organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-[(2-Amino­anilino)(phen­yl)methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xi'an 710054, Shaanxi, People's Republic of China
*Correspondence e-mail: lu78441@yahoo.com.cn

(Received 17 July 2011; accepted 14 September 2011; online 30 September 2011)

The mol­ecule of the title compound, C23H20N4O, assumes a non-planar conformation in which the pyrazolone ring forms dihedral angles of 10.33 (11), 65.34 (11) and 63.52 (10)° with the three benzene rings. In the crystal, the mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds, generating chains parallel to the b axis. The secondary amino group is involved in an intra­molecular N—H⋯O hydrogen bond.

Related literature

For the synthesis, properties and applications of the title compound, see: Hennig & Mann (1988[Hennig, L. & Mann, G. (1988). Z. Chem. 28, 364-365.]); Bao et al. (2005[Bao, F., Ma, R., Lv, X. Q., Gui, G. Q. & Wu, Q. (2005). Appl. Organomet. Chem. 20, 32-38.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N4O

  • Mr = 368.43

  • Monoclinic, P 21 /c

  • a = 9.200 (2) Å

  • b = 21.680 (5) Å

  • c = 9.608 (2) Å

  • β = 97.840 (4)°

  • V = 1898.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 1.000

  • 9447 measured reflections

  • 3369 independent reflections

  • 1983 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 0.94

  • 3369 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1C⋯O1 0.96 (2) 1.93 (2) 2.733 (2) 139.8 (16)
N4—H4B⋯N2i 0.86 2.34 3.194 (2) 173
N4—H4A⋯N2ii 0.86 2.50 3.209 (2) 140
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The molecules of the title compound (Fig. 1) are linked by N—H···N hydrogen bonds, generating parallel chains as shown in Fig. 2. The aminophenyl rings protrude on both sides of these chains. Adjacent chains are linked by stacking interactions between the protruding rings. The distance between the ring centroids is 3.6953 (14) Å.

Related literature top

For the synthesis, properties and applications of the title compound, see: Hennig & Mann (1988); Bao et al. (2005).

Experimental top

The title compound was obtained according to the synthetic procedure of Hennig & Mann (1988). o-Phenylenediamine and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one were refluxed for 2 h in a 1:1 ratio in absolute ethanol to give the product. The single crystal suitble for X-ray diffraction was obtained by slow evaporation of the ethanolic solution of the title compound.

Refinement top

The H atom bonded to N3 was located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C/N).

Structure description top

The molecules of the title compound (Fig. 1) are linked by N—H···N hydrogen bonds, generating parallel chains as shown in Fig. 2. The aminophenyl rings protrude on both sides of these chains. Adjacent chains are linked by stacking interactions between the protruding rings. The distance between the ring centroids is 3.6953 (14) Å.

For the synthesis, properties and applications of the title compound, see: Hennig & Mann (1988); Bao et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing of (I), showing molecules connected by N—H···N hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Packing of (I), showing assembly of molecules connected by stacking interaction.
(Z)-4-[(2-Aminoanilino)(phenyl)methylidene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C23H20N4OF(000) = 776
Mr = 368.43Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10250 reflections
a = 9.200 (2) Åθ = 1.9–25.1°
b = 21.680 (5) ŵ = 0.08 mm1
c = 9.608 (2) ÅT = 273 K
β = 97.840 (4)°Block, orange
V = 1898.4 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3369 independent reflections
Radiation source: fine-focus sealed tube1983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
thin–slice ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 810
Tmin = 0.857, Tmax = 1.000k = 2525
9447 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
3369 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C23H20N4OV = 1898.4 (7) Å3
Mr = 368.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.200 (2) ŵ = 0.08 mm1
b = 21.680 (5) ÅT = 273 K
c = 9.608 (2) Å0.30 × 0.20 × 0.20 mm
β = 97.840 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3369 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1983 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 1.000Rint = 0.039
9447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.20 e Å3
3369 reflectionsΔρmin = 0.24 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34922 (16)0.43731 (6)1.14992 (14)0.0474 (4)
O10.24396 (16)0.42406 (6)0.91531 (13)0.0633 (4)
N20.40425 (17)0.48648 (7)1.23643 (14)0.0496 (4)
N30.20658 (17)0.53669 (7)0.78768 (14)0.0507 (5)
N40.30500 (17)0.51166 (7)0.53720 (16)0.0606 (5)
H4A0.35270.49930.61550.073*
H4B0.33530.50210.45920.073*
C70.2924 (2)0.45725 (8)1.01684 (18)0.0474 (5)
C80.30147 (19)0.52375 (8)1.02509 (17)0.0439 (5)
C110.24301 (19)0.56189 (8)0.91417 (18)0.0447 (5)
C60.3536 (2)0.37681 (8)1.20613 (19)0.0484 (5)
C180.1294 (2)0.56260 (8)0.66247 (18)0.0444 (5)
C230.1803 (2)0.54668 (8)0.53687 (18)0.0437 (5)
C90.3752 (2)0.53710 (8)1.16249 (18)0.0464 (5)
C120.2170 (2)0.62851 (8)0.93519 (19)0.0463 (5)
C190.0030 (2)0.59683 (9)0.6613 (2)0.0556 (5)
H19A0.03020.60680.74570.067*
C220.0969 (2)0.56593 (8)0.41134 (19)0.0521 (5)
H22A0.12730.55530.32610.063*
C200.0747 (2)0.61646 (9)0.5361 (2)0.0589 (6)
H20A0.15810.64070.53600.071*
C210.0276 (2)0.59984 (9)0.4113 (2)0.0560 (6)
H21A0.08120.61180.32650.067*
C100.4277 (2)0.59724 (9)1.2264 (2)0.0634 (6)
H10A0.47390.59051.32090.095*
H10B0.34580.62471.22710.095*
H10C0.49710.61521.17220.095*
C50.4291 (2)0.36538 (10)1.3386 (2)0.0614 (6)
H5A0.47770.39731.39050.074*
C10.2792 (3)0.32924 (9)1.1319 (2)0.0670 (6)
H1A0.22650.33651.04380.080*
C170.2816 (2)0.67312 (9)0.8609 (2)0.0592 (6)
H17A0.34170.66170.79490.071*
C140.0998 (3)0.70835 (12)1.0518 (3)0.0808 (8)
H14A0.03650.72021.11470.097*
C40.4318 (3)0.30662 (12)1.3930 (2)0.0780 (7)
H4C0.48340.29911.48150.094*
C160.2562 (3)0.73473 (10)0.8853 (3)0.0779 (8)
H16A0.30030.76460.83570.094*
C150.1671 (3)0.75248 (12)0.9814 (3)0.0877 (9)
H15A0.15260.79410.99850.105*
C20.2838 (3)0.27058 (10)1.1899 (3)0.0884 (8)
H2B0.23410.23851.13960.106*
C130.1247 (2)0.64666 (10)1.0308 (2)0.0636 (6)
H13A0.07970.61711.08060.076*
C30.3600 (3)0.25895 (11)1.3197 (3)0.0867 (8)
H3B0.36300.21941.35740.104*
H1C0.220 (2)0.4928 (10)0.787 (2)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0579 (11)0.0482 (9)0.0345 (9)0.0048 (7)0.0009 (7)0.0006 (7)
O10.0923 (11)0.0558 (8)0.0373 (8)0.0027 (7)0.0070 (7)0.0063 (6)
N20.0593 (11)0.0532 (9)0.0348 (9)0.0034 (8)0.0009 (7)0.0044 (7)
N30.0710 (12)0.0487 (10)0.0317 (9)0.0107 (8)0.0045 (8)0.0002 (7)
N40.0600 (12)0.0826 (12)0.0390 (9)0.0162 (9)0.0059 (8)0.0078 (8)
C70.0540 (13)0.0530 (11)0.0349 (11)0.0074 (9)0.0053 (9)0.0008 (9)
C80.0516 (12)0.0470 (10)0.0328 (10)0.0056 (9)0.0053 (9)0.0003 (8)
C110.0472 (12)0.0533 (11)0.0345 (11)0.0033 (9)0.0094 (9)0.0002 (8)
C60.0535 (13)0.0518 (11)0.0412 (11)0.0128 (9)0.0107 (9)0.0037 (9)
C180.0514 (12)0.0450 (10)0.0360 (11)0.0013 (9)0.0030 (9)0.0020 (8)
C230.0496 (12)0.0431 (10)0.0374 (11)0.0043 (9)0.0026 (9)0.0032 (8)
C90.0511 (12)0.0519 (11)0.0368 (11)0.0043 (9)0.0083 (9)0.0029 (9)
C120.0514 (13)0.0478 (11)0.0387 (10)0.0043 (9)0.0023 (9)0.0017 (8)
C190.0593 (14)0.0597 (12)0.0488 (13)0.0046 (11)0.0108 (10)0.0011 (9)
C220.0604 (14)0.0598 (12)0.0349 (11)0.0094 (11)0.0021 (9)0.0006 (9)
C200.0523 (14)0.0586 (12)0.0640 (15)0.0066 (10)0.0011 (11)0.0047 (10)
C210.0582 (14)0.0584 (12)0.0479 (13)0.0035 (11)0.0058 (11)0.0062 (10)
C100.0738 (15)0.0611 (12)0.0527 (13)0.0036 (11)0.0010 (11)0.0094 (10)
C50.0581 (14)0.0749 (14)0.0510 (13)0.0100 (11)0.0069 (11)0.0136 (11)
C10.0972 (18)0.0512 (12)0.0512 (13)0.0067 (12)0.0052 (12)0.0013 (10)
C170.0594 (14)0.0607 (13)0.0559 (13)0.0024 (11)0.0023 (11)0.0036 (10)
C140.0823 (19)0.0806 (17)0.0775 (18)0.0269 (14)0.0038 (14)0.0240 (14)
C40.0871 (19)0.0848 (17)0.0628 (15)0.0292 (14)0.0128 (13)0.0267 (14)
C160.0868 (19)0.0544 (15)0.0843 (18)0.0080 (12)0.0180 (15)0.0113 (12)
C150.101 (2)0.0552 (14)0.097 (2)0.0219 (15)0.0250 (17)0.0167 (15)
C20.143 (3)0.0514 (14)0.0723 (18)0.0021 (14)0.0209 (17)0.0010 (12)
C130.0708 (16)0.0670 (13)0.0543 (13)0.0116 (11)0.0137 (12)0.0078 (10)
C30.128 (2)0.0603 (15)0.0780 (18)0.0322 (15)0.0379 (17)0.0195 (14)
Geometric parameters (Å, º) top
N1—C71.383 (2)C22—H22A0.9300
N1—N21.4031 (18)C20—C211.377 (3)
N1—C61.417 (2)C20—H20A0.9300
O1—C71.2446 (19)C21—H21A0.9300
N2—C91.315 (2)C10—H10A0.9600
N3—C111.333 (2)C10—H10B0.9600
N3—C181.426 (2)C10—H10C0.9600
N3—H1C0.96 (2)C5—C41.376 (3)
N4—C231.376 (2)C5—H5A0.9300
N4—H4A0.8600C1—C21.387 (3)
N4—H4B0.8600C1—H1A0.9300
C7—C81.446 (2)C17—C161.381 (3)
C8—C111.397 (2)C17—H17A0.9300
C8—C91.429 (2)C14—C151.368 (3)
C11—C121.482 (2)C14—C131.377 (3)
C6—C11.381 (3)C14—H14A0.9300
C6—C51.387 (3)C4—C31.369 (3)
C18—C191.378 (3)C4—H4C0.9300
C18—C231.396 (2)C16—C151.371 (4)
C23—C221.402 (2)C16—H16A0.9300
C9—C101.493 (3)C15—H15A0.9300
C12—C171.383 (3)C2—C31.368 (3)
C12—C131.390 (3)C2—H2B0.9300
C19—C201.380 (3)C13—H13A0.9300
C19—H19A0.9300C3—H3B0.9300
C22—C211.361 (3)
C7—N1—N2111.75 (13)C21—C20—H20A120.3
C7—N1—C6128.99 (15)C19—C20—H20A120.3
N2—N1—C6119.23 (14)C22—C21—C20120.38 (18)
C9—N2—N1106.48 (13)C22—C21—H21A119.8
C11—N3—C18129.94 (16)C20—C21—H21A119.8
C11—N3—H1C113.5 (11)C9—C10—H10A109.5
C18—N3—H1C115.6 (11)C9—C10—H10B109.5
C23—N4—H4A120.0H10A—C10—H10B109.5
C23—N4—H4B120.0C9—C10—H10C109.5
H4A—N4—H4B120.0H10A—C10—H10C109.5
O1—C7—N1126.42 (16)H10B—C10—H10C109.5
O1—C7—C8129.15 (16)C4—C5—C6119.6 (2)
N1—C7—C8104.43 (14)C4—C5—H5A120.2
C11—C8—C9132.03 (16)C6—C5—H5A120.2
C11—C8—C7122.34 (15)C6—C1—C2119.4 (2)
C9—C8—C7105.62 (14)C6—C1—H1A120.3
N3—C11—C8118.40 (16)C2—C1—H1A120.3
N3—C11—C12119.89 (15)C16—C17—C12119.7 (2)
C8—C11—C12121.68 (15)C16—C17—H17A120.2
C1—C6—C5119.43 (18)C12—C17—H17A120.2
C1—C6—N1120.54 (17)C15—C14—C13120.7 (2)
C5—C6—N1120.00 (17)C15—C14—H14A119.6
C19—C18—C23120.54 (17)C13—C14—H14A119.6
C19—C18—N3122.79 (17)C3—C4—C5121.4 (2)
C23—C18—N3116.40 (16)C3—C4—H4C119.3
N4—C23—C18120.83 (16)C5—C4—H4C119.3
N4—C23—C22121.65 (17)C15—C16—C17121.0 (2)
C18—C23—C22117.49 (18)C15—C16—H16A119.5
N2—C9—C8111.47 (15)C17—C16—H16A119.5
N2—C9—C10118.43 (16)C14—C15—C16119.3 (2)
C8—C9—C10130.00 (17)C14—C15—H15A120.3
C17—C12—C13119.14 (18)C16—C15—H15A120.3
C17—C12—C11121.51 (18)C3—C2—C1121.3 (2)
C13—C12—C11119.35 (18)C3—C2—H2B119.4
C18—C19—C20120.60 (19)C1—C2—H2B119.4
C18—C19—H19A119.7C14—C13—C12120.1 (2)
C20—C19—H19A119.7C14—C13—H13A120.0
C21—C22—C23121.51 (19)C12—C13—H13A120.0
C21—C22—H22A119.2C2—C3—C4118.8 (2)
C23—C22—H22A119.2C2—C3—H3B120.6
C21—C20—C19119.4 (2)C4—C3—H3B120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1C···O10.96 (2)1.93 (2)2.733 (2)139.8 (16)
N4—H4B···N2i0.862.343.194 (2)173
N4—H4A···N2ii0.862.503.209 (2)140
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H20N4O
Mr368.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.200 (2), 21.680 (5), 9.608 (2)
β (°) 97.840 (4)
V3)1898.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.857, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9447, 3369, 1983
Rint0.039
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 0.94
No. of reflections3369
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1C···O10.96 (2)1.93 (2)2.733 (2)139.8 (16)
N4—H4B···N2i0.862.343.194 (2)173.4
N4—H4A···N2ii0.862.503.209 (2)140.3
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+2.
 

Acknowledgements

This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (program Nos 2010JM2006 and 2011JQ2011) and the Scientific Research Program funded by the Shaanxi Provincial Education Department (program No. 2008 J K440).

References

First citationBao, F., Ma, R., Lv, X. Q., Gui, G. Q. & Wu, Q. (2005). Appl. Organomet. Chem. 20, 32–38.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHennig, L. & Mann, G. (1988). Z. Chem. 28, 364–365.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds