organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­pentyl-2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 10 August 2011; accepted 5 September 2011; online 14 September 2011)

In the title compound, C20H19FO2S, the cyclo­pentyl ring adopts an envelope conformation. The 4-fluoro­phenyl ring makes a dihedral angle of 27.10 (7)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions. In the cyclo­pentyl ring, one C atom is disordered over two orientations with site-occupancy factors of 0.617 (7) and 0.383 (7).

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res., 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1167.], 2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o470.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19FO2S

  • Mr = 342.41

  • Orthorhombic, F d d 2

  • a = 20.0254 (13) Å

  • b = 33.197 (2) Å

  • c = 10.0233 (7) Å

  • V = 6663.3 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.35 × 0.26 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.961

  • 16962 measured reflections

  • 4136 independent reflections

  • 3915 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.06

  • 4136 reflections

  • 223 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1949 Friedel pairs

  • Flack parameter: 0.15 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1/C2/C7/O/C8 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O2i 0.98 2.29 3.262 (3) 169
C16—H16⋯Cgi 0.95 2.53 3.365 (3) 146
Symmetry code: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran ring system have attracted much interest owing to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2010, 2011), we report herein the crystal structure of the title compound.

The title compound crystallizes ins the non-centrosymmetric space group Fdd2. The crystal studied was an inversion twin with a 0.85 (7) : 0.15 (7) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.024 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring is in the envelope form. In the cyclopentyl ring, the C10 atom is disordered over two positions with site-occupancy factors, from refinement of 0.617 (7) (part A) and 0.383 (7) (part B). The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofuran fragment is 27.10 (7)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between a methyl H atom and the O atom of the sulfinyl group (Table 1; C20—H20B···O2i). The crystal packing (Fig. 2) is further stabilized by intermolecular C—H···π interactions between a 4-fluorophenyl H atom and the furan ring (Table 1; C16—H16···Cgi, Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2010, 2011).

Experimental top

77% 3-chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclopentyl-2-(4-fluorophenyl)-3-methylsulfanyl-1-benzofuran (293 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 419-420 K; Rf = 0.67 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, and 0.99 Å for methylene and methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine, methylene, and 1.5Ueq(C) for methyl H atoms. One of the C atoms of the cyclopentyl ring is disordered over two positions with site occupancy factors, from refinement of 0.617 (7) (part A) and 0.383 (7) (part B). The distances of equivalent C9—C10A and C9—C10B, and C11—C10A and C11—C10B pairs were restrained to 1.525 (3) Å, 0.001 Å and 0.001 Å using command DFIX, SADI and DELU respectively, and displacement ellipsoids of C10 set were restrained to 0.01 using command ISOR.

Structure description top

Many compounds containing a benzofuran ring system have attracted much interest owing to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2010, 2011), we report herein the crystal structure of the title compound.

The title compound crystallizes ins the non-centrosymmetric space group Fdd2. The crystal studied was an inversion twin with a 0.85 (7) : 0.15 (7) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.024 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring is in the envelope form. In the cyclopentyl ring, the C10 atom is disordered over two positions with site-occupancy factors, from refinement of 0.617 (7) (part A) and 0.383 (7) (part B). The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofuran fragment is 27.10 (7)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between a methyl H atom and the O atom of the sulfinyl group (Table 1; C20—H20B···O2i). The crystal packing (Fig. 2) is further stabilized by intermolecular C—H···π interactions between a 4-fluorophenyl H atom and the furan ring (Table 1; C16—H16···Cgi, Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2010, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The C10 atom of the cyclopentyl ring is disordered over two positions with site occupancy factors, from refinement of 0.617 (7 ) (part A) and 0.383 (7) (part B).
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x -1/4 , - y + 1/4 , z - 1/4; (ii) x - 1/4, - y + 1/4, z - 1/4..]
5-Cyclopentyl-2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C20H19FO2SF(000) = 2880
Mr = 342.41Dx = 1.365 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 6619 reflections
a = 20.0254 (13) Åθ = 2.4–27.7°
b = 33.197 (2) ŵ = 0.21 mm1
c = 10.0233 (7) ÅT = 173 K
V = 6663.3 (8) Å3Block, colourless
Z = 160.35 × 0.26 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4136 independent reflections
Radiation source: rotating anode3915 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.4°
φ and ω scansh = 2623
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 4442
Tmin = 0.930, Tmax = 0.961l = 1313
16962 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0576P)2 + 8.9505P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4136 reflectionsΔρmax = 0.48 e Å3
223 parametersΔρmin = 0.37 e Å3
96 restraintsAbsolute structure: Flack (1983), 1949 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (7)
Crystal data top
C20H19FO2SV = 6663.3 (8) Å3
Mr = 342.41Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 20.0254 (13) ŵ = 0.21 mm1
b = 33.197 (2) ÅT = 173 K
c = 10.0233 (7) Å0.35 × 0.26 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4136 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3915 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.961Rint = 0.034
16962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.48 e Å3
S = 1.06Δρmin = 0.37 e Å3
4136 reflectionsAbsolute structure: Flack (1983), 1949 Friedel pairs
223 parametersAbsolute structure parameter: 0.15 (7)
96 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.28603 (2)0.120706 (14)0.30091 (12)0.02721 (11)
F10.22523 (7)0.07977 (4)0.34573 (18)0.0441 (3)
O10.31307 (7)0.21374 (4)0.06022 (18)0.0312 (3)
O20.33631 (8)0.11882 (5)0.4113 (2)0.0370 (4)
C10.29639 (10)0.16799 (6)0.2227 (2)0.0262 (4)
C20.32275 (10)0.20417 (6)0.2840 (2)0.0290 (4)
C30.34184 (12)0.21599 (7)0.4113 (2)0.0357 (5)
H30.33570.19840.48510.043*
C40.37027 (13)0.25424 (8)0.4294 (3)0.0404 (5)
C50.37902 (12)0.27952 (7)0.3188 (3)0.0396 (5)
H50.39880.30520.33200.048*
C60.36010 (12)0.26866 (7)0.1916 (3)0.0374 (5)
H60.36580.28620.11750.045*
C70.33230 (11)0.23083 (6)0.1784 (2)0.0305 (4)
C80.29208 (10)0.17501 (6)0.0893 (2)0.0274 (4)
C90.39134 (15)0.26922 (8)0.5643 (3)0.0533 (7)
H9A0.41600.29510.55210.064*0.617 (7)
H9B0.42730.28830.53610.064*0.383 (7)
C10A0.33241 (16)0.27685 (18)0.6576 (2)0.0594 (11)0.617 (7)
H10A0.30500.29970.62550.071*0.617 (7)
H10B0.30380.25260.66440.071*0.617 (7)
C10B0.3491 (5)0.2980 (3)0.64769 (16)0.0594 (11)0.383 (7)
H10C0.30110.29450.62780.071*0.383 (7)
H10D0.36170.32630.62980.071*0.383 (7)
C110.3643 (2)0.28668 (11)0.79210 (19)0.0710 (10)
H11A0.37450.31580.79920.085*0.617 (7)
H11B0.33460.27890.86670.085*0.617 (7)
H11C0.37040.31130.84660.085*0.383 (7)
H11D0.32690.27090.83010.085*0.383 (7)
C120.42736 (18)0.26191 (9)0.7924 (3)0.0585 (7)
H12A0.42530.24070.86180.070*
H12B0.46690.27910.80920.070*
C130.4306 (2)0.24326 (13)0.6533 (4)0.0819 (13)
H13A0.47750.24180.62230.098*
H13B0.41180.21570.65460.098*
C140.27300 (10)0.15066 (6)0.0241 (2)0.0271 (4)
C150.22789 (11)0.11913 (7)0.0111 (2)0.0312 (4)
H150.20760.11410.07300.037*
C160.21211 (11)0.09501 (7)0.1192 (2)0.0338 (4)
H160.18190.07310.10990.041*
C170.24099 (11)0.10340 (7)0.2402 (2)0.0318 (4)
C180.28529 (11)0.13457 (7)0.2591 (2)0.0349 (5)
H180.30420.13970.34430.042*
C190.30136 (11)0.15821 (7)0.1500 (2)0.0326 (4)
H190.33200.17980.16020.039*
C200.20733 (10)0.13041 (8)0.3791 (3)0.0356 (5)
H20A0.19520.10750.43590.053*
H20B0.17300.13420.31050.053*
H20C0.21070.15480.43370.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0302 (2)0.0261 (2)0.0254 (2)0.00067 (19)0.00003 (18)0.00238 (18)
F10.0492 (8)0.0511 (8)0.0321 (7)0.0062 (6)0.0020 (6)0.0098 (6)
O10.0371 (8)0.0276 (7)0.0290 (7)0.0008 (6)0.0008 (6)0.0027 (6)
O20.0312 (8)0.0433 (9)0.0365 (8)0.0021 (7)0.0056 (6)0.0111 (7)
C10.0253 (9)0.0257 (9)0.0277 (9)0.0004 (7)0.0014 (8)0.0018 (7)
C20.0262 (9)0.0265 (9)0.0344 (10)0.0029 (7)0.0022 (8)0.0022 (7)
C30.0411 (12)0.0342 (11)0.0319 (10)0.0022 (9)0.0019 (9)0.0036 (9)
C40.0419 (13)0.0368 (11)0.0425 (12)0.0004 (9)0.0001 (10)0.0133 (9)
C50.0400 (12)0.0279 (10)0.0510 (14)0.0023 (9)0.0008 (10)0.0085 (10)
C60.0383 (12)0.0247 (9)0.0492 (13)0.0006 (8)0.0032 (10)0.0004 (8)
C70.0301 (10)0.0277 (9)0.0336 (10)0.0036 (8)0.0002 (7)0.0022 (8)
C80.0239 (9)0.0288 (9)0.0294 (10)0.0018 (7)0.0029 (7)0.0033 (7)
C90.0850 (19)0.0369 (11)0.0381 (11)0.0150 (12)0.0014 (12)0.0100 (10)
C10A0.086 (2)0.053 (3)0.0391 (13)0.0215 (19)0.0073 (13)0.0017 (14)
C10B0.086 (2)0.053 (3)0.0391 (13)0.0215 (19)0.0073 (13)0.0017 (14)
C110.108 (3)0.071 (2)0.0337 (10)0.0304 (18)0.0064 (14)0.0035 (12)
C120.087 (2)0.0503 (15)0.0382 (13)0.0047 (14)0.0166 (15)0.0034 (12)
C130.086 (3)0.096 (3)0.064 (2)0.046 (2)0.032 (2)0.032 (2)
C140.0247 (9)0.0303 (9)0.0261 (9)0.0018 (7)0.0001 (7)0.0017 (7)
C150.0275 (10)0.0405 (11)0.0256 (10)0.0026 (8)0.0026 (8)0.0002 (8)
C160.0300 (10)0.0366 (11)0.0348 (11)0.0049 (8)0.0005 (8)0.0014 (9)
C170.0287 (10)0.0396 (11)0.0271 (10)0.0032 (8)0.0026 (8)0.0040 (8)
C180.0359 (11)0.0436 (12)0.0253 (10)0.0000 (9)0.0018 (8)0.0016 (9)
C190.0324 (11)0.0368 (10)0.0284 (9)0.0028 (8)0.0031 (8)0.0054 (8)
C200.0258 (10)0.0486 (12)0.0324 (11)0.0019 (9)0.0010 (8)0.0075 (9)
Geometric parameters (Å, º) top
S1—O21.4973 (16)C10B—C111.5258 (14)
S1—C11.767 (2)C10B—H10C0.9900
S1—C201.789 (2)C10B—H10D0.9900
F1—C171.354 (2)C11—C121.507 (5)
O1—C71.369 (3)C11—H11A0.9900
O1—C81.384 (2)C11—H11B0.9900
C1—C81.360 (3)C11—H11C0.9900
C1—C21.449 (3)C11—H11D0.9900
C2—C31.388 (3)C12—C131.527 (4)
C2—C71.393 (3)C12—H12A0.9900
C3—C41.403 (3)C12—H12B0.9900
C3—H30.9500C13—H13A0.9900
C4—C51.402 (4)C13—H13B0.9900
C4—C91.501 (4)C14—C151.389 (3)
C5—C61.378 (4)C14—C191.406 (3)
C5—H50.9500C15—C161.384 (3)
C6—C71.380 (3)C15—H150.9500
C6—H60.9500C16—C171.373 (3)
C8—C141.447 (3)C16—H160.9500
C9—C131.469 (5)C17—C181.376 (3)
C9—C10B1.5249 (14)C18—C191.384 (3)
C9—C10A1.5272 (14)C18—H180.9500
C9—H9A1.0000C19—H190.9500
C9—H9B1.0000C20—H20A0.9800
C10A—C111.5266 (14)C20—H20B0.9800
C10A—H10A0.9900C20—H20C0.9800
C10A—H10B0.9900
O2—S1—C1106.63 (9)C12—C11—C10A103.6 (3)
O2—S1—C20106.03 (10)C12—C11—H11A111.0
C1—S1—C2097.93 (10)C10B—C11—H11A82.5
C7—O1—C8106.75 (15)C10A—C11—H11A111.0
C8—C1—C2107.34 (18)C12—C11—H11B111.0
C8—C1—S1125.54 (16)C10B—C11—H11B131.4
C2—C1—S1126.22 (16)C10A—C11—H11B111.0
C3—C2—C7118.73 (19)H11A—C11—H11B109.0
C3—C2—C1136.4 (2)C12—C11—H11C110.2
C7—C2—C1104.73 (18)C10B—C11—H11C110.2
C2—C3—C4119.1 (2)C10A—C11—H11C135.7
C2—C3—H3120.4H11B—C11—H11C82.8
C4—C3—H3120.4C12—C11—H11D110.2
C5—C4—C3119.3 (2)C10B—C11—H11D110.2
C5—C4—C9118.6 (2)C10A—C11—H11D84.9
C3—C4—C9122.0 (2)H11A—C11—H11D130.1
C6—C5—C4122.7 (2)H11C—C11—H11D108.5
C6—C5—H5118.6C11—C12—C13104.8 (2)
C4—C5—H5118.6C11—C12—H12A110.8
C5—C6—C7116.0 (2)C13—C12—H12A110.8
C5—C6—H6122.0C11—C12—H12B110.8
C7—C6—H6122.0C13—C12—H12B110.8
O1—C7—C6125.0 (2)H12A—C12—H12B108.9
O1—C7—C2110.83 (17)C9—C13—C12107.1 (3)
C6—C7—C2124.1 (2)C9—C13—H13A110.3
C1—C8—O1110.33 (18)C12—C13—H13A110.3
C1—C8—C14133.92 (19)C9—C13—H13B110.3
O1—C8—C14115.71 (17)C12—C13—H13B110.3
C13—C9—C4120.2 (2)H13A—C13—H13B108.6
C13—C9—C10B109.4 (2)C15—C14—C19118.79 (19)
C4—C9—C10B123.1 (3)C15—C14—C8121.27 (18)
C13—C9—C10A98.0 (3)C19—C14—C8119.93 (18)
C4—C9—C10A112.9 (2)C16—C15—C14120.7 (2)
C13—C9—H9A108.3C16—C15—H15119.6
C4—C9—H9A108.3C14—C15—H15119.6
C10B—C9—H9A78.6C17—C16—C15118.6 (2)
C10A—C9—H9A108.3C17—C16—H16120.7
C13—C9—H9B99.1C15—C16—H16120.7
C4—C9—H9B99.1F1—C17—C16118.3 (2)
C10B—C9—H9B99.1F1—C17—C18118.61 (18)
C10A—C9—H9B128.7C16—C17—C18123.1 (2)
C11—C10A—C9104.7 (2)C17—C18—C19117.9 (2)
C11—C10A—H10A110.8C17—C18—H18121.1
C9—C10A—H10A110.8C19—C18—H18121.1
C11—C10A—H10B110.8C18—C19—C14120.9 (2)
C9—C10A—H10B110.8C18—C19—H19119.5
H10A—C10A—H10B108.9C14—C19—H19119.5
C9—C10B—C11104.8 (2)S1—C20—H20A109.5
C9—C10B—H10C110.8S1—C20—H20B109.5
C11—C10B—H10C110.8H20A—C20—H20B109.5
C9—C10B—H10D110.8S1—C20—H20C109.5
C11—C10B—H10D110.8H20A—C20—H20C109.5
H10C—C10B—H10D108.9H20B—C20—H20C109.5
C12—C11—C10B107.6 (3)
O2—S1—C1—C8141.47 (18)C5—C4—C9—C10A111.4 (3)
C20—S1—C1—C8109.11 (19)C3—C4—C9—C10A68.1 (4)
O2—S1—C1—C226.3 (2)C13—C9—C10A—C1145.6 (4)
C20—S1—C1—C283.13 (19)C4—C9—C10A—C11173.3 (3)
C8—C1—C2—C3176.1 (2)C10B—C9—C10A—C1169.7 (3)
S1—C1—C2—C36.5 (4)C13—C9—C10B—C111.6 (8)
C8—C1—C2—C70.1 (2)C4—C9—C10B—C11148.3 (4)
S1—C1—C2—C7169.66 (15)C10A—C9—C10B—C1169.9 (3)
C7—C2—C3—C40.2 (3)C9—C10B—C11—C1216.7 (8)
C1—C2—C3—C4175.5 (2)C9—C10B—C11—C10A70.0 (3)
C2—C3—C4—C50.3 (4)C9—C10A—C11—C1232.1 (4)
C2—C3—C4—C9179.3 (2)C9—C10A—C11—C10B69.6 (3)
C3—C4—C5—C60.8 (4)C10B—C11—C12—C1325.0 (6)
C9—C4—C5—C6178.8 (2)C10A—C11—C12—C135.7 (4)
C4—C5—C6—C70.7 (4)C4—C9—C13—C12164.7 (3)
C8—O1—C7—C6176.1 (2)C10B—C9—C13—C1213.9 (6)
C8—O1—C7—C21.3 (2)C10A—C9—C13—C1242.3 (4)
C5—C6—C7—O1176.9 (2)C11—C12—C13—C923.9 (4)
C5—C6—C7—C20.2 (3)C1—C8—C14—C1528.6 (3)
C3—C2—C7—O1177.75 (19)O1—C8—C14—C15154.06 (19)
C1—C2—C7—O10.8 (2)C1—C8—C14—C19150.1 (2)
C3—C2—C7—C60.3 (3)O1—C8—C14—C1927.3 (3)
C1—C2—C7—C6176.7 (2)C19—C14—C15—C161.3 (3)
C2—C1—C8—O10.9 (2)C8—C14—C15—C16177.3 (2)
S1—C1—C8—O1170.58 (14)C14—C15—C16—C171.2 (3)
C2—C1—C8—C14176.6 (2)C15—C16—C17—F1179.84 (19)
S1—C1—C8—C146.9 (3)C15—C16—C17—C180.4 (4)
C7—O1—C8—C11.4 (2)F1—C17—C18—C19179.4 (2)
C7—O1—C8—C14176.61 (17)C16—C17—C18—C190.4 (3)
C5—C4—C9—C13133.7 (3)C17—C18—C19—C140.3 (3)
C3—C4—C9—C1346.8 (4)C15—C14—C19—C180.5 (3)
C5—C4—C9—C10B79.6 (6)C8—C14—C19—C18178.1 (2)
C3—C4—C9—C10B100.0 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1/C2/C7/O/C8 furan ring.
D—H···AD—HH···AD···AD—H···A
C20—H20B···O2i0.982.293.262 (3)169
C16—H16···Cgi0.952.533.365 (3)146
Symmetry code: (i) x1/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC20H19FO2S
Mr342.41
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)173
a, b, c (Å)20.0254 (13), 33.197 (2), 10.0233 (7)
V3)6663.3 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.26 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.930, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
16962, 4136, 3915
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.06
No. of reflections4136
No. of parameters223
No. of restraints96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.37
Absolute structureFlack (1983), 1949 Friedel pairs
Absolute structure parameter0.15 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1/C2/C7/O/C8 furan ring.
D—H···AD—HH···AD···AD—H···A
C20—H20B···O2i0.982.293.262 (3)169.2
C16—H16···Cgi0.952.533.365 (3)146.3
Symmetry code: (i) x1/4, y+1/4, z1/4.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res., 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds