4xii—K1—O4iii136.85 (10)
O3i—Sn1—K2xviii51.14 (14)O4xi—K1—O4iii53.57 (17)
O3ii—Sn1—K2xviii66.00 (13)O4ii—K1—O4iii115.74 (6)
O3iii—Sn1—K2xviii129.38 (14)O4i—K1—O4iii115.74 (6)
O2iv—Sn1—K2xviii130.02 (13)O2xiii—K2—O2xiv91.85 (14)
O2v—Sn1—K2xviii114.01 (13)O2xiii—K2—O2xv91.85 (14)
O2—Sn1—K2xviii45.73 (13)O2xiv—K2—O2xv91.85 (14)
K1—Sn1—K2xviii77.229 (18)O2xiii—K2—O3ix147.18 (15)
K2ii—Sn1—K2xviii115.259 (13)O2xiv—K2—O3ix56.50 (11)
K2xix—Sn1—K2xviii115.259 (13)O2xv—K2—O3ix81.71 (12)
O1—Sn2—O1ii92.8 (2)O2xiii—K2—O3xvi56.50 (11)
O1—Sn2—O1vi92.8 (2)O2xiv—K2—O3xvi81.71 (12)
O1ii—Sn2—O1vi92.8 (2)O2xv—K2—O3xvi147.18 (15)
O1—Sn2—O4vii93.7 (2)O3ix—K2—O3xvi119.27 (3)
O1ii—Sn2—O4vii82.5 (2)O2xiii—K2—O381.71 (12)
O1vi—Sn2—O4vii172.2 (2)O2xiv—K2—O3147.18 (15)
O1—Sn2—O4viii172.2 (2)O2xv—K2—O356.50 (11)
O1ii—Sn2—O4viii93.7 (2)O3ix—K2—O3119.27 (3)
O1vi—Sn2—O4viii82.5 (2)O3xvi—K2—O3119.27 (3)
O4vii—Sn2—O4viii91.5 (2)O2xiii—K2—O4xvi103.66 (12)
O1—Sn2—O4ix82.5 (2)O2xiv—K2—O4xvi82.44 (13)
O1ii—Sn2—O4ix172.2 (2)O2xv—K2—O4xvi163.58 (13)
O1vi—Sn2—O4ix93.7 (2)O3ix—K2—O4xvi82.31 (13)
O4vii—Sn2—O4ix91.5 (2)O3xvi—K2—O4xvi47.30 (12)
O4viii—Sn2—O4ix91.5 (2)O3—K2—O4xvi130.38 (15)
O1—Sn2—K1xx128.15 (13)O2xiii—K2—O4ix163.58 (13)
O1ii—Sn2—K1xx49.01 (14)O2xiv—K2—O4ix103.66 (12)
O1vi—Sn2—K1xx118.40 (13)O2xv—K2—O4ix82.44 (13)
O4vii—Sn2—K1xx53.89 (16)O3ix—K2—O4ix47.30 (12)
O4viii—Sn2—K1xx59.65 (16)O3xvi—K2—O4ix130.38 (15)
O4ix—Sn2—K1xx130.31 (15)O3—K2—O4ix82.31 (13)
O1—Sn2—K1xxi118.40 (13)O4xvi—K2—O4ix83.98 (16)
O1ii—Sn2—K1xxi128.15 (13)O2xiii—K2—O482.44 (13)
O1vi—Sn2—K1xxi49.01 (14)O2xiv—K2—O4163.58 (13)
O4vii—Sn2—K1xxi130.31 (15)O2xv—K2—O4103.66 (12)
O4viii—Sn2—K1xxi53.89 (16)O3ix—K2—O4130.38 (15)
O4ix—Sn2—K1xxi59.65 (16)O3xvi—K2—O482.31 (13)
K1xx—Sn2—K1xxi113.210 (15)O3—K2—O447.30 (12)
O1—Sn2—K1xvii49.01 (14)O4xvi—K2—O483.98 (16)
O1ii—Sn2—K1xvii118.40 (13)O4ix—K2—O483.98 (16)
O1vi—Sn2—K1xvii128.15 (13)O2xiii—K2—P193.94 (9)
O4vii—Sn2—K1xvii59.65 (16)O2xiv—K2—P1169.50 (10)
O4viii—Sn2—K1xvii130.31 (15)O2xv—K2—P179.23 (9)
O4ix—Sn2—K1xvii53.89 (16)O3ix—K2—P1116.07 (10)
K1xx—Sn2—K1xvii113.210 (15)O3xvi—K2—P1108.78 (10)
K1xxi—Sn2—K1xvii113.210 (15)O3—K2—P126.50 (8)
O1—P1—O2110.3 (3)O4xvi—K2—P1104.63 (13)
O1—P1—O3112.1 (3)O4ix—K2—P169.91 (10)
O2—P1—O3109.1 (3)O4—K2—P126.76 (9)
O1—P1—O4107.2 (3)O2xiii—K2—P1ix169.50 (10)
O2—P1—O4112.1 (3)O2xiv—K2—P1ix79.23 (9)
O3—P1—O4105.9 (3)O2xv—K2—P1ix93.94 (9)
O1—P1—K1vi168.93 (19)O3ix—K2—P1ix26.50 (8)
O2—P1—K1vi80.16 (17)O3xvi—K2—P1ix116.07 (10)
O3—P1—K1vi59.55 (18)O3—K2—P1ix108.78 (10)
O4—P1—K1vi70.5 (2)O4xvi—K2—P1ix69.91 (10)
O1—P1—K282.78 (18)O4ix—K2—P1ix26.76 (9)
O2—P1—K2166.53 (19)O4—K2—P1ix104.63 (13)
O3—P1—K261.42 (18)P1—K2—P1ix95.73 (6)
O4—P1—K264.79 (19)O2xiii—K2—P1xvi79.23 (9)
K1vi—P1—K286.56 (5)O2xiv—K2—P1xvi93.94 (9)
O1—P1—K1xvii50.43 (19)O2xv—K2—P1xvi169.50 (10)
O2—P1—K1xvii124.36 (19)O3ix—K2—P1xvi108.78 (10)
O3—P1—K1xvii126.57 (19)O3xvi—K2—P1xvi26.50 (8)
O4—P1—K1xvii56.9 (2)O3—K2—P1xvi116.07 (10)
K1vi—P1—K1xvii126.95 (5)O4xvi—K2—P1xvi26.76 (9)
K2—P1—K1xvii66.07 (6)O4ix—K2—P1xvi104.63 (13)
O1—P1—K2xviii102.1 (2)O4—K2—P1xvi69.91 (10)
O2—P1—K2xviii45.40 (18)P1—K2—P1xvi95.73 (6)
O3—P1—K2xviii71.80 (18)P1ix—K2—P1xvi95.73 (6)
O4—P1—K2xviii148.7 (2)P1—O1—Sn2150.2 (3)
K1vi—P1—K2xviii82.58 (4)P1—O1—K1xvii105.4 (2)
K2—P1—K2xviii130.74 (6)Sn2—O1—K1xvii99.85 (17)
K1xvii—P1—K2xviii149.53 (5)P1—O2—Sn1130.9 (3)
O1x—K1—O1xi100.53 (12)P1—O2—K2xviii111.9 (2)
O1x—K1—O1xii100.53 (12)Sn1—O2—K2xviii104.22 (16)
O1xi—K1—O1xii100.53 (12)P1—O3—Al1vi164.9 (3)
O1x—K1—O3ii149.59 (14)P1—O3—Sn1vi164.9 (3)
O1xi—K1—O3ii96.38 (13)Al1vi—O3—Sn1vi0.00 (5)
O1xii—K1—O3ii100.99 (13)P1—O3—K1vi93.7 (2)
O1x—K1—O3iii96.38 (13)Al1vi—O3—K1vi94.60 (17)
O1xi—K1—O3iii100.99 (13)Sn1vi—O3—K1vi94.60 (17)
O1xii—K1—O3iii149.59 (14)P1—O3—K292.1 (2)
O3ii—K1—O3iii55.40 (14)Al1vi—O3—K298.18 (17)
O1x—K1—O3i100.99 (13)Sn1vi—O3—K298.18 (17)
O1xi—K1—O3i149.59 (14)K1vi—O3—K2103.77 (14)
O1xii—K1—O3i96.38 (13)P1—O4—Al2xvi152.0 (3)
O3ii—K1—O3i55.40 (14)P1—O4—Sn2xvi152.0 (3)
O3iii—K1—O3i55.40 (14)Al2xvi—O4—Sn2xvi0.000 (18)
O1x—K1—O4x49.38 (13)P1—O4—K1xvii97.8 (2)
O1xi—K1—O4x114.88 (15)Al2xvi—O4—K1xvii94.39 (18)
O1xii—K1—O4x52.14 (13)Sn2xvi—O4—K1xvii94.39 (18)
O3ii—K1—O4x140.66 (13)P1—O4—K288.5 (2)
O3iii—K1—O4x132.86 (13)Al2xvi—O4—K2118.9 (2)
O3i—K1—O4x95.45 (12)Sn2xvi—O4—K2118.9 (2)
O1x—K1—O4xii114.88 (15)K1xvii—O4—K277.14 (14)
O1xi—K1—O4xii52.14 (13)P1—O4—K1vi82.7 (2)
O1xii—K1—O4xii49.38 (13)Al2xvi—O4—K1vi88.54 (19)
O3ii—K1—O4xii95.45 (12)Sn2xvi—O4—K1vi88.54 (19)
O3iii—K1—O4xii140.66 (13)K1xvii—O4—K1vi172.37 (18)
O3i—K1—O4xii132.86 (12)K2—O4—K1vi95.27 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) z, x, y; (iii) y+1/2, z+1, x1/2; (iv) z+1/2, x+1, y1/2; (v) y+1, z+1/2, x+1/2; (vi) y, z, x; (vii) x1/2, y+1/2, z; (viii) z, x1/2, y+1/2; (ix) y+1/2, z, x1/2; (x) y, z+1, x; (xi) z, x+1/2, y+1/2; (xii) x+1/2, y+1, z+1/2; (xiii) z+1, x1/2, y+1/2; (xiv) y+1, z1/2, x+1/2; (xv) x+1, y1/2, z+1/2; (xvi) z+1/2, x+1/2, y; (xvii) z, x, y1; (xviii) z+1/2, x+1, y+1/2; (xix) x, y+1, z; (xx) y1, z, x; (xxi) x, y1, z.

Experimental details

Crystal data
Chemical formulaK2AlSn(PO4)3
Mr508.78
Crystal system, space groupCubic, P213
Temperature (K)296
a (Å)9.7980 (8)
V3)940.62 (13)
Z4
Radiation typeMo Kα
µ (mm1)4.28
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.566, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
6146, 811, 782
Rint0.065
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.18
No. of reflections811
No. of parameters59
Δρmax, Δρmin (e Å3)0.53, 0.60
Absolute structureFlack (1983), 340 Friedel pairs
Absolute structure parameter0.05 (7)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (grant No. B2010–92, 648483).

References

First citationAatiq, A., Haggouch, B., Bakri, R., Lakhdar, Y. & Saadoune, I. (2006). Powder Diffr. 21, 214–219.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorberg, S. T. (2002). Acta Cryst. B58, 743–749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.  Web of Science CrossRef CAS Google Scholar
First citationOrlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvado, M. A., Garcia-Granda, S., Khainakov, S. A. & Garcia, J. R. (2003). J. Solid State Chem. 173, 314–318.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovsky, I. V., Yatskin, M. M., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2007). Acta Cryst. E63, i199.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhao, D., Zhang, H., Huang, S. P., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2009). J. Alloys Compd, 477, 795–799.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds