organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(1,3-Diazinane-1,3-di­yl)diaceto­nitrile: a second monoclinic polymorph

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 15 August 2011; accepted 16 September 2011; online 30 September 2011)

A new monoclinic polymorph of the title compound, C8H12N4, in the space group P21/n (Z = 4) is reported. The previously known form was also monoclinic, P21/c (Z = 4), but the unit-cell parameters and crystal packing were different [Shoja & Saba (1993[Shoja, M. & Saba, S. (1993). Acta Cryst. C49, 354-355.]). Acta Cryst. C49, 354–355]. The hexa­hydro­pyrimidine ring of the title compound adopts a chair conformation with a diequatorial substitution and with the CH2-C≡N groups oriented nearly parallel and in the same direction [NC—CH2⋯CH2—CN pseudo torsion angle = −6.27 (18)°]. In the crystal, inter­molecular C—H⋯ N hydrogen bonds connects the mol­ecules into a chain along the b axis.

Related literature

For the original monoclinic polymorph, see: Shoja & Saba (1993[Shoja, M. & Saba, S. (1993). Acta Cryst. C49, 354-355.]). For the synthesis of the title compound, see: Rivera et al. (2004[Rivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77-80.]); Katritzky et al. (1990[Katritzky, A. R., Pilarski, B. & Urogdi, L. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 541-547.]). For the use of nitriles in synthesis, see: Prasad & Bhalla (2010[Prasad, S. & Bhalla, T. C. (2010). Biotechnol. Adv. 28, 725-741.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N4

  • Mr = 164.2

  • Monoclinic, P 21 /n

  • a = 11.1300 (6) Å

  • b = 6.3501 (3) Å

  • c = 13.1373 (7) Å

  • β = 102.066 (6)°

  • V = 907.99 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 120 K

  • 0.16 × 0.09 × 0.01 mm

Data collection
  • Agilent Gemini Ultra diffractometer with an Atlas CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.864, Tmax = 1.000

  • 2863 measured reflections

  • 1404 independent reflections

  • 929 reflections with I > 3σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.30

  • 1404 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯N4i 0.96 2.59 3.396 (3) 141
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al. 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Nitriles are widely used starting materials and intermediates in organic synthesis. For instance, hydration of nitriles to corresponding carboxamides is an important reaction in nature and organic synthesis (Prasad & Bhalla, 2010). The title compound (I) was synthesized by one-step reaction between the macrocyclic aminal 1,3,7,9,13,15,19,21-octaazapentacyclo- [19.3.1.13,7.19,13.115,19]octacosane and hydrocyanic acid according to a methodology previously published (Rivera, et al. 2004). Single crystals of title compound were obtained by recrystallization from EtOH solution. An alternative synthetic method for the preparation of title compound involves the substitution of benzotriazolyl groups by cyano anion from the key benzotriazolyl intermediate 1,1'-(dihydropyrimidine-1,3(2H,4H)- diyldimethanediyl)-bis(1H-benzotriazole) (Katritzky et al., 1990)

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The cell dimensions of the title modification differ from the cell dimensions of the previously reported monoclinic P21/c modification: a = 8.303, b = 8.733, c = 12.998 Å; β = 107.73°, V = 897.7 Å3 (Shoja & Saba 1993). The bond lengths and angles are comparable with the previously reported polymorph.

In the crystal packing (Fig. 2) C—H··· N hydrogen bonds connect the molecules into a chain along the b axis. The C···N distances [3.396 (3) Å] is significantly shorter than the corresponding C···N distances in previously reported polymorph [3.518 (6) Å] (Shoja & Saba 1993), but the N···H distance in the title compound [2.59 Å] is longer than the corresponding N···H in mentionated polymorph [2.547 (18) Å].

Related literature top

For the original monoclinic polymorph, see: Shoja & Saba (1993). For the synthesis of the title compound, see: Rivera et al. (2004); Katritzky et al. (1990). For the use of nitriles in synthesis, see: Prasad & Bhalla (2010).

Experimental top

For the originally reported synthesis, see: Rivera et al. (2004). Single crystals of the title compound were obtained by recrystallization from EtOH solution (m.p. 340 K).

Refinement top

Hydrogen atoms were added in calculated positions and refined as riding with C–H distance of 0.96 Å The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Structure description top

Nitriles are widely used starting materials and intermediates in organic synthesis. For instance, hydration of nitriles to corresponding carboxamides is an important reaction in nature and organic synthesis (Prasad & Bhalla, 2010). The title compound (I) was synthesized by one-step reaction between the macrocyclic aminal 1,3,7,9,13,15,19,21-octaazapentacyclo- [19.3.1.13,7.19,13.115,19]octacosane and hydrocyanic acid according to a methodology previously published (Rivera, et al. 2004). Single crystals of title compound were obtained by recrystallization from EtOH solution. An alternative synthetic method for the preparation of title compound involves the substitution of benzotriazolyl groups by cyano anion from the key benzotriazolyl intermediate 1,1'-(dihydropyrimidine-1,3(2H,4H)- diyldimethanediyl)-bis(1H-benzotriazole) (Katritzky et al., 1990)

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The cell dimensions of the title modification differ from the cell dimensions of the previously reported monoclinic P21/c modification: a = 8.303, b = 8.733, c = 12.998 Å; β = 107.73°, V = 897.7 Å3 (Shoja & Saba 1993). The bond lengths and angles are comparable with the previously reported polymorph.

In the crystal packing (Fig. 2) C—H··· N hydrogen bonds connect the molecules into a chain along the b axis. The C···N distances [3.396 (3) Å] is significantly shorter than the corresponding C···N distances in previously reported polymorph [3.518 (6) Å] (Shoja & Saba 1993), but the N···H distance in the title compound [2.59 Å] is longer than the corresponding N···H in mentionated polymorph [2.547 (18) Å].

For the original monoclinic polymorph, see: Shoja & Saba (1993). For the synthesis of the title compound, see: Rivera et al. (2004); Katritzky et al. (1990). For the use of nitriles in synthesis, see: Prasad & Bhalla (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al. 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along the b axis. Dashed lines represent intermolecular hydrogen bonds.
2,2'-(1,3-Diazinane-1,3-diyl)diacetonitrile top
Crystal data top
C8H12N4F(000) = 352
Mr = 164.2Dx = 1.201 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 1334 reflections
a = 11.1300 (6) Åθ = 3.4–64.4°
b = 6.3501 (3) ŵ = 0.63 mm1
c = 13.1373 (7) ÅT = 120 K
β = 102.066 (6)°Plate, colourless
V = 907.99 (8) Å30.16 × 0.09 × 0.01 mm
Z = 4
Data collection top
Agilent Gemini Ultra
diffractometer with an Atlas CCD detector
1404 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source929 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.3784 pixels mm-1θmax = 64.6°, θmin = 4.8°
Rotation method data acquisition using ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 73
Tmin = 0.864, Tmax = 1.000l = 1414
2863 measured reflections
Refinement top
Refinement on F248 constraints
R[F > 3σ(F)] = 0.039H-atom parameters constrained
wR(F) = 0.093Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0009I2]
S = 1.30(Δ/σ)max = 0.001
1404 reflectionsΔρmax = 0.18 e Å3
109 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C8H12N4V = 907.99 (8) Å3
Mr = 164.2Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.1300 (6) ŵ = 0.63 mm1
b = 6.3501 (3) ÅT = 120 K
c = 13.1373 (7) Å0.16 × 0.09 × 0.01 mm
β = 102.066 (6)°
Data collection top
Agilent Gemini Ultra
diffractometer with an Atlas CCD detector
1404 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
929 reflections with I > 3σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.027
2863 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0390 restraints
wR(F) = 0.093H-atom parameters constrained
S = 1.30Δρmax = 0.18 e Å3
1404 reflectionsΔρmin = 0.18 e Å3
109 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24013 (14)0.1540 (2)0.84921 (11)0.0221 (5)
N20.02686 (14)0.1567 (2)0.77670 (12)0.0227 (5)
N30.38363 (17)0.2911 (3)0.97150 (14)0.0368 (7)
N40.13683 (17)0.3109 (3)0.77144 (15)0.0432 (7)
C10.13764 (16)0.0291 (3)0.79354 (14)0.0219 (6)
C20.22087 (19)0.2149 (3)0.95257 (15)0.0283 (7)
C30.10159 (19)0.3355 (3)0.94117 (15)0.0314 (7)
C40.00483 (19)0.2148 (3)0.87606 (15)0.0294 (7)
C50.35671 (17)0.0485 (3)0.85421 (15)0.0266 (7)
C60.37333 (18)0.1454 (3)0.91936 (16)0.0268 (7)
C70.07465 (18)0.0560 (3)0.70529 (16)0.0276 (7)
C80.11174 (18)0.1512 (4)0.74169 (16)0.0310 (7)
H1a0.1537610.0137850.7276020.0263*
H1b0.1269950.0924370.8342330.0263*
H2a0.2877630.3021290.986590.034*
H2b0.2173850.0908420.9935950.034*
H3a0.1094510.469390.9092750.0377*
H3b0.0849820.3623971.0088060.0377*
H4a0.0196980.0895590.9124810.0353*
H4b0.0768410.302050.863040.0353*
H5a0.4226530.1447870.8795630.0319*
H5b0.3659980.0144940.7850610.0319*
H7a0.0537120.0393240.6384720.0331*
H7b0.1442220.1488860.6922340.0331*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0246 (9)0.0204 (9)0.0211 (9)0.0003 (8)0.0044 (7)0.0017 (7)
N20.0234 (9)0.0233 (9)0.0218 (9)0.0035 (8)0.0057 (7)0.0005 (7)
N30.0429 (12)0.0326 (11)0.0332 (10)0.0053 (9)0.0042 (9)0.0033 (9)
N40.0343 (11)0.0396 (12)0.0549 (13)0.0049 (10)0.0077 (9)0.0104 (10)
C10.0248 (11)0.0193 (10)0.0219 (11)0.0011 (9)0.0053 (8)0.0011 (8)
C20.0384 (12)0.0257 (11)0.0197 (11)0.0001 (10)0.0034 (9)0.0023 (9)
C30.0442 (13)0.0262 (11)0.0248 (11)0.0079 (11)0.0093 (9)0.0017 (9)
C40.0343 (12)0.0300 (12)0.0269 (11)0.0078 (10)0.0130 (9)0.0039 (9)
C50.0266 (12)0.0246 (11)0.0287 (11)0.0008 (9)0.0058 (9)0.0017 (9)
C60.0250 (11)0.0283 (12)0.0261 (11)0.0024 (10)0.0029 (9)0.0041 (10)
C70.0270 (11)0.0280 (11)0.0268 (11)0.0002 (10)0.0033 (9)0.0045 (9)
C80.0228 (11)0.0374 (13)0.0318 (12)0.0002 (11)0.0037 (9)0.0034 (11)
Geometric parameters (Å, º) top
N1—C11.455 (2)C2—H2b0.96
N1—C21.470 (3)C3—C41.516 (3)
N1—C51.450 (2)C3—H3a0.96
N2—C11.453 (2)C3—H3b0.96
N2—C41.469 (3)C4—H4a0.96
N2—C71.457 (2)C4—H4b0.96
N3—C61.143 (3)C5—C61.489 (3)
N4—C81.142 (3)C5—H5a0.96
C1—H1a0.96C5—H5b0.96
C1—H1b0.96C7—C81.487 (3)
C2—C31.513 (3)C7—H7a0.96
C2—H2a0.96C7—H7b0.96
C1—N1—C2110.95 (15)C4—C3—H3b109.4713
C1—N1—C5111.79 (14)H3a—C3—H3b107.3996
C2—N1—C5112.44 (14)N2—C4—C3108.91 (17)
C1—N2—C4111.01 (14)N2—C4—H4a109.471
C1—N2—C7111.87 (15)N2—C4—H4b109.4718
C4—N2—C7112.62 (16)C3—C4—H4a109.4714
N1—C1—N2108.89 (15)C3—C4—H4b109.4711
N1—C1—H1a109.4708H4a—C4—H4b110.0256
N1—C1—H1b109.4715N1—C5—C6114.25 (17)
N2—C1—H1a109.4709N1—C5—H5a109.4711
N2—C1—H1b109.472N1—C5—H5b109.4716
H1a—C1—H1b110.0468C6—C5—H5a109.4711
N1—C2—C3109.65 (15)C6—C5—H5b109.4712
N1—C2—H2a109.4713H5a—C5—H5b104.2272
N1—C2—H2b109.4713N3—C6—C5177.6 (2)
C3—C2—H2a109.4712N2—C7—C8114.28 (16)
C3—C2—H2b109.4706N2—C7—H7a109.4703
H2a—C2—H2b109.2966N2—C7—H7b109.4712
C2—C3—C4111.47 (17)C8—C7—H7a109.4713
C2—C3—H3a109.4714C8—C7—H7b109.4717
C2—C3—H3b109.4712H7a—C7—H7b104.193
C4—C3—H3a109.471N4—C8—C7178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···N4i0.962.593.396 (3)141
Symmetry code: (i) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H12N4
Mr164.2
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)11.1300 (6), 6.3501 (3), 13.1373 (7)
β (°) 102.066 (6)
V3)907.99 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.16 × 0.09 × 0.01
Data collection
DiffractometerAgilent Gemini Ultra
diffractometer with an Atlas CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 3σ(I)] reflections
2863, 1404, 929
Rint0.027
(sin θ/λ)max1)0.586
Refinement
R[F > 3σ(F)], wR(F), S 0.039, 0.093, 1.30
No. of reflections1404
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al. 2006), DIAMOND (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···N4i0.962.593.396 (3)141
Symmetry code: (i) x1/2, y+1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Pilarski, B. & Urogdi, L. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 541–547.  CrossRef Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationPrasad, S. & Bhalla, T. C. (2010). Biotechnol. Adv. 28, 725–741.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77–80.  CrossRef CAS Google Scholar
First citationShoja, M. & Saba, S. (1993). Acta Cryst. C49, 354–355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds