organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[2-(2-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene)hydrazin-1-yl­­idene]meth­yl}-6-meth­­oxy­phenol

aCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xi'an 710054, Shaanxi, People's Republic of China
*Correspondence e-mail: lu78441@yahoo.com.cn

(Received 17 July 2011; accepted 10 September 2011; online 30 September 2011)

The title compound, C16H16N2O4, was obtained from the reaction of hydrazine hydrate and o-vanilin in absolute ethanol. The mol­ecule is almost planar (except for the methyl H atoms), with a mean deviation from the plane of 0.0259 Å. The mol­ecular structure also exhibits an approximate non-crystallographic twofold axis. Intra­molecular O—H⋯N hydrogen bonds occur. In the crystal, inter­molecular C—H⋯O hydrogen bonds generate mol­ecular zigzag sheets. The sheets stack through C—H⋯π inter­actions, leading to a three-dimensional-network.

Related literature

For the properties and applications of the title compound or similar structural compounds and their metal complexes, see: Lin et al. (2009[Lin, P.-H., Burchell, T. J., Ungur, L., Chibotaru, L. F., Wernsdorfer, W. & Murugesu, M. (2009). Angew. Chem. Int. Ed. 48, 9489-9452.]); Davidson et al. (2006[Davidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2006). Eur. J. Inorg. Chem. 21, 4449-4454.]); Lin & Zeng (2006[Lin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074-m1076.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Monoclinic, P 21 /c

  • a = 6.3095 (14) Å

  • b = 17.405 (4) Å

  • c = 13.606 (3) Å

  • β = 95.590 (4)°

  • V = 1487.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.858, Tmax = 1.000

  • 7393 measured reflections

  • 2648 independent reflections

  • 1133 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.186

  • S = 1.07

  • 2648 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.91 (5) 1.82 (5) 2.640 (4) 149 (4)
O2—H2A⋯N1 0.88 (4) 1.82 (4) 2.636 (4) 153 (4)
C16—H16A⋯O4i 0.96 2.55 3.279 (5) 133
C7—H7ACg2ii 0.93 2.90 3.694 (4) 144
C13—H13ACg1iii 0.93 2.89 3.717 (4) 149
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I) (Fig. 1), with various chelating atoms, could coordinate with many transition metals (Davidson et al., 2006) and lanthanides (Lin and Zeng, 2006; Lin et al. , 2009) to form functional complexes. The molecule crystallizes in the monoclinic space group P21/c and appears to be almost completely planar (except for the methyl hydrogen atoms) with a mean deviation from the plane ooff 0.0259 Å. The molecule also exhibits a non-crystallographic 2-fold axis. There are intramolecular O—H···N hydrogen bonds, intermolecular C—H···O hydrogen bonds and C—H···π hydrogen bonds. Molecules are linked by the C—H···O hydrogen bonds, generating molecular zigzag sheets, as shown in Fig. 2. The C—H···π hydrogen bonds and stacking interaction of these sheets leads to a three-dimensional-network. (Fig. 3).

Related literature top

For the properties and applications of the title compound or similar structural compounds and their metal complexes, see: Lin et al. (2009); Davidson et al. (2006); Lin & Zeng (2006) .

Experimental top

The title compound was obtained from the reaction of hydrazine hydrate and o-vanilin in absolute ethanol. Hydrazine hydrate (500 mg, 10 mmol) was added to a solution of o-vanilin (3.04 g, 20 mmol) in absolute ethanol (200 ml) and heated to reflux for 2 h. The resulting solution was allowed to evaporate at rt to give a yellow crystal, which was collected by filtration and dried under vacumn;; yield 89.3%. The single-crystal of the title compound suitble for X-ray diffraction was obtained by recrystalization from absolute ethanol.

Refinement top

H atoms bonded to O atoms were refined isotropically without restraints, and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title compound, (I) (Fig. 1), with various chelating atoms, could coordinate with many transition metals (Davidson et al., 2006) and lanthanides (Lin and Zeng, 2006; Lin et al. , 2009) to form functional complexes. The molecule crystallizes in the monoclinic space group P21/c and appears to be almost completely planar (except for the methyl hydrogen atoms) with a mean deviation from the plane ooff 0.0259 Å. The molecule also exhibits a non-crystallographic 2-fold axis. There are intramolecular O—H···N hydrogen bonds, intermolecular C—H···O hydrogen bonds and C—H···π hydrogen bonds. Molecules are linked by the C—H···O hydrogen bonds, generating molecular zigzag sheets, as shown in Fig. 2. The C—H···π hydrogen bonds and stacking interaction of these sheets leads to a three-dimensional-network. (Fig. 3).

For the properties and applications of the title compound or similar structural compounds and their metal complexes, see: Lin et al. (2009); Davidson et al. (2006); Lin & Zeng (2006) .

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), showing one chain of molecules connected by C—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The packing of (I), showing one layer of molecules connected by stacking interaction.
2-{[2-(2-Hydroxy-3-methoxybenzylidene)hydrazin-1-ylidene]methyl}-6-methoxyphenol top
Crystal data top
C16H16N2O4F(000) = 632
Mr = 300.31Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3095 (14) ÅCell parameters from 8451 reflections
b = 17.405 (4) Åθ = 1.9–26.6°
c = 13.606 (3) ŵ = 0.10 mm1
β = 95.590 (4)°T = 296 K
V = 1487.0 (6) Å3Block, yellow
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2648 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
thin–slice ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 67
Tmin = 0.858, Tmax = 1.000k = 1820
7393 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
2648 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H16N2O4V = 1487.0 (6) Å3
Mr = 300.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3095 (14) ŵ = 0.10 mm1
b = 17.405 (4) ÅT = 296 K
c = 13.606 (3) Å0.25 × 0.20 × 0.18 mm
β = 95.590 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2648 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1133 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.052
7393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
2648 reflectionsΔρmin = 0.23 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.1229 (5)0.30718 (16)0.11097 (19)0.0657 (8)
O30.3751 (4)0.44682 (15)0.36771 (19)0.0659 (8)
N20.6605 (5)0.39741 (18)0.2529 (2)0.0603 (9)
N10.8399 (5)0.35841 (17)0.2254 (2)0.0593 (9)
C41.1395 (6)0.28216 (19)0.2861 (3)0.0529 (10)
O11.4697 (4)0.23030 (15)0.09342 (18)0.0708 (8)
C21.4056 (6)0.2325 (2)0.1861 (3)0.0533 (10)
O40.0317 (4)0.52385 (14)0.38754 (18)0.0696 (8)
C140.0966 (6)0.5236 (2)0.2954 (3)0.0555 (10)
C31.2189 (6)0.27497 (19)0.1943 (3)0.0513 (9)
C150.2831 (6)0.4809 (2)0.2850 (3)0.0532 (10)
C130.0034 (6)0.5612 (2)0.2144 (3)0.0628 (11)
H13A0.12470.59040.22100.075*
C100.3625 (6)0.4756 (2)0.1936 (3)0.0570 (10)
C80.9494 (6)0.3256 (2)0.2985 (3)0.0585 (11)
H8A0.90430.33000.36130.070*
C110.2542 (7)0.5129 (2)0.1132 (3)0.0702 (12)
H11A0.30430.50860.05140.084*
C51.2488 (6)0.2463 (2)0.3685 (3)0.0638 (11)
H5A1.19810.25120.43010.077*
C71.5070 (6)0.1973 (2)0.2683 (3)0.0624 (11)
H7A1.62920.16840.26270.075*
C90.5516 (6)0.4314 (2)0.1809 (3)0.0633 (11)
H9A0.59630.42730.11790.076*
C61.4279 (7)0.2047 (2)0.3592 (3)0.0674 (11)
H6A1.49800.18100.41440.081*
C160.1522 (6)0.5682 (2)0.4042 (3)0.0783 (14)
H16A0.17990.56350.47210.117*
H16B0.27280.54970.36240.117*
H16C0.12740.62110.38930.117*
C120.0759 (7)0.5556 (2)0.1232 (3)0.0731 (12)
H12A0.00790.58100.06880.088*
C11.6443 (6)0.1816 (2)0.0767 (3)0.0817 (14)
H1B1.67300.18540.00890.123*
H1C1.60950.12940.09140.123*
H1D1.76800.19720.11860.123*
H3A0.490 (8)0.421 (3)0.349 (4)0.128 (19)*
H2A1.007 (7)0.328 (2)0.131 (3)0.096 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0594 (19)0.080 (2)0.0581 (18)0.0130 (15)0.0097 (15)0.0022 (14)
O30.0600 (19)0.0752 (19)0.0638 (19)0.0177 (15)0.0130 (15)0.0115 (14)
N20.052 (2)0.060 (2)0.071 (2)0.0020 (16)0.0164 (17)0.0059 (17)
N10.049 (2)0.060 (2)0.071 (2)0.0004 (16)0.0146 (18)0.0089 (17)
C40.055 (2)0.051 (2)0.053 (2)0.0052 (18)0.0082 (19)0.0062 (18)
O10.0661 (18)0.0868 (19)0.0619 (18)0.0217 (15)0.0187 (14)0.0032 (14)
C20.050 (2)0.055 (2)0.055 (2)0.0014 (19)0.0069 (19)0.0041 (18)
O40.0630 (18)0.0796 (19)0.0691 (18)0.0180 (15)0.0214 (14)0.0114 (14)
C140.049 (2)0.055 (2)0.063 (3)0.0023 (19)0.008 (2)0.0028 (19)
C30.050 (2)0.052 (2)0.052 (2)0.0001 (19)0.0042 (18)0.0021 (18)
C150.052 (2)0.051 (2)0.056 (2)0.0026 (19)0.0052 (19)0.0064 (18)
C130.056 (3)0.059 (3)0.073 (3)0.0026 (19)0.003 (2)0.007 (2)
C100.054 (2)0.054 (2)0.064 (3)0.0039 (19)0.009 (2)0.0012 (19)
C80.056 (3)0.059 (2)0.062 (3)0.006 (2)0.015 (2)0.011 (2)
C110.071 (3)0.081 (3)0.059 (3)0.003 (2)0.010 (2)0.002 (2)
C50.071 (3)0.068 (3)0.053 (3)0.007 (2)0.008 (2)0.007 (2)
C70.058 (3)0.059 (3)0.070 (3)0.008 (2)0.005 (2)0.000 (2)
C90.065 (3)0.060 (3)0.067 (3)0.005 (2)0.020 (2)0.008 (2)
C60.074 (3)0.068 (3)0.059 (3)0.010 (2)0.001 (2)0.0008 (19)
C160.054 (3)0.093 (3)0.091 (3)0.018 (2)0.021 (2)0.006 (2)
C120.067 (3)0.079 (3)0.071 (3)0.005 (2)0.005 (2)0.009 (2)
C10.065 (3)0.098 (3)0.085 (3)0.019 (3)0.023 (2)0.004 (2)
Geometric parameters (Å, º) top
O2—C31.354 (4)C13—H13A0.9300
O2—H2A0.88 (4)C10—C111.392 (5)
O3—C151.352 (4)C10—C91.445 (5)
O3—H3A0.91 (5)C8—H8A0.9300
N2—C91.285 (4)C11—C121.366 (5)
N2—N11.402 (4)C11—H11A0.9300
N1—C81.288 (4)C5—C61.359 (5)
C4—C31.396 (4)C5—H5A0.9300
C4—C51.404 (5)C7—C61.384 (5)
C4—C81.441 (5)C7—H7A0.9300
O1—C21.361 (4)C9—H9A0.9300
O1—C11.426 (4)C6—H6A0.9300
C2—C71.377 (5)C16—H16A0.9600
C2—C31.404 (5)C16—H16B0.9600
O4—C141.357 (4)C16—H16C0.9600
O4—C161.430 (4)C12—H12A0.9300
C14—C131.380 (5)C1—H1B0.9600
C14—C151.411 (5)C1—H1C0.9600
C15—C101.388 (5)C1—H1D0.9600
C13—C121.385 (5)
C3—O2—H2A103 (3)C12—C11—C10121.4 (4)
C15—O3—H3A106 (3)C12—C11—H11A119.3
C9—N2—N1113.9 (3)C10—C11—H11A119.3
C8—N1—N2113.3 (3)C6—C5—C4120.7 (3)
C3—C4—C5118.9 (3)C6—C5—H5A119.6
C3—C4—C8121.8 (4)C4—C5—H5A119.6
C5—C4—C8119.3 (3)C2—C7—C6120.3 (4)
C2—O1—C1117.9 (3)C2—C7—H7A119.8
O1—C2—C7125.7 (3)C6—C7—H7A119.8
O1—C2—C3114.6 (3)N2—C9—C10122.7 (3)
C7—C2—C3119.8 (3)N2—C9—H9A118.6
C14—O4—C16118.1 (3)C10—C9—H9A118.6
O4—C14—C13125.5 (3)C5—C6—C7120.6 (4)
O4—C14—C15115.1 (3)C5—C6—H6A119.7
C13—C14—C15119.4 (3)C7—C6—H6A119.7
O2—C3—C4122.8 (3)O4—C16—H16A109.5
O2—C3—C2117.5 (3)O4—C16—H16B109.5
C4—C3—C2119.7 (4)H16A—C16—H16B109.5
O3—C15—C10123.6 (3)O4—C16—H16C109.5
O3—C15—C14116.3 (3)H16A—C16—H16C109.5
C10—C15—C14120.1 (4)H16B—C16—H16C109.5
C14—C13—C12120.3 (4)C11—C12—C13120.0 (4)
C14—C13—H13A119.8C11—C12—H12A120.0
C12—C13—H13A119.8C13—C12—H12A120.0
C15—C10—C11118.7 (4)O1—C1—H1B109.5
C15—C10—C9121.1 (4)O1—C1—H1C109.5
C11—C10—C9120.1 (3)H1B—C1—H1C109.5
N1—C8—C4122.2 (3)O1—C1—H1D109.5
N1—C8—H8A118.9H1B—C1—H1D109.5
C4—C8—H8A118.9H1C—C1—H1D109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.91 (5)1.82 (5)2.640 (4)149 (4)
O2—H2A···N10.88 (4)1.82 (4)2.636 (4)153 (4)
C16—H16A···O4i0.962.553.279 (5)133
C7—H7A···Cg2ii0.932.903.694 (4)144
C13—H13A···Cg1iii0.932.893.717 (4)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.3095 (14), 17.405 (4), 13.606 (3)
β (°) 95.590 (4)
V3)1487.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.858, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7393, 2648, 1133
Rint0.052
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.186, 1.07
No. of reflections2648
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.91 (5)1.82 (5)2.640 (4)149 (4)
O2—H2A···N10.88 (4)1.82 (4)2.636 (4)153 (4)
C16—H16A···O4i0.962.553.279 (5)133
C7—H7A···Cg2ii0.9302.903.694 (4)144
C13—H13A···Cg1iii0.9302.893.717 (4)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2010JM2006, 2011JQ2011) and the Scientific Research Program funded by Shaanxi Provincial Education Department (Program No. 2008 J K440).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2006). Eur. J. Inorg. Chem. 21, 4449–4454.  Web of Science CSD CrossRef Google Scholar
First citationLin, P.-H., Burchell, T. J., Ungur, L., Chibotaru, L. F., Wernsdorfer, W. & Murugesu, M. (2009). Angew. Chem. Int. Ed. 48, 9489–9452.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074–m1076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds