metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tri­phenyl­phosphane)copper(I)]-di-μ-iodido-[(tri­phenyl­phosphane)copper(I)]-μ-{1,2-bis­­[1-(pyridin-4-yl)ethyl­­idene]hydrazine}]

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Vijoygarh Jyotish Ray College, Jadavpur, Kolkata, 700 032, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 August 2011; accepted 8 September 2011; online 14 September 2011)

In the title coordination polymer, [Cu2I2(C14H14N4)(C18H15P)2]n, the CuI atom is coordinated by two I atoms, one P atom and one N atom in a fairly regular tetra­hedral arrangement. A crystallographic inversion centre generates a Cu2I2 diamond with a Cu–Cu separation of 3.0120 (5) Å. The complete N,N′-(1-pyridin-4-yl-ethethyl­idene)-hydrazine mol­ecule is also generated by inversion symmetry, and this bridging ligand leads to [011] polymeric chains in the crystal structure.

Related literature

For background to copper(I) iodide and triphenyl­phosphine networks, see: Siedel & Stang (2002[Siedel, S. R. & Stang, P. J. (2002). Acc. Chem. Res. 35, 972-983.]); Fujita et al. (2005[Fujita, M., Tominaga, M., Hori, A. & Therrin, B. (2005). Acc. Chem. Res. 38, 369-378.]); Banerjee et al. (2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939-943.]); Zhou et al. (2006[Zhou, X.-H., Wu, T. & Li, D. (2006). Inorg. Chim. Acta, 359, 1442-1448.]); Yam & Lo (1999[Yam, V. W.-W. & Lo, K. K.-W. (1999). Chem. Soc. Rev. 28, 323-334.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C14H14N4)(C18H15P)2]

  • Mr = 1143.72

  • Triclinic, [P \overline 1]

  • a = 9.2788 (4) Å

  • b = 11.4322 (5) Å

  • c = 12.4204 (5) Å

  • α = 74.566 (2)°

  • β = 76.690 (2)°

  • γ = 72.067 (2)°

  • V = 1192.41 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 100 K

  • 0.36 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.494, Tmax = 0.724

  • 33229 measured reflections

  • 8881 independent reflections

  • 7865 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.05

  • 8881 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 2.34 e Å−3

  • Δρmin = −1.81 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—I1i 2.6417 (3)
Cu1—I1 2.6781 (3)
Cu1—N1 2.0586 (15)
Cu1—P1 2.2278 (5)
Cu1i—I1—Cu1 68.967 (9)
Symmetry code: (i) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Copper(I) iodides are interesting building blocks for the formation of extended solid-state coordination architectures (Siedel et al., 2002; Fujita et al., 2005; Banerjee et al., 2008). Copper(I) complexes with PPh3 as a co-ligand are of rising importance owing to their diverse structures and photophysical and chemical properties (Zhou et al., 2006; Yam & Lo, 1999).

The asymmetric unit of the title polymeric compound (Fig. 1) contains one CuI cation, one iodine anion, one triphenylphosphane unit and one N,N'-(1-pyridin-4-yl-ethethylidene)-hydrazine unit. The other half being generated by an inversion center (symmetry code: -x + 2, -y, -z). Each CuI cation is tetracoordinated by one nitrogen, one phosphorus and two iodine atoms. The Cu–I distances are 2.6417 (3) and 2.6781 (3) Å. In the crystal (Fig. 2 & Fig. 3), the nitrogen atoms are bridged together, leading to the formation of polymeric chains along the [011].

Related literature top

For background to copper(I) iodide and triphenylphosphine networks, see: Siedel & Stang (2002); Fujita et al. (2005); Banerjee et al. (2008); Zhou et al. (2006); Yam & Lo (1999). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The N,N'-bis-(1-pyridin-4-yl-ethethylidene)-hydrazine component was prepared in good yield as a yellow solid by condensing hydrazine hydrate with 4-acetylpyridine in anhydrous methanol in 1:2 molar ratio. The Cu(I) complex was prepared in the following way: to a solution of PPh3 (0.262 g, 1 mmol) in CH3CN (50 ml), CuI (0.19 g, 1 mmol) was added. The reaction mixture was stirred for about 1 h to obtain a white turbid solution. Then N,N'-bis-(1-pyridin-4-yl-ethethylidene)-hydrazine (0.238 g, 1 mmol) in 20 ml CHCl3 was added with constant stirring at room temperature to give a clear yellowish solution. Orange–red block-shaped crystals were obtained by slow evaporation of the solution after 2 days. Yield: 0.45 g (70%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.95–0.98 Å].

Structure description top

Copper(I) iodides are interesting building blocks for the formation of extended solid-state coordination architectures (Siedel et al., 2002; Fujita et al., 2005; Banerjee et al., 2008). Copper(I) complexes with PPh3 as a co-ligand are of rising importance owing to their diverse structures and photophysical and chemical properties (Zhou et al., 2006; Yam & Lo, 1999).

The asymmetric unit of the title polymeric compound (Fig. 1) contains one CuI cation, one iodine anion, one triphenylphosphane unit and one N,N'-(1-pyridin-4-yl-ethethylidene)-hydrazine unit. The other half being generated by an inversion center (symmetry code: -x + 2, -y, -z). Each CuI cation is tetracoordinated by one nitrogen, one phosphorus and two iodine atoms. The Cu–I distances are 2.6417 (3) and 2.6781 (3) Å. In the crystal (Fig. 2 & Fig. 3), the nitrogen atoms are bridged together, leading to the formation of polymeric chains along the [011].

For background to copper(I) iodide and triphenylphosphine networks, see: Siedel & Stang (2002); Fujita et al. (2005); Banerjee et al. (2008); Zhou et al. (2006); Yam & Lo (1999). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The polymeric chain of the title compound with 50% probability ellipsoids for non H atoms, showing the coordination environment for the N atoms.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the a axis.
catena-Poly[[(triphenylphosphane)copper(I)]-di-µ-iodido- [(triphenylphosphane)copper(I)]-µ-{1,2-bis[1-(pyridin- 4-yl)ethylidene]hydrazine}] top
Crystal data top
[Cu2I2(C14H14N4)(C18H15P)2]Z = 1
Mr = 1143.72F(000) = 566
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2788 (4) ÅCell parameters from 9948 reflections
b = 11.4322 (5) Åθ = 2.3–34.9°
c = 12.4204 (5) ŵ = 2.29 mm1
α = 74.566 (2)°T = 100 K
β = 76.690 (2)°Block, orange
γ = 72.067 (2)°0.36 × 0.23 × 0.15 mm
V = 1192.41 (9) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
8881 independent reflections
Radiation source: fine-focus sealed tube7865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 33.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.494, Tmax = 0.724k = 1716
33229 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4005P]
where P = (Fo2 + 2Fc2)/3
8881 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 2.34 e Å3
0 restraintsΔρmin = 1.81 e Å3
Crystal data top
[Cu2I2(C14H14N4)(C18H15P)2]γ = 72.067 (2)°
Mr = 1143.72V = 1192.41 (9) Å3
Triclinic, P1Z = 1
a = 9.2788 (4) ÅMo Kα radiation
b = 11.4322 (5) ŵ = 2.29 mm1
c = 12.4204 (5) ÅT = 100 K
α = 74.566 (2)°0.36 × 0.23 × 0.15 mm
β = 76.690 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
8881 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7865 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.724Rint = 0.041
33229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 2.34 e Å3
8881 reflectionsΔρmin = 1.81 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.855859 (12)0.132037 (10)0.055940 (9)0.01592 (4)
Cu10.86308 (2)0.10732 (2)0.023918 (18)0.01484 (5)
P10.75620 (5)0.16954 (4)0.18626 (4)0.01378 (8)
N10.74367 (17)0.19616 (15)0.10892 (13)0.0163 (3)
N20.53664 (18)0.47410 (16)0.45218 (13)0.0191 (3)
C10.7889 (2)0.28666 (19)0.19227 (16)0.0201 (3)
H1A0.87560.31120.18690.024*
C20.7158 (2)0.34564 (19)0.28518 (16)0.0203 (3)
H2A0.75110.40990.34120.024*
C30.5898 (2)0.31012 (17)0.29597 (15)0.0160 (3)
C40.5405 (2)0.21851 (19)0.20863 (16)0.0201 (3)
H4A0.45390.19240.21150.024*
C50.6193 (2)0.16582 (19)0.11742 (16)0.0196 (3)
H5A0.58280.10490.05780.024*
C60.5135 (2)0.36689 (18)0.39770 (15)0.0171 (3)
C70.4228 (3)0.2953 (2)0.42808 (18)0.0248 (4)
H7A0.39720.33490.50400.037*
H7B0.32800.29600.37320.037*
H7C0.48390.20820.42690.037*
C80.79470 (19)0.30849 (17)0.20650 (15)0.0153 (3)
C90.8041 (2)0.32434 (19)0.31231 (16)0.0187 (3)
H9A0.78920.26110.37800.022*
C100.8351 (2)0.4324 (2)0.32155 (18)0.0227 (4)
H10A0.84280.44220.39350.027*
C110.8550 (2)0.52586 (19)0.22673 (19)0.0236 (4)
H11A0.87550.59970.23380.028*
C120.8450 (3)0.5120 (2)0.12104 (18)0.0247 (4)
H12A0.85800.57620.05590.030*
C130.8158 (2)0.40299 (19)0.11159 (17)0.0223 (4)
H13A0.81020.39290.03930.027*
C140.8022 (2)0.05253 (17)0.31409 (15)0.0152 (3)
C150.6953 (2)0.0328 (2)0.41092 (18)0.0290 (5)
H15A0.59140.08080.41250.035*
C160.7404 (3)0.0575 (3)0.5063 (2)0.0391 (6)
H16A0.66670.07130.57210.047*
C170.8924 (3)0.1270 (2)0.5051 (2)0.0321 (5)
H17A0.92290.18840.56990.038*
C180.9990 (3)0.1063 (2)0.4092 (2)0.0332 (5)
H18A1.10360.15230.40870.040*
C190.9544 (2)0.0186 (2)0.31328 (17)0.0250 (4)
H19A1.02790.00700.24680.030*
C200.5469 (2)0.21052 (18)0.20193 (16)0.0173 (3)
C210.4819 (2)0.1214 (2)0.18810 (17)0.0201 (3)
H21A0.54550.04060.17920.024*
C220.3255 (2)0.1495 (2)0.18721 (17)0.0220 (4)
H22A0.28250.08760.17880.026*
C230.2321 (2)0.2676 (2)0.1986 (2)0.0267 (4)
H23A0.12560.28790.19570.032*
C240.2950 (3)0.3556 (2)0.2141 (3)0.0363 (6)
H24A0.23080.43620.22320.044*
C250.4523 (2)0.3274 (2)0.2166 (2)0.0296 (5)
H25A0.49420.38820.22840.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01722 (6)0.01009 (6)0.01945 (6)0.00324 (4)0.00483 (4)0.00023 (4)
Cu10.01887 (10)0.01192 (11)0.01240 (10)0.00298 (8)0.00424 (7)0.00015 (7)
P10.01561 (18)0.0109 (2)0.01386 (19)0.00234 (14)0.00335 (14)0.00154 (15)
N10.0198 (6)0.0119 (7)0.0153 (7)0.0020 (5)0.0060 (5)0.0005 (5)
N20.0205 (7)0.0176 (8)0.0159 (7)0.0021 (6)0.0077 (5)0.0028 (6)
C10.0239 (8)0.0159 (9)0.0201 (8)0.0071 (7)0.0094 (7)0.0042 (6)
C20.0240 (8)0.0167 (9)0.0193 (8)0.0065 (7)0.0098 (7)0.0046 (6)
C30.0175 (7)0.0127 (8)0.0154 (7)0.0002 (6)0.0054 (6)0.0008 (6)
C40.0209 (8)0.0187 (9)0.0196 (8)0.0063 (6)0.0074 (6)0.0025 (6)
C50.0218 (8)0.0185 (9)0.0161 (8)0.0064 (6)0.0062 (6)0.0046 (6)
C60.0185 (7)0.0150 (8)0.0150 (7)0.0000 (6)0.0052 (6)0.0014 (6)
C70.0348 (10)0.0171 (9)0.0245 (9)0.0056 (8)0.0146 (8)0.0007 (7)
C80.0148 (7)0.0115 (8)0.0182 (8)0.0022 (5)0.0028 (6)0.0021 (6)
C90.0206 (8)0.0159 (8)0.0197 (8)0.0047 (6)0.0033 (6)0.0039 (6)
C100.0264 (9)0.0198 (9)0.0238 (9)0.0062 (7)0.0032 (7)0.0085 (7)
C110.0234 (8)0.0136 (9)0.0329 (11)0.0046 (7)0.0000 (7)0.0074 (7)
C120.0319 (10)0.0144 (9)0.0253 (10)0.0067 (7)0.0020 (8)0.0013 (7)
C130.0293 (9)0.0154 (9)0.0201 (9)0.0050 (7)0.0054 (7)0.0002 (7)
C140.0186 (7)0.0125 (8)0.0141 (7)0.0040 (6)0.0038 (6)0.0011 (6)
C150.0210 (8)0.0424 (14)0.0192 (9)0.0099 (8)0.0056 (7)0.0044 (8)
C160.0348 (11)0.0576 (18)0.0215 (10)0.0234 (12)0.0088 (9)0.0141 (10)
C170.0445 (12)0.0253 (11)0.0257 (10)0.0109 (9)0.0178 (9)0.0083 (8)
C180.0364 (11)0.0292 (12)0.0237 (10)0.0098 (9)0.0124 (9)0.0035 (8)
C190.0234 (8)0.0260 (11)0.0171 (8)0.0041 (7)0.0038 (7)0.0022 (7)
C200.0173 (7)0.0158 (8)0.0176 (8)0.0017 (6)0.0047 (6)0.0033 (6)
C210.0189 (7)0.0213 (9)0.0210 (9)0.0047 (6)0.0026 (6)0.0072 (7)
C220.0192 (8)0.0273 (10)0.0228 (9)0.0084 (7)0.0035 (7)0.0080 (7)
C230.0179 (8)0.0292 (11)0.0329 (11)0.0035 (7)0.0089 (7)0.0057 (8)
C240.0201 (9)0.0222 (11)0.0659 (18)0.0019 (8)0.0124 (10)0.0121 (11)
C250.0197 (8)0.0194 (10)0.0517 (14)0.0007 (7)0.0104 (9)0.0120 (9)
Geometric parameters (Å, º) top
Cu1—I1i2.6417 (3)C10—C111.383 (3)
Cu1—I12.6781 (3)C10—H10A0.9500
Cu1—N12.0586 (15)C11—C121.390 (3)
Cu1—P12.2278 (5)C11—H11A0.9500
Cu1—I1i2.6417 (3)C12—C131.393 (3)
Cu1—Cu1i3.0120 (5)C12—H12A0.9500
P1—C81.8214 (19)C13—H13A0.9500
P1—C141.8228 (18)C14—C151.387 (3)
P1—C201.8288 (18)C14—C191.396 (3)
N1—C51.336 (2)C15—C161.398 (3)
N1—C11.348 (2)C15—H15A0.9500
N2—C61.288 (2)C16—C171.389 (4)
N2—N2ii1.405 (3)C16—H16A0.9500
C1—C21.383 (2)C17—C181.380 (4)
C1—H1A0.9500C17—H17A0.9500
C2—C31.394 (3)C18—C191.390 (3)
C2—H2A0.9500C18—H18A0.9500
C3—C41.395 (3)C19—H19A0.9500
C3—C61.487 (2)C20—C251.386 (3)
C4—C51.388 (2)C20—C211.396 (3)
C4—H4A0.9500C21—C221.389 (3)
C5—H5A0.9500C21—H21A0.9500
C6—C71.503 (3)C22—C231.385 (3)
C7—H7A0.9800C22—H22A0.9500
C7—H7B0.9800C23—C241.381 (3)
C7—H7C0.9800C23—H23A0.9500
C8—C131.393 (3)C24—C251.401 (3)
C8—C91.399 (3)C24—H24A0.9500
C9—C101.390 (3)C25—H25A0.9500
C9—H9A0.9500
Cu1i—I1—Cu168.967 (9)C8—C9—H9A119.9
N1—Cu1—P1115.34 (5)C11—C10—C9120.45 (19)
N1—Cu1—I1i104.66 (5)C11—C10—H10A119.8
P1—Cu1—I1i115.133 (15)C9—C10—H10A119.8
N1—Cu1—I1102.74 (5)C10—C11—C12120.15 (19)
P1—Cu1—I1107.279 (15)C10—C11—H11A119.9
I1i—Cu1—I1111.033 (9)C12—C11—H11A119.9
N1—Cu1—Cu1i114.71 (5)C11—C12—C13119.39 (19)
P1—Cu1—Cu1i129.538 (16)C11—C12—H12A120.3
I1i—Cu1—Cu1i56.087 (8)C13—C12—H12A120.3
I1—Cu1—Cu1i54.946 (8)C12—C13—C8121.04 (19)
C8—P1—C14103.50 (8)C12—C13—H13A119.5
C8—P1—C20103.58 (8)C8—C13—H13A119.5
C14—P1—C20104.71 (8)C15—C14—C19119.24 (17)
C8—P1—Cu1117.67 (6)C15—C14—P1123.60 (14)
C14—P1—Cu1115.48 (6)C19—C14—P1117.15 (14)
C20—P1—Cu1110.48 (6)C14—C15—C16120.1 (2)
C5—N1—C1116.93 (15)C14—C15—H15A120.0
C5—N1—Cu1121.74 (12)C16—C15—H15A120.0
C1—N1—Cu1121.32 (12)C17—C16—C15120.3 (2)
C6—N2—N2ii113.4 (2)C17—C16—H16A119.9
N1—C1—C2123.36 (18)C15—C16—H16A119.9
N1—C1—H1A118.3C18—C17—C16119.6 (2)
C2—C1—H1A118.3C18—C17—H17A120.2
C1—C2—C3119.49 (17)C16—C17—H17A120.2
C1—C2—H2A120.3C17—C18—C19120.4 (2)
C3—C2—H2A120.3C17—C18—H18A119.8
C2—C3—C4117.29 (16)C19—C18—H18A119.8
C2—C3—C6120.86 (17)C18—C19—C14120.3 (2)
C4—C3—C6121.85 (17)C18—C19—H19A119.8
C5—C4—C3119.33 (17)C14—C19—H19A119.8
C5—C4—H4A120.3C25—C20—C21118.99 (17)
C3—C4—H4A120.3C25—C20—P1123.81 (16)
N1—C5—C4123.53 (17)C21—C20—P1116.96 (14)
N1—C5—H5A118.2C22—C21—C20120.79 (19)
C4—C5—H5A118.2C22—C21—H21A119.6
N2—C6—C3114.47 (17)C20—C21—H21A119.6
N2—C6—C7126.95 (17)C23—C22—C21120.06 (19)
C3—C6—C7118.56 (17)C23—C22—H22A120.0
C6—C7—H7A109.5C21—C22—H22A120.0
C6—C7—H7B109.5C24—C23—C22119.50 (18)
H7A—C7—H7B109.5C24—C23—H23A120.2
C6—C7—H7C109.5C22—C23—H23A120.2
H7A—C7—H7C109.5C23—C24—C25120.7 (2)
H7B—C7—H7C109.5C23—C24—H24A119.6
C13—C8—C9118.83 (18)C25—C24—H24A119.6
C13—C8—P1118.03 (14)C20—C25—C24119.9 (2)
C9—C8—P1123.14 (14)C20—C25—H25A120.1
C10—C9—C8120.13 (18)C24—C25—H25A120.1
C10—C9—H9A119.9
Cu1i—I1—Cu1—N1111.41 (5)Cu1—P1—C8—C1332.33 (16)
Cu1i—I1—Cu1—P1126.595 (17)C14—P1—C8—C918.90 (17)
Cu1i—I1—Cu1—I1i0.0C20—P1—C8—C990.17 (16)
N1—Cu1—P1—C884.49 (8)Cu1—P1—C8—C9147.61 (13)
I1i—Cu1—P1—C837.63 (6)C13—C8—C9—C100.5 (3)
I1—Cu1—P1—C8161.76 (6)P1—C8—C9—C10179.45 (15)
Cu1i—Cu1—P1—C8103.30 (6)C8—C9—C10—C110.9 (3)
N1—Cu1—P1—C14152.70 (8)C9—C10—C11—C120.4 (3)
I1i—Cu1—P1—C1485.18 (7)C10—C11—C12—C130.4 (3)
I1—Cu1—P1—C1438.95 (7)C11—C12—C13—C80.8 (3)
Cu1i—Cu1—P1—C1419.51 (7)C9—C8—C13—C120.3 (3)
N1—Cu1—P1—C2034.12 (9)P1—C8—C13—C12179.73 (16)
I1i—Cu1—P1—C20156.24 (7)C8—P1—C14—C1591.61 (19)
I1—Cu1—P1—C2079.63 (7)C20—P1—C14—C1516.6 (2)
Cu1i—Cu1—P1—C20138.08 (7)Cu1—P1—C14—C15138.34 (17)
P1—Cu1—N1—C577.61 (16)C8—P1—C14—C1987.26 (17)
I1i—Cu1—N1—C5154.82 (14)C20—P1—C14—C19164.52 (16)
I1—Cu1—N1—C538.75 (16)Cu1—P1—C14—C1942.79 (18)
Cu1i—Cu1—N1—C595.78 (15)C19—C14—C15—C160.1 (4)
P1—Cu1—N1—C1103.31 (15)P1—C14—C15—C16178.9 (2)
I1i—Cu1—N1—C124.26 (16)C14—C15—C16—C170.7 (4)
I1—Cu1—N1—C1140.33 (15)C15—C16—C17—C180.1 (4)
Cu1i—Cu1—N1—C183.30 (16)C16—C17—C18—C191.5 (4)
C5—N1—C1—C21.6 (3)C17—C18—C19—C142.1 (4)
Cu1—N1—C1—C2177.55 (16)C15—C14—C19—C181.3 (3)
N1—C1—C2—C31.0 (3)P1—C14—C19—C18177.6 (2)
C1—C2—C3—C42.3 (3)C8—P1—C20—C254.4 (2)
C1—C2—C3—C6176.79 (18)C14—P1—C20—C25112.59 (19)
C2—C3—C4—C51.2 (3)Cu1—P1—C20—C25122.45 (18)
C6—C3—C4—C5177.88 (19)C8—P1—C20—C21178.64 (15)
C1—N1—C5—C42.8 (3)C14—P1—C20—C2173.20 (16)
Cu1—N1—C5—C4176.36 (16)Cu1—P1—C20—C2151.76 (16)
C3—C4—C5—N11.4 (3)C25—C20—C21—C221.0 (3)
N2ii—N2—C6—C3179.94 (18)P1—C20—C21—C22173.48 (16)
N2ii—N2—C6—C71.5 (3)C20—C21—C22—C230.9 (3)
C2—C3—C6—N221.8 (3)C21—C22—C23—C241.9 (3)
C4—C3—C6—N2159.10 (19)C22—C23—C24—C251.0 (4)
C2—C3—C6—C7156.82 (19)C21—C20—C25—C241.9 (3)
C4—C3—C6—C722.2 (3)P1—C20—C25—C24172.2 (2)
C14—P1—C8—C13161.04 (15)C23—C24—C25—C200.9 (4)
C20—P1—C8—C1389.89 (16)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formula[Cu2I2(C14H14N4)(C18H15P)2]
Mr1143.72
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2788 (4), 11.4322 (5), 12.4204 (5)
α, β, γ (°)74.566 (2), 76.690 (2), 72.067 (2)
V3)1192.41 (9)
Z1
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.36 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.494, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
33229, 8881, 7865
Rint0.041
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.05
No. of reflections8881
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.34, 1.81

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—I1i2.6417 (3)Cu1—N12.0586 (15)
Cu1—I12.6781 (3)Cu1—P12.2278 (5)
Cu1i—I1—Cu168.967 (9)
Symmetry code: (i) x+2, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujita, M., Tominaga, M., Hori, A. & Therrin, B. (2005). Acc. Chem. Res. 38, 369–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiedel, S. R. & Stang, P. J. (2002). Acc. Chem. Res. 35, 972–983.  PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYam, V. W.-W. & Lo, K. K.-W. (1999). Chem. Soc. Rev. 28, 323–334.  Web of Science CrossRef CAS Google Scholar
First citationZhou, X.-H., Wu, T. & Li, D. (2006). Inorg. Chim. Acta, 359, 1442–1448.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds