metal-organic compounds
Hexa-μ-chlorido-μ4-oxido-tetrakis({1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN3}copper(II))
aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwff@163.com
The title tetranuclear complex, [Cu4Cl6O(C13H11N3)4], features a tetrahedral arrangement of copper(II) ions bonded to the central O atom (site symmetry ). Each of the six edges of the Cu4 tetrahedron is bridged by a chloride ion (one of which has 2), so that each copper ion is linked to the other three metal ions through the central O atom and through three separate chloride-ion bridges. The fifth coordination position, located on the central Cu—O axis on the outside of the cluster, is occupied by an N atom of the monodentate 1-(pyridin-2-ylmethyl)-1H-benzimidazole ligand. The resulting coordination geometry of the metal ion is a distorted trigonal bipyramid with the O and N atoms in the axial positions. The dihedral angle between the benzimidazole ring system and the pendant pyridine ring is 61.0 (2)°.
Related literature
For background to polynuclear copper halides, see: Willett (1991); Chivers et al. (2005); Li et al. (2009).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811035252/hb6384sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811035252/hb6384Isup2.hkl
To a solution of L (0.12 mmol, 25 mg) dissolved in CH3CN (9 ml), a solution of CuCl2.6H2O (0.12 mmol, 28.9 mg) in H2O (9 ml) was added under stirring in a few minutes. The solution was left to stand at room temperature. Brown blocks of (I) were obtained after several days with solvent evaporation. Yield: ~20% (based on L).
C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.
Copper(II) halide framework materials have attracted much attention for their interesting magnetic properties and structural richness (Willett et al., 1991). The most commonly employed technique to modulate the inorganic network involves the direct addition of an organic ligand as a templating reagent (Chivers et al., 2005). benzimidazole has been well used in crystal engineering, and a large number of benzimidazole ligands have been extensively studied (Li et al., 2009). The reaction of CuCl2 with the benzimidazole-pyridine ligand (L) affords a tetranuclear molecule [(Cu4O)Cl6(L)4], (I). The
was elucidated by X-ray diffraction analysis.For background to polynuclear copper halides, see: Willett (1991); Chivers et al.(2005); Li et al. (2009).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu4Cl6O(C13H11N3)4] | Dx = 1.574 Mg m−3 |
Mr = 1319.85 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 3492 reflections |
a = 13.8532 (12) Å | θ = 2.8–25.3° |
c = 14.507 (3) Å | µ = 1.85 mm−1 |
V = 2784.1 (6) Å3 | T = 294 K |
Z = 2 | Block, brown |
F(000) = 1332 | 0.25 × 0.23 × 0.20 mm |
Rigaku Mercury CCD diffractometer | 2467 independent reflections |
Radiation source: fine-focus sealed tube | 2178 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 9 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −14→16 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −16→14 |
Tmin = 0.637, Tmax = 0.691 | l = −17→17 |
7149 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0286P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2467 reflections | Δρmax = 0.34 e Å−3 |
170 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1172 Friedel pairs |
0 constraints | Absolute structure parameter: 0.005 (15) |
Primary atom site location: structure-invariant direct methods |
[Cu4Cl6O(C13H11N3)4] | Z = 2 |
Mr = 1319.85 | Mo Kα radiation |
Tetragonal, I4 | µ = 1.85 mm−1 |
a = 13.8532 (12) Å | T = 294 K |
c = 14.507 (3) Å | 0.25 × 0.23 × 0.20 mm |
V = 2784.1 (6) Å3 |
Rigaku Mercury CCD diffractometer | 2467 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 2178 reflections with I > 2σ(I) |
Tmin = 0.637, Tmax = 0.691 | Rint = 0.033 |
7149 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.062 | Δρmax = 0.34 e Å−3 |
S = 1.06 | Δρmin = −0.17 e Å−3 |
2467 reflections | Absolute structure: Flack (1983), 1172 Friedel pairs |
170 parameters | Absolute structure parameter: 0.005 (15) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.42929 (3) | 0.41004 (3) | 0.07467 (3) | 0.03400 (12) | |
Cl1 | 0.28847 (6) | 0.47255 (6) | −0.00384 (7) | 0.0473 (2) | |
Cl2 | 0.5000 | 0.5000 | 0.20129 (8) | 0.0637 (4) | |
N3 | 0.3550 (2) | 0.3189 (2) | 0.1515 (2) | 0.0412 (7) | |
C1 | 0.3592 (3) | 0.2243 (3) | 0.1520 (3) | 0.0498 (10) | |
H1 | 0.3992 | 0.1887 | 0.1133 | 0.060* | |
C2 | 0.2867 (3) | 0.3436 (3) | 0.2180 (2) | 0.0485 (10) | |
C7 | 0.2518 (3) | 0.2588 (3) | 0.2595 (3) | 0.0533 (10) | |
N2 | 0.2998 (3) | 0.1839 (2) | 0.2144 (2) | 0.0548 (9) | |
C6 | 0.1844 (3) | 0.2627 (4) | 0.3322 (3) | 0.0736 (15) | |
H6 | 0.1636 | 0.2068 | 0.3616 | 0.088* | |
C3 | 0.2513 (3) | 0.4325 (3) | 0.2461 (3) | 0.0663 (13) | |
H3 | 0.2726 | 0.4892 | 0.2184 | 0.080* | |
C4 | 0.1837 (4) | 0.4350 (4) | 0.3161 (4) | 0.0844 (16) | |
H4 | 0.1593 | 0.4940 | 0.3359 | 0.101* | |
C5 | 0.1515 (4) | 0.3495 (5) | 0.3574 (4) | 0.0899 (18) | |
H5 | 0.1056 | 0.3532 | 0.4040 | 0.108* | |
C8 | 0.2900 (4) | 0.0806 (3) | 0.2368 (3) | 0.0755 (15) | |
H8A | 0.2343 | 0.0721 | 0.2764 | 0.091* | |
H8B | 0.3465 | 0.0601 | 0.2711 | 0.091* | |
O1 | 0.5000 | 0.5000 | 0.0000 | 0.0292 (9) | |
C9 | 0.2789 (3) | 0.0170 (3) | 0.1543 (3) | 0.0563 (10) | |
C10 | 0.1944 (4) | −0.0195 (4) | 0.1286 (4) | 0.0846 (16) | |
H10 | 0.1380 | −0.0038 | 0.1600 | 0.102* | |
N1 | 0.3632 (4) | −0.0017 (4) | 0.1100 (4) | 0.1075 (18) | |
C12 | 0.2815 (9) | −0.1018 (5) | 0.0115 (5) | 0.128 (3) | |
H12 | 0.2863 | −0.1449 | −0.0374 | 0.154* | |
C11 | 0.1926 (7) | −0.0858 (5) | 0.0487 (5) | 0.116 (2) | |
H11 | 0.1364 | −0.1138 | 0.0261 | 0.139* | |
C13 | 0.3600 (8) | −0.0601 (5) | 0.0405 (6) | 0.140 (4) | |
H13 | 0.4172 | −0.0730 | 0.0093 | 0.168* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0374 (2) | 0.0322 (2) | 0.03237 (19) | −0.00702 (17) | 0.0024 (2) | 0.00311 (19) |
Cl1 | 0.0319 (5) | 0.0549 (5) | 0.0552 (5) | −0.0045 (4) | −0.0026 (4) | 0.0094 (5) |
Cl2 | 0.0911 (11) | 0.0707 (10) | 0.0294 (6) | −0.0472 (9) | 0.000 | 0.000 |
N3 | 0.0419 (18) | 0.0393 (18) | 0.0425 (16) | −0.0130 (14) | 0.0009 (14) | 0.0065 (14) |
C1 | 0.061 (3) | 0.045 (2) | 0.043 (2) | −0.0162 (19) | −0.006 (2) | 0.0044 (19) |
C2 | 0.045 (2) | 0.058 (3) | 0.042 (2) | −0.0166 (19) | −0.0002 (18) | 0.007 (2) |
C7 | 0.054 (2) | 0.060 (3) | 0.045 (2) | −0.021 (2) | 0.001 (2) | 0.010 (2) |
N2 | 0.068 (2) | 0.048 (2) | 0.048 (2) | −0.0231 (17) | −0.0028 (18) | 0.0152 (17) |
C6 | 0.064 (3) | 0.096 (4) | 0.061 (3) | −0.035 (3) | 0.005 (2) | 0.030 (3) |
C3 | 0.073 (3) | 0.060 (3) | 0.066 (3) | −0.015 (2) | 0.021 (3) | 0.003 (2) |
C4 | 0.083 (4) | 0.080 (4) | 0.091 (4) | −0.003 (3) | 0.037 (3) | 0.002 (3) |
C5 | 0.084 (4) | 0.102 (5) | 0.084 (4) | −0.016 (3) | 0.040 (3) | 0.002 (3) |
C8 | 0.108 (4) | 0.054 (3) | 0.065 (3) | −0.030 (3) | −0.008 (3) | 0.021 (2) |
O1 | 0.0293 (14) | 0.0293 (14) | 0.029 (2) | 0.000 | 0.000 | 0.000 |
C9 | 0.064 (3) | 0.042 (2) | 0.064 (3) | −0.002 (2) | 0.010 (2) | 0.020 (2) |
C10 | 0.093 (4) | 0.081 (4) | 0.081 (4) | −0.020 (3) | 0.010 (3) | 0.001 (3) |
N1 | 0.107 (4) | 0.085 (3) | 0.130 (5) | 0.035 (3) | 0.033 (3) | 0.025 (3) |
C12 | 0.229 (11) | 0.066 (4) | 0.090 (5) | −0.007 (6) | 0.033 (7) | 0.000 (4) |
C11 | 0.158 (7) | 0.092 (5) | 0.097 (5) | −0.030 (5) | −0.005 (5) | 0.008 (4) |
C13 | 0.202 (10) | 0.064 (5) | 0.154 (8) | 0.052 (5) | 0.079 (7) | 0.012 (5) |
Cu1—O1 | 1.9199 (4) | C4—C5 | 1.400 (7) |
Cu1—N3 | 1.974 (3) | C4—H4 | 0.9300 |
Cu1—Cl1i | 2.3961 (10) | C5—H5 | 0.9300 |
Cu1—Cl1 | 2.4192 (10) | C8—C9 | 1.494 (7) |
Cu1—Cl2 | 2.4263 (10) | C8—H8A | 0.9700 |
Cl1—Cu1ii | 2.3961 (9) | C8—H8B | 0.9700 |
Cl2—Cu1iii | 2.4263 (10) | O1—Cu1iii | 1.9199 (4) |
N3—C1 | 1.313 (4) | O1—Cu1i | 1.9199 (4) |
N3—C2 | 1.394 (5) | O1—Cu1ii | 1.9199 (4) |
C1—N2 | 1.345 (5) | C9—C10 | 1.328 (6) |
C1—H1 | 0.9300 | C9—N1 | 1.358 (6) |
C2—C3 | 1.386 (6) | C10—C11 | 1.480 (8) |
C2—C7 | 1.407 (5) | C10—H10 | 0.9300 |
C7—N2 | 1.395 (6) | N1—C13 | 1.293 (9) |
C7—C6 | 1.409 (6) | C12—C13 | 1.301 (12) |
N2—C8 | 1.474 (5) | C12—C11 | 1.362 (10) |
C6—C5 | 1.337 (8) | C12—H12 | 0.9300 |
C6—H6 | 0.9300 | C11—H11 | 0.9300 |
C3—C4 | 1.382 (6) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | ||
O1—Cu1—N3 | 179.14 (9) | C3—C4—H4 | 119.7 |
O1—Cu1—Cl1i | 85.68 (3) | C5—C4—H4 | 119.7 |
N3—Cu1—Cl1i | 95.10 (9) | C6—C5—C4 | 122.3 (5) |
O1—Cu1—Cl1 | 85.03 (3) | C6—C5—H5 | 118.8 |
N3—Cu1—Cl1 | 94.25 (9) | C4—C5—H5 | 118.8 |
Cl1i—Cu1—Cl1 | 120.483 (17) | N2—C8—C9 | 113.9 (4) |
O1—Cu1—Cl2 | 83.56 (2) | N2—C8—H8A | 108.8 |
N3—Cu1—Cl2 | 96.40 (9) | C9—C8—H8A | 108.8 |
Cl1i—Cu1—Cl2 | 117.17 (3) | N2—C8—H8B | 108.8 |
Cl1—Cu1—Cl2 | 119.88 (3) | C9—C8—H8B | 108.8 |
Cu1ii—Cl1—Cu1 | 80.69 (3) | H8A—C8—H8B | 107.7 |
Cu1—Cl2—Cu1iii | 81.58 (4) | Cu1iii—O1—Cu1i | 108.564 (12) |
C1—N3—C2 | 105.8 (3) | Cu1iii—O1—Cu1 | 111.30 (2) |
C1—N3—Cu1 | 128.2 (3) | Cu1i—O1—Cu1 | 108.564 (12) |
C2—N3—Cu1 | 126.0 (2) | Cu1iii—O1—Cu1ii | 108.564 (12) |
N3—C1—N2 | 113.1 (4) | Cu1i—O1—Cu1ii | 111.30 (2) |
N3—C1—H1 | 123.5 | Cu1—O1—Cu1ii | 108.564 (12) |
N2—C1—H1 | 123.5 | C10—C9—N1 | 123.5 (5) |
C3—C2—N3 | 131.4 (3) | C10—C9—C8 | 122.7 (5) |
C3—C2—C7 | 119.6 (4) | N1—C9—C8 | 113.8 (5) |
N3—C2—C7 | 108.9 (4) | C9—C10—C11 | 118.1 (6) |
N2—C7—C2 | 104.9 (4) | C9—C10—H10 | 121.0 |
N2—C7—C6 | 134.1 (4) | C11—C10—H10 | 121.0 |
C2—C7—C6 | 121.0 (5) | C13—N1—C9 | 117.3 (7) |
C1—N2—C7 | 107.4 (3) | C13—C12—C11 | 123.7 (8) |
C1—N2—C8 | 127.5 (4) | C13—C12—H12 | 118.1 |
C7—N2—C8 | 125.1 (4) | C11—C12—H12 | 118.1 |
C5—C6—C7 | 117.8 (4) | C12—C11—C10 | 113.3 (7) |
C5—C6—H6 | 121.1 | C12—C11—H11 | 123.3 |
C7—C6—H6 | 121.1 | C10—C11—H11 | 123.3 |
C4—C3—C2 | 118.6 (4) | N1—C13—C12 | 123.9 (8) |
C4—C3—H3 | 120.7 | N1—C13—H13 | 118.0 |
C2—C3—H3 | 120.7 | C12—C13—H13 | 118.0 |
C3—C4—C5 | 120.6 (5) | ||
O1—Cu1—Cl1—Cu1ii | −1.10 (2) | N2—C7—C6—C5 | −178.9 (5) |
N3—Cu1—Cl1—Cu1ii | 178.42 (9) | C2—C7—C6—C5 | 3.0 (7) |
Cl1i—Cu1—Cl1—Cu1ii | −83.12 (4) | N3—C2—C3—C4 | −178.9 (4) |
Cl2—Cu1—Cl1—Cu1ii | 78.54 (4) | C7—C2—C3—C4 | 1.4 (7) |
O1—Cu1—Cl2—Cu1iii | 0.0 | C2—C3—C4—C5 | −0.2 (8) |
N3—Cu1—Cl2—Cu1iii | −179.13 (9) | C7—C6—C5—C4 | −1.8 (9) |
Cl1i—Cu1—Cl2—Cu1iii | 81.77 (3) | C3—C4—C5—C6 | 0.5 (9) |
Cl1—Cu1—Cl2—Cu1iii | −80.48 (3) | C1—N2—C8—C9 | −48.8 (6) |
O1—Cu1—N3—C1 | 150 (6) | C7—N2—C8—C9 | 135.3 (4) |
Cl1i—Cu1—N3—C1 | −4.5 (3) | N3—Cu1—O1—Cu1iii | 88 (6) |
Cl1—Cu1—N3—C1 | 116.6 (3) | Cl1i—Cu1—O1—Cu1iii | −117.99 (3) |
Cl2—Cu1—N3—C1 | −122.7 (3) | Cl1—Cu1—O1—Cu1iii | 120.87 (3) |
O1—Cu1—N3—C2 | −31 (6) | Cl2—Cu1—O1—Cu1iii | 0.0 |
Cl1i—Cu1—N3—C2 | 174.8 (3) | N3—Cu1—O1—Cu1i | −153 (6) |
Cl1—Cu1—N3—C2 | −64.1 (3) | Cl1i—Cu1—O1—Cu1i | 1.44 (3) |
Cl2—Cu1—N3—C2 | 56.7 (3) | Cl1—Cu1—O1—Cu1i | −119.70 (3) |
C2—N3—C1—N2 | −0.7 (4) | Cl2—Cu1—O1—Cu1i | 119.434 (8) |
Cu1—N3—C1—N2 | 178.8 (2) | N3—Cu1—O1—Cu1ii | −32 (6) |
C1—N3—C2—C3 | −178.6 (4) | Cl1i—Cu1—O1—Cu1ii | 122.58 (3) |
Cu1—N3—C2—C3 | 2.0 (6) | Cl1—Cu1—O1—Cu1ii | 1.43 (3) |
C1—N3—C2—C7 | 1.2 (4) | Cl2—Cu1—O1—Cu1ii | −119.434 (8) |
Cu1—N3—C2—C7 | −178.3 (2) | N2—C8—C9—C10 | −102.8 (6) |
C3—C2—C7—N2 | 178.6 (4) | N2—C8—C9—N1 | 78.9 (5) |
N3—C2—C7—N2 | −1.2 (4) | N1—C9—C10—C11 | 1.4 (7) |
C3—C2—C7—C6 | −2.8 (6) | C8—C9—C10—C11 | −176.8 (4) |
N3—C2—C7—C6 | 177.4 (4) | C10—C9—N1—C13 | −1.6 (7) |
N3—C1—N2—C7 | −0.1 (4) | C8—C9—N1—C13 | 176.8 (5) |
N3—C1—N2—C8 | −176.6 (4) | C13—C12—C11—C10 | −2.7 (10) |
C2—C7—N2—C1 | 0.8 (4) | C9—C10—C11—C12 | 0.6 (8) |
C6—C7—N2—C1 | −177.6 (5) | C9—N1—C13—C12 | −0.5 (10) |
C2—C7—N2—C8 | 177.4 (4) | C11—C12—C13—N1 | 2.8 (13) |
C6—C7—N2—C8 | −1.0 (8) |
Symmetry codes: (i) −y+1, x, −z; (ii) y, −x+1, −z; (iii) −x+1, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu4Cl6O(C13H11N3)4] |
Mr | 1319.85 |
Crystal system, space group | Tetragonal, I4 |
Temperature (K) | 294 |
a, c (Å) | 13.8532 (12), 14.507 (3) |
V (Å3) | 2784.1 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.85 |
Crystal size (mm) | 0.25 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury CCD |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.637, 0.691 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7149, 2467, 2178 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.062, 1.06 |
No. of reflections | 2467 |
No. of parameters | 170 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.17 |
Absolute structure | Flack (1983), 1172 Friedel pairs |
Absolute structure parameter | 0.005 (15) |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.9199 (4) | Cu1—Cl1 | 2.4192 (10) |
Cu1—N3 | 1.974 (3) | Cu1—Cl2 | 2.4263 (10) |
Cu1—Cl1i | 2.3961 (10) |
Symmetry code: (i) −y+1, x, −z. |
Acknowledgements
We thank the College Research Program of Yuncheng University (2008112) for funding.
References
Chivers, T., Fu, Z. & Thompson, L. K. (2005). Chem. Commun. pp. 2339–2341. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909. Web of Science CSD CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willett, R. D. (1991). Coord. Chem. Rev. 109, 181–205. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(II) halide framework materials have attracted much attention for their interesting magnetic properties and structural richness (Willett et al., 1991). The most commonly employed technique to modulate the inorganic network involves the direct addition of an organic ligand as a templating reagent (Chivers et al., 2005). benzimidazole has been well used in crystal engineering, and a large number of benzimidazole ligands have been extensively studied (Li et al., 2009). The reaction of CuCl2 with the benzimidazole-pyridine ligand (L) affords a tetranuclear molecule [(Cu4O)Cl6(L)4], (I). The crystal structure was elucidated by X-ray diffraction analysis.