organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Azido-1-(3,6-di­chloro-9H-fluoren-1-yl)ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSequent Scientific Limited, Baikampady, New Mangalore, India, and cDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 August 2011; accepted 10 September 2011; online 17 September 2011)

In the title compound, C15H9Cl2N3O, an intra­molecular C—H⋯O inter­action generates an S(7) ring motif. The cyclo­penta-1,3-diene ring forms dihedral angles of 1.93 (6) and 2.78 (6)° with its attached benzene rings. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds, thereby forming layers lying parallel to the ac plane. The crystal also features a ππ inter­action with a centroid–centroid distance of 3.5612 (6) Å.

Related literature

For the mutagenic activity of azides, see: Sander & Muehlbour (1977[Sander, C. & Muehlbour, F. J. (1977). Environ. Exp. 17, 43-45]); Nilan et al. (1973[Nilan, R. A., Sideris, E. G., Kleinhofs, A. & Nilan, R. A. (1973). Mut. Res. 17, 142-144.]); Owais et al. (1983[Owais, W., Rosichan, J. L., Roland, R. C., Kleinhofs, S. A. & Nilan, R. A. (1983). Mut. Res. 118, 229-239]). For the preparation of 1,2,3-triazoles via 1,3-dipolar cyclo­addition reactions of azides with substituted acetyl­ene compounds, see: Purvisis et al. (1984[Purvisis, P., Smalley, R. K., Saschitsky, H. & Alkhader, M. A. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 249-254]); Patei & Smalley (1984[Patei, D. I. & Smalley, R. K. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 2587-2590]). For a related fused-ring structure, see: Molins et al. (2002[Molins, E., Miravitlles, C., Espinosa, E. & Ballester, M. (2002). J. Org. Chem. 67, 7175-7178.]). For related azide structures, see: Basanagouda et al. (2010[Basanagouda, M., Nayak, S. K., Guru Row, T. N. & Kulkarni, M. V. (2010). Acta Cryst. E66, o2780.]); Karthikeyan et al. (2011[Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245-o2246.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Cl2N3O

  • Mr = 318.15

  • Monoclinic, P 21 /c

  • a = 10.7303 (1) Å

  • b = 18.7012 (3) Å

  • c = 6.8952 (1) Å

  • β = 98.61°

  • V = 1368.06 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 100 K

  • 0.35 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.936

  • 15671 measured reflections

  • 4003 independent reflections

  • 3599 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.03

  • 4003 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1 0.95 2.32 3.0134 (14) 129
C13—H13A⋯N3i 0.99 2.59 3.4613 (16) 147
C15—H15A⋯O1ii 0.99 2.53 3.1941 (15) 125
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155. ]).

Supporting information


Comment top

Azides are considered very important compounds due to both their industrial as well as biological applications. Azide derivatives have been used in rubber vulcanization, polymer cross linking, dyes tire cord adhesives, forming of plastics, pharmaceuticals, pesticides and herbicides. Many azide compounds show mutagenic activities (Sander & Muehlbour, 1977; Nilan et al., 1973; Owais et al., 1983). The chemistry of azides has thus attracted the attention of many chemists, since many of these compounds play an important role in organic chemistry. One of the more useful synthetic applications of azides is the preparation of 1,2,3-triazoles via 1,3-dipolar cycloaddition reactions of azides with substituted acetylene compound (Purvisis et al., 1984; Patei & Smalley, 1984). The crystal structures of 4-Azidomethyl-7-methyl-2-oxo-2H-chromene-6-sulfonyl azide (Basanagouda et al., 2010) and 2-Azidomethyl-3-methyl-1-phenylsulfonyl-1H-indole (Karthikeyan et al., 2011) have been reported. Attributed to the above fact and with a view to obtain new and better biologically active agent, we synthesized the title compound, (I), in 60% yield.

The molecular structure of the title compound is shown in Fig. 1. The cyclopenta-1,3-diene ring (C1/C6/C7/C12/C13) makes dihedral angles of 1.93 (6) and 2.78 (6)° with its terminal benzene rings (C1–C6 & C7–C12) respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Molins et al., 2002). The molecular structure is stabilized by intramolecular C5—H5A···O1 hydrogen bond (Table 1) which generates an S(7) ring motif (Fig. 1; Bernstein et al., 1995).

In the crystal (Fig. 2), the molecules are connected by C13—H13A···N3 and C15—H15A···O1 hydrogen bonds (Table 1) forming two-dimensional network parallel to ac plane.The crystal is further stabilized by ππ interactions with centroid···centroid distance, Cg1···Cg2 = 3.5612 (6) Å (symmetry code: x,1/2 - y,-1/2 + z); Cg1 and Cg2 are the centroids of the C1/C6/C7/C12/C13 and C1–C6 rings respectively.

Related literature top

For the mutagenic activity of azides, see: Sander & Muehlbour (1977); Nilan et al. (1973); Owais et al. (1983). For the preparation of 1,2,3-triazoles via 1,3-dipolar cycloaddition reactions of azides with substituted acetylene compounds, see: Purvisis et al. (1984); Patei & Smalley (1984). For a related fused-ring structure, see: Molins et al. (2002). For related azide structures, see: Basanagouda et al. (2010); Karthikeyan et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).

Experimental top

2-Chloro-1-(3,6-dichloro-9H-fluoren-1-yl)ethanone (2 g, 0.0064 mole) in 5 ml DMF was cooled to 0–5 °C. Sodium azide (0.4 g, 0.0064 mole) was added lot-wise and stirred for 3 h.The precipated product was filtered off, dried and recrystallized from ethanol (1.2 g, 60%). Yellow blocks of (I) were obtained from acetone by slow evaporation.

Refinement top

All H atoms were positioned geometrically [C—H = 0.95 and 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

Azides are considered very important compounds due to both their industrial as well as biological applications. Azide derivatives have been used in rubber vulcanization, polymer cross linking, dyes tire cord adhesives, forming of plastics, pharmaceuticals, pesticides and herbicides. Many azide compounds show mutagenic activities (Sander & Muehlbour, 1977; Nilan et al., 1973; Owais et al., 1983). The chemistry of azides has thus attracted the attention of many chemists, since many of these compounds play an important role in organic chemistry. One of the more useful synthetic applications of azides is the preparation of 1,2,3-triazoles via 1,3-dipolar cycloaddition reactions of azides with substituted acetylene compound (Purvisis et al., 1984; Patei & Smalley, 1984). The crystal structures of 4-Azidomethyl-7-methyl-2-oxo-2H-chromene-6-sulfonyl azide (Basanagouda et al., 2010) and 2-Azidomethyl-3-methyl-1-phenylsulfonyl-1H-indole (Karthikeyan et al., 2011) have been reported. Attributed to the above fact and with a view to obtain new and better biologically active agent, we synthesized the title compound, (I), in 60% yield.

The molecular structure of the title compound is shown in Fig. 1. The cyclopenta-1,3-diene ring (C1/C6/C7/C12/C13) makes dihedral angles of 1.93 (6) and 2.78 (6)° with its terminal benzene rings (C1–C6 & C7–C12) respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Molins et al., 2002). The molecular structure is stabilized by intramolecular C5—H5A···O1 hydrogen bond (Table 1) which generates an S(7) ring motif (Fig. 1; Bernstein et al., 1995).

In the crystal (Fig. 2), the molecules are connected by C13—H13A···N3 and C15—H15A···O1 hydrogen bonds (Table 1) forming two-dimensional network parallel to ac plane.The crystal is further stabilized by ππ interactions with centroid···centroid distance, Cg1···Cg2 = 3.5612 (6) Å (symmetry code: x,1/2 - y,-1/2 + z); Cg1 and Cg2 are the centroids of the C1/C6/C7/C12/C13 and C1–C6 rings respectively.

For the mutagenic activity of azides, see: Sander & Muehlbour (1977); Nilan et al. (1973); Owais et al. (1983). For the preparation of 1,2,3-triazoles via 1,3-dipolar cycloaddition reactions of azides with substituted acetylene compounds, see: Purvisis et al. (1984); Patei & Smalley (1984). For a related fused-ring structure, see: Molins et al. (2002). For related azide structures, see: Basanagouda et al. (2010); Karthikeyan et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
2-Azido-1-(3,6-dichloro-9H-fluoren-1-yl)ethanone top
Crystal data top
C15H9Cl2N3OF(000) = 648
Mr = 318.15Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7886 reflections
a = 10.7303 (1) Åθ = 2.2–30.0°
b = 18.7012 (3) ŵ = 0.48 mm1
c = 6.8952 (1) ÅT = 100 K
β = 98.61°Block, yellow
V = 1368.06 (3) Å30.35 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4003 independent reflections
Radiation source: fine-focus sealed tube3599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.850, Tmax = 0.936k = 2624
15671 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.561P]
where P = (Fo2 + 2Fc2)/3
4003 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H9Cl2N3OV = 1368.06 (3) Å3
Mr = 318.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7303 (1) ŵ = 0.48 mm1
b = 18.7012 (3) ÅT = 100 K
c = 6.8952 (1) Å0.35 × 0.21 × 0.14 mm
β = 98.61°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3599 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.936Rint = 0.020
15671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
4003 reflectionsΔρmin = 0.33 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86335 (3)0.015258 (16)0.78440 (5)0.02477 (8)
Cl20.69062 (3)0.556390 (16)0.75596 (5)0.02593 (9)
O10.41319 (8)0.27518 (5)0.49870 (12)0.02012 (18)
N10.19994 (10)0.32713 (6)0.62768 (18)0.0257 (2)
N20.18912 (9)0.26184 (6)0.63263 (15)0.0216 (2)
N30.16346 (11)0.20274 (7)0.6281 (2)0.0321 (3)
C10.82735 (10)0.22727 (6)0.76076 (15)0.0156 (2)
C20.88066 (10)0.15948 (6)0.78230 (16)0.0174 (2)
H2A0.96930.15330.81210.021*
C30.79995 (11)0.10118 (6)0.75884 (16)0.0176 (2)
C40.66945 (11)0.10914 (6)0.71603 (16)0.0175 (2)
H4A0.61660.06810.70160.021*
C50.61693 (10)0.17715 (6)0.69457 (16)0.0159 (2)
H5A0.52810.18290.66540.019*
C60.69576 (10)0.23714 (6)0.71629 (15)0.0143 (2)
C70.67029 (10)0.31487 (6)0.70872 (15)0.0143 (2)
C80.55863 (10)0.35588 (6)0.67711 (15)0.0155 (2)
C90.56735 (11)0.43036 (6)0.69421 (16)0.0181 (2)
H9A0.49270.45840.67650.022*
C100.68399 (11)0.46365 (7)0.73686 (16)0.0185 (2)
C110.79532 (11)0.42465 (7)0.76498 (16)0.0182 (2)
H11A0.87480.44780.79230.022*
C120.78680 (10)0.35082 (6)0.75198 (15)0.0156 (2)
C130.89409 (10)0.29828 (6)0.78215 (16)0.0165 (2)
H13A0.94420.30350.91410.020*
H13B0.95020.30430.68170.020*
C140.43135 (10)0.32382 (6)0.61632 (16)0.0164 (2)
C150.32381 (11)0.35493 (7)0.71116 (18)0.0207 (2)
H15A0.33910.34420.85330.025*
H15B0.32360.40760.69580.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02445 (15)0.01773 (15)0.03227 (16)0.00395 (10)0.00465 (11)0.00274 (11)
Cl20.03214 (17)0.01536 (15)0.02921 (16)0.00146 (11)0.00100 (12)0.00078 (11)
O10.0170 (4)0.0224 (4)0.0204 (4)0.0007 (3)0.0008 (3)0.0015 (3)
N10.0152 (5)0.0260 (6)0.0360 (6)0.0035 (4)0.0041 (4)0.0048 (5)
N20.0107 (4)0.0299 (6)0.0239 (5)0.0001 (4)0.0015 (3)0.0012 (4)
N30.0203 (5)0.0298 (7)0.0446 (7)0.0036 (5)0.0006 (5)0.0043 (5)
C10.0152 (5)0.0198 (6)0.0119 (5)0.0006 (4)0.0026 (4)0.0003 (4)
C20.0157 (5)0.0205 (6)0.0161 (5)0.0016 (4)0.0028 (4)0.0005 (4)
C30.0205 (5)0.0169 (5)0.0158 (5)0.0023 (4)0.0041 (4)0.0014 (4)
C40.0189 (5)0.0174 (6)0.0164 (5)0.0016 (4)0.0035 (4)0.0001 (4)
C50.0148 (5)0.0185 (5)0.0145 (5)0.0009 (4)0.0023 (4)0.0006 (4)
C60.0152 (5)0.0175 (5)0.0106 (4)0.0007 (4)0.0029 (3)0.0005 (4)
C70.0150 (5)0.0173 (5)0.0111 (4)0.0007 (4)0.0031 (3)0.0001 (4)
C80.0155 (5)0.0187 (5)0.0125 (4)0.0003 (4)0.0026 (3)0.0001 (4)
C90.0202 (5)0.0187 (6)0.0154 (5)0.0017 (4)0.0027 (4)0.0006 (4)
C100.0244 (6)0.0150 (5)0.0159 (5)0.0012 (4)0.0028 (4)0.0006 (4)
C110.0195 (5)0.0192 (6)0.0156 (5)0.0030 (4)0.0019 (4)0.0003 (4)
C120.0159 (5)0.0187 (5)0.0123 (4)0.0013 (4)0.0027 (4)0.0000 (4)
C130.0140 (4)0.0192 (5)0.0163 (5)0.0010 (4)0.0021 (4)0.0007 (4)
C140.0150 (5)0.0176 (5)0.0164 (5)0.0019 (4)0.0018 (4)0.0040 (4)
C150.0165 (5)0.0212 (6)0.0252 (6)0.0022 (4)0.0056 (4)0.0007 (4)
Geometric parameters (Å, º) top
Cl1—C31.7436 (12)C6—C71.4787 (16)
Cl2—C101.7400 (13)C7—C121.4115 (15)
O1—C141.2147 (15)C7—C81.4117 (15)
N1—N21.2275 (16)C8—C91.3997 (17)
N1—C151.4627 (16)C8—C141.4930 (15)
N2—N31.1382 (17)C9—C101.3895 (16)
C1—C21.3896 (16)C9—H9A0.9500
C1—C61.4114 (15)C10—C111.3882 (17)
C1—C131.5055 (16)C11—C121.3856 (17)
C2—C31.3867 (17)C11—H11A0.9500
C2—H2A0.9500C12—C131.5042 (16)
C3—C41.3951 (16)C13—H13A0.9900
C4—C51.3901 (16)C13—H13B0.9900
C4—H4A0.9500C14—C151.5244 (16)
C5—C61.3995 (16)C15—H15A0.9900
C5—H5A0.9500C15—H15B0.9900
N2—N1—C15115.27 (10)C10—C9—H9A119.7
N3—N2—N1171.32 (12)C8—C9—H9A119.7
C2—C1—C6121.67 (11)C11—C10—C9121.55 (11)
C2—C1—C13127.74 (10)C11—C10—Cl2119.25 (9)
C6—C1—C13110.59 (10)C9—C10—Cl2119.21 (9)
C3—C2—C1117.70 (10)C12—C11—C10117.86 (11)
C3—C2—H2A121.2C12—C11—H11A121.1
C1—C2—H2A121.2C10—C11—H11A121.1
C2—C3—C4122.04 (11)C11—C12—C7122.41 (10)
C2—C3—Cl1119.03 (9)C11—C12—C13126.89 (10)
C4—C3—Cl1118.93 (9)C7—C12—C13110.70 (10)
C5—C4—C3119.88 (11)C12—C13—C1102.69 (9)
C5—C4—H4A120.1C12—C13—H13A111.2
C3—C4—H4A120.1C1—C13—H13A111.2
C4—C5—C6119.55 (10)C12—C13—H13B111.2
C4—C5—H5A120.2C1—C13—H13B111.2
C6—C5—H5A120.2H13A—C13—H13B109.1
C5—C6—C1119.17 (11)O1—C14—C8122.46 (10)
C5—C6—C7132.74 (10)O1—C14—C15121.08 (10)
C1—C6—C7108.05 (10)C8—C14—C15116.46 (10)
C12—C7—C8118.58 (11)N1—C15—C14113.40 (10)
C12—C7—C6107.91 (9)N1—C15—H15A108.9
C8—C7—C6133.44 (10)C14—C15—H15A108.9
C9—C8—C7118.89 (10)N1—C15—H15B108.9
C9—C8—C14118.04 (10)C14—C15—H15B108.9
C7—C8—C14123.01 (10)H15A—C15—H15B107.7
C10—C9—C8120.69 (11)
C6—C1—C2—C30.08 (16)C14—C8—C9—C10175.49 (10)
C13—C1—C2—C3178.91 (10)C8—C9—C10—C110.36 (17)
C1—C2—C3—C40.31 (16)C8—C9—C10—Cl2179.77 (8)
C1—C2—C3—Cl1179.91 (8)C9—C10—C11—C120.91 (16)
C2—C3—C4—C50.37 (17)Cl2—C10—C11—C12178.96 (8)
Cl1—C3—C4—C5179.85 (8)C10—C11—C12—C70.99 (16)
C3—C4—C5—C60.03 (16)C10—C11—C12—C13178.30 (10)
C4—C5—C6—C10.35 (15)C8—C7—C12—C110.19 (16)
C4—C5—C6—C7177.92 (10)C6—C7—C12—C11177.22 (10)
C2—C1—C6—C50.41 (16)C8—C7—C12—C13179.58 (9)
C13—C1—C6—C5178.74 (9)C6—C7—C12—C132.18 (12)
C2—C1—C6—C7178.53 (10)C11—C12—C13—C1176.92 (10)
C13—C1—C6—C70.62 (12)C7—C12—C13—C12.44 (11)
C5—C6—C7—C12176.80 (11)C2—C1—C13—C12177.27 (10)
C1—C6—C7—C120.96 (11)C6—C1—C13—C121.82 (11)
C5—C6—C7—C80.1 (2)C9—C8—C14—O1137.71 (12)
C1—C6—C7—C8177.82 (11)C7—C8—C14—O139.20 (16)
C12—C7—C8—C91.45 (15)C9—C8—C14—C1542.76 (14)
C6—C7—C8—C9175.15 (11)C7—C8—C14—C15140.33 (11)
C12—C7—C8—C14175.44 (10)N2—N1—C15—C1456.63 (15)
C6—C7—C8—C147.96 (18)O1—C14—C15—N17.46 (16)
C7—C8—C9—C101.55 (16)C8—C14—C15—N1173.01 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.952.323.0134 (14)129
C13—H13A···N3i0.992.593.4613 (16)147
C15—H15A···O1ii0.992.533.1941 (15)125
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H9Cl2N3O
Mr318.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7303 (1), 18.7012 (3), 6.8952 (1)
β (°) 98.61
V3)1368.06 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.35 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.850, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
15671, 4003, 3599
Rint0.020
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.03
No. of reflections4003
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.952.323.0134 (14)129
C13—H13A···N3i0.992.593.4613 (16)147
C15—H15A···O1ii0.992.533.1941 (15)125
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Structure Determination of kDa Outer Membrane Proteins from S. typhi by X-ray Protein Crystallography Grant (No. 1001/PSKBP/8630013).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBasanagouda, M., Nayak, S. K., Guru Row, T. N. & Kulkarni, M. V. (2010). Acta Cryst. E66, o2780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245–o2246.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolins, E., Miravitlles, C., Espinosa, E. & Ballester, M. (2002). J. Org. Chem. 67, 7175–7178.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNilan, R. A., Sideris, E. G., Kleinhofs, A. & Nilan, R. A. (1973). Mut. Res. 17, 142–144.  CrossRef CAS Google Scholar
First citationOwais, W., Rosichan, J. L., Roland, R. C., Kleinhofs, S. A. & Nilan, R. A. (1983). Mut. Res. 118, 229–239  CrossRef CAS Google Scholar
First citationPatei, D. I. & Smalley, R. K. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 2587–2590  Google Scholar
First citationPurvisis, P., Smalley, R. K., Saschitsky, H. & Alkhader, M. A. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 249–254  Google Scholar
First citationSander, C. & Muehlbour, F. J. (1977). Environ. Exp. 17, 43–45  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds