organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quinoline-2-carbaldehyde

aUniversity of the Western Cape, Cape Town, Bellville 7535, South Africa
*Correspondence e-mail: monani@uwc.ac.za

(Received 29 August 2011; accepted 1 September 2011; online 14 September 2011)

The title compound, C10H7NO, crystallizes with two almost planar mol­ecules (A and B) in the asymmetric unit (r.m.s. deviations = 0.018 and 0.020 Å). In the crystal, the A mol­ecules are linked by weak C—H⋯O inter­actions, thereby generating C(9) [001] chains. The B mol­ecules do not exhibit any directional bonding inter­actions.

Related literature

For the synthesis of the title compound, see: Cooper & Cohen (1932[Cooper, K. E. & Cohen, J. B. (1932). J. Chem. Soc. pp. 723-724.]). For its use in the synthesis of Schiff base ligands and imino-quinolyl-based transition metal complexes, see: Amandola & Mangano (2003[Amandola, V. & Mangano, C. (2003). Inorg. Chem. 42, 6056-6062.]); Prema & Wiznycia (2007[Prema, D. & Wiznycia, A. V. (2007). Dalton Trans. pp. 4788-4796.]); Ramos Silva et al. (2007[Ramos Silva, M., Silva, J. A., Cardoso, C., Matos Beja, A., Sobral, A. J. F. N. & Martins, N. M. D. (2007). Acta Cryst. A63, s178.]); Ardizzoia et al. (2009[Ardizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507-3512.]). For its catalytic properties, see: Zhou et al. (2008[Zhou, Y., Xi, Z., Chen, W. & Wang, D. (2008). Organometallics, 27, 5911-5920.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7NO

  • Mr = 157.17

  • Monoclinic, P 21 /n

  • a = 7.0639 (7) Å

  • b = 21.564 (2) Å

  • c = 10.698 (1) Å

  • β = 107.884 (2)°

  • V = 1550.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.16 × 0.09 × 0.06 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • 17618 measured reflections

  • 3887 independent reflections

  • 2379 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.00

  • 3887 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4A⋯O1Ai 0.95 2.53 3.424 (2) 158
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our investigation of bimetallic complexes as catalysts for C—C coupling reactions, we attempted to synthesize palladium (II) complexes of a bis(imino-quinolyl) ligand. The binucleating ligand brings two metal centers into closer proximity and the resultant bimetallic complex possesses unique reactivity patterns and unusual catalytic properties (Zhou et al. 2008). In an attempt to prepare a bis(imino-quinolyl) palladium (II) complex, the title compound, (I), waas indavertantly obtained (Fig. 1). Dimensions are available in the archived CIF.

Related literature top

For the synthesis of the title compound, see: Cooper & Cohen (1932). For its use in the synthesis of Schiff base ligands and imino-quinolyl-based transition metal complexes, see: Amandola & Mangano (2003); Prema & Wiznycia (2007); Ramos Silva et al. (2007); Ardizzoia et al. (2009). For its catalytic properties, see: Zhou et al. (2008). For related literature, see: Atwood & Barbour (2003).

Experimental top

Single crystals of 2-quinolinecarboxaldehyde were obtained as a result of the decomposition of bis(imino-quinolyl) chloromethyl palladium (II) complex. The bis-palladium (II) complex was prepared from the reaction of a bis(imino-quinolyl) ligand with 2 equimolar PdClMe(cod) in CH2Cl2. Orange needles of the title compound were grown by slow diffusion of hexane into the CH2Cl2 solution of the complex.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at geometrically calculated positions with d(C—H) = 0.95 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 Ueq (C). The structure was successfully refined to R factor of 0.0451.

Structure description top

As part of our investigation of bimetallic complexes as catalysts for C—C coupling reactions, we attempted to synthesize palladium (II) complexes of a bis(imino-quinolyl) ligand. The binucleating ligand brings two metal centers into closer proximity and the resultant bimetallic complex possesses unique reactivity patterns and unusual catalytic properties (Zhou et al. 2008). In an attempt to prepare a bis(imino-quinolyl) palladium (II) complex, the title compound, (I), waas indavertantly obtained (Fig. 1). Dimensions are available in the archived CIF.

For the synthesis of the title compound, see: Cooper & Cohen (1932). For its use in the synthesis of Schiff base ligands and imino-quinolyl-based transition metal complexes, see: Amandola & Mangano (2003); Prema & Wiznycia (2007); Ramos Silva et al. (2007); Ardizzoia et al. (2009). For its catalytic properties, see: Zhou et al. (2008). For related literature, see: Atwood & Barbour (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids with probability level of 50%.
[Figure 2] Fig. 2. Crystal packing of the title compound.
[Figure 3] Fig. 3. The formation of the title compound.
Quinoline-2-carbaldehyde top
Crystal data top
C10H7NOF(000) = 656
Mr = 157.17Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17618 reflections
a = 7.0639 (7) Åθ = 2.2–28.4°
b = 21.564 (2) ŵ = 0.09 mm1
c = 10.698 (1) ÅT = 173 K
β = 107.884 (2)°Needle, orange
V = 1550.9 (3) Å30.16 × 0.09 × 0.06 mm
Z = 8
Data collection top
Bruker Kappa DUO APEXII
diffractometer
2379 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 28.4°, θmin = 2.2°
0.5° φ scans and ωh = 99
17618 measured reflectionsk = 2828
3887 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.3641P]
where P = (Fo2 + 2Fc2)/3
3887 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H7NOV = 1550.9 (3) Å3
Mr = 157.17Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.0639 (7) ŵ = 0.09 mm1
b = 21.564 (2) ÅT = 173 K
c = 10.698 (1) Å0.16 × 0.09 × 0.06 mm
β = 107.884 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
2379 reflections with I > 2σ(I)
17618 measured reflectionsRint = 0.055
3887 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3887 reflectionsΔρmin = 0.23 e Å3
217 parameters
Special details top

Experimental. Half sphere of data collected using the Bruker SAINT software package. Crystal to detector distance = 45 mm; combination of φ and ω scans of 0.5°, 40 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.2759 (2)0.51665 (7)0.83374 (13)0.0500 (4)
N1A0.25666 (19)0.46418 (6)0.52163 (13)0.0301 (3)
C1A0.2419 (2)0.48240 (7)0.39656 (16)0.0283 (4)
C2A0.2385 (2)0.43602 (8)0.30235 (18)0.0377 (4)
H2A0.24580.39350.32650.045*
C3A0.2247 (3)0.45245 (10)0.17677 (19)0.0452 (5)
H3A0.22070.42110.11370.054*
C4A0.2162 (3)0.51490 (10)0.13944 (18)0.0438 (5)
H4A0.20890.52540.05180.053*
C5A0.2184 (2)0.56090 (9)0.22770 (17)0.0371 (4)
H5A0.21260.60310.20130.045*
C6A0.2292 (2)0.54573 (7)0.35861 (16)0.0283 (4)
C7A0.2265 (2)0.59065 (8)0.45389 (16)0.0313 (4)
H7A0.21690.63350.43190.038*
C8A0.2379 (2)0.57216 (7)0.57762 (17)0.0319 (4)
H8A0.23400.60170.64270.038*
C9A0.2557 (2)0.50841 (8)0.60734 (16)0.0294 (4)
C10A0.2734 (3)0.48493 (9)0.74045 (18)0.0388 (4)
H10A0.28360.44130.75340.047*
O1B0.60926 (19)0.21792 (6)0.27526 (14)0.0513 (4)
N1B0.1295 (2)0.27109 (6)0.43627 (14)0.0332 (3)
C1B0.0608 (2)0.25250 (7)0.50026 (16)0.0308 (4)
C2B0.2086 (3)0.29846 (8)0.54640 (18)0.0388 (4)
H2B0.17520.34110.53200.047*
C3B0.4002 (3)0.28133 (9)0.61193 (18)0.0431 (5)
H3B0.49900.31230.64300.052*
C4B0.4520 (3)0.21879 (9)0.63369 (18)0.0417 (4)
H4B0.58600.20780.67860.050*
C5B0.3129 (2)0.17325 (9)0.59128 (17)0.0381 (4)
H5B0.35010.13100.60760.046*
C6B0.1131 (2)0.18895 (8)0.52288 (16)0.0307 (4)
C7B0.0391 (2)0.14417 (8)0.47742 (17)0.0341 (4)
H7B0.00980.10130.49130.041*
C8B0.2280 (2)0.16321 (8)0.41355 (17)0.0343 (4)
H8B0.33230.13390.38210.041*
C9B0.2653 (2)0.22733 (8)0.39511 (16)0.0311 (4)
C10B0.4680 (3)0.25053 (9)0.32446 (18)0.0408 (4)
H10B0.48730.29410.31770.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0461 (8)0.0728 (10)0.0322 (7)0.0039 (7)0.0137 (6)0.0042 (7)
N1A0.0271 (7)0.0288 (7)0.0334 (8)0.0013 (5)0.0079 (6)0.0005 (6)
C1A0.0212 (7)0.0318 (9)0.0314 (9)0.0018 (6)0.0075 (6)0.0042 (7)
C2A0.0332 (9)0.0373 (10)0.0425 (11)0.0025 (7)0.0114 (8)0.0097 (8)
C3A0.0361 (10)0.0611 (13)0.0397 (11)0.0047 (9)0.0134 (8)0.0192 (9)
C4A0.0320 (9)0.0678 (14)0.0311 (10)0.0047 (9)0.0092 (7)0.0011 (9)
C5A0.0290 (9)0.0481 (11)0.0340 (10)0.0020 (7)0.0092 (7)0.0042 (8)
C6A0.0208 (7)0.0331 (9)0.0305 (9)0.0011 (6)0.0073 (6)0.0014 (7)
C7A0.0295 (8)0.0270 (8)0.0373 (10)0.0005 (6)0.0104 (7)0.0017 (7)
C8A0.0300 (8)0.0306 (9)0.0354 (10)0.0021 (7)0.0105 (7)0.0063 (7)
C9A0.0238 (8)0.0341 (9)0.0301 (9)0.0023 (6)0.0079 (6)0.0011 (7)
C10A0.0330 (9)0.0471 (11)0.0349 (10)0.0033 (8)0.0085 (8)0.0042 (8)
O1B0.0357 (7)0.0547 (9)0.0539 (9)0.0027 (6)0.0004 (6)0.0062 (7)
N1B0.0370 (8)0.0289 (7)0.0336 (8)0.0015 (6)0.0107 (6)0.0016 (6)
C1B0.0350 (9)0.0304 (8)0.0290 (9)0.0007 (7)0.0129 (7)0.0026 (7)
C2B0.0439 (10)0.0333 (9)0.0406 (10)0.0082 (8)0.0148 (8)0.0047 (8)
C3B0.0397 (10)0.0475 (11)0.0424 (11)0.0155 (8)0.0131 (8)0.0071 (9)
C4B0.0307 (9)0.0530 (12)0.0396 (10)0.0016 (8)0.0081 (8)0.0013 (9)
C5B0.0341 (9)0.0399 (10)0.0394 (10)0.0017 (8)0.0101 (8)0.0023 (8)
C6B0.0312 (8)0.0321 (9)0.0299 (9)0.0014 (7)0.0110 (7)0.0001 (7)
C7B0.0360 (9)0.0257 (8)0.0398 (10)0.0009 (7)0.0107 (8)0.0010 (7)
C8B0.0324 (9)0.0306 (9)0.0386 (10)0.0026 (7)0.0091 (7)0.0036 (7)
C9B0.0325 (8)0.0310 (9)0.0296 (9)0.0025 (7)0.0090 (7)0.0013 (7)
C10B0.0404 (10)0.0376 (10)0.0413 (11)0.0068 (8)0.0080 (8)0.0000 (8)
Geometric parameters (Å, º) top
O1A—C10A1.206 (2)O1B—C10B1.202 (2)
N1A—C9A1.325 (2)N1B—C9B1.321 (2)
N1A—C1A1.367 (2)N1B—C1B1.368 (2)
C1A—C2A1.415 (2)C1B—C2B1.414 (2)
C1A—C6A1.420 (2)C1B—C6B1.420 (2)
C2A—C3A1.364 (3)C2B—C3B1.370 (3)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.401 (3)C3B—C4B1.398 (3)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.366 (3)C4B—C5B1.364 (2)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.417 (2)C5B—C6B1.417 (2)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.410 (2)C6B—C7B1.416 (2)
C7A—C8A1.361 (2)C7B—C8B1.362 (2)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.408 (2)C8B—C9B1.410 (2)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.480 (2)C9B—C10B1.485 (2)
C10A—H10A0.9500C10B—H10B0.9500
C9A—N1A—C1A117.09 (14)C9B—N1B—C1B117.33 (14)
N1A—C1A—C2A118.25 (15)N1B—C1B—C2B118.42 (15)
N1A—C1A—C6A122.37 (14)N1B—C1B—C6B122.15 (14)
C2A—C1A—C6A119.38 (15)C2B—C1B—C6B119.42 (15)
C3A—C2A—C1A119.90 (17)C3B—C2B—C1B119.80 (17)
C3A—C2A—H2A120.1C3B—C2B—H2B120.1
C1A—C2A—H2A120.1C1B—C2B—H2B120.1
C2A—C3A—C4A120.97 (18)C2B—C3B—C4B120.84 (17)
C2A—C3A—H3A119.5C2B—C3B—H3B119.6
C4A—C3A—H3A119.5C4B—C3B—H3B119.6
C5A—C4A—C3A120.70 (18)C5B—C4B—C3B120.90 (17)
C5A—C4A—H4A119.7C5B—C4B—H4B119.5
C3A—C4A—H4A119.7C3B—C4B—H4B119.5
C4A—C5A—C6A120.07 (17)C4B—C5B—C6B120.08 (17)
C4A—C5A—H5A120.0C4B—C5B—H5B120.0
C6A—C5A—H5A120.0C6B—C5B—H5B120.0
C7A—C6A—C5A123.16 (16)C7B—C6B—C5B123.05 (15)
C7A—C6A—C1A117.88 (15)C7B—C6B—C1B117.98 (15)
C5A—C6A—C1A118.96 (15)C5B—C6B—C1B118.96 (15)
C8A—C7A—C6A119.46 (15)C8B—C7B—C6B119.36 (15)
C8A—C7A—H7A120.3C8B—C7B—H7B120.3
C6A—C7A—H7A120.3C6B—C7B—H7B120.3
C7A—C8A—C9A118.70 (15)C7B—C8B—C9B118.56 (15)
C7A—C8A—H8A120.6C7B—C8B—H8B120.7
C9A—C8A—H8A120.6C9B—C8B—H8B120.7
N1A—C9A—C8A124.46 (15)N1B—C9B—C8B124.62 (15)
N1A—C9A—C10A113.76 (15)N1B—C9B—C10B114.65 (15)
C8A—C9A—C10A121.78 (15)C8B—C9B—C10B120.73 (15)
O1A—C10A—C9A125.30 (18)O1B—C10B—C9B124.52 (17)
O1A—C10A—H10A117.4O1B—C10B—H10B117.7
C9A—C10A—H10A117.4C9B—C10B—H10B117.7
C9A—N1A—C1A—C2A178.72 (14)C9B—N1B—C1B—C2B179.40 (16)
C9A—N1A—C1A—C6A1.0 (2)C9B—N1B—C1B—C6B0.2 (2)
N1A—C1A—C2A—C3A179.74 (15)N1B—C1B—C2B—C3B179.39 (16)
C6A—C1A—C2A—C3A0.5 (2)C6B—C1B—C2B—C3B0.2 (3)
C1A—C2A—C3A—C4A0.8 (3)C1B—C2B—C3B—C4B0.2 (3)
C2A—C3A—C4A—C5A1.1 (3)C2B—C3B—C4B—C5B0.6 (3)
C3A—C4A—C5A—C6A0.0 (3)C3B—C4B—C5B—C6B0.7 (3)
C4A—C5A—C6A—C7A178.22 (16)C4B—C5B—C6B—C7B179.28 (17)
C4A—C5A—C6A—C1A1.3 (2)C4B—C5B—C6B—C1B0.4 (3)
N1A—C1A—C6A—C7A1.7 (2)N1B—C1B—C6B—C7B0.3 (2)
C2A—C1A—C6A—C7A178.00 (15)C2B—C1B—C6B—C7B178.91 (16)
N1A—C1A—C6A—C5A178.70 (14)N1B—C1B—C6B—C5B179.26 (15)
C2A—C1A—C6A—C5A1.6 (2)C2B—C1B—C6B—C5B0.1 (2)
C5A—C6A—C7A—C8A179.86 (15)C5B—C6B—C7B—C8B179.36 (17)
C1A—C6A—C7A—C8A0.6 (2)C1B—C6B—C7B—C8B0.4 (2)
C6A—C7A—C8A—C9A1.1 (2)C6B—C7B—C8B—C9B0.1 (3)
C1A—N1A—C9A—C8A0.9 (2)C1B—N1B—C9B—C8B0.6 (3)
C1A—N1A—C9A—C10A179.66 (13)C1B—N1B—C9B—C10B179.01 (15)
C7A—C8A—C9A—N1A2.0 (2)C7B—C8B—C9B—N1B0.4 (3)
C7A—C8A—C9A—C10A178.60 (15)C7B—C8B—C9B—C10B179.14 (16)
N1A—C9A—C10A—O1A179.95 (16)N1B—C9B—C10B—O1B176.94 (18)
C8A—C9A—C10A—O1A0.6 (3)C8B—C9B—C10B—O1B2.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···O1Ai0.952.533.424 (2)158
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H7NO
Mr157.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.0639 (7), 21.564 (2), 10.698 (1)
β (°) 107.884 (2)
V3)1550.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.09 × 0.06
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17618, 3887, 2379
Rint0.055
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.00
No. of reflections3887
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···O1Ai0.952.533.424 (2)158
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors acknowledge financial support from the NRF–Thuthuka division and the University of the Western Cape Senate Research.

References

First citationAmandola, V. & Mangano, C. (2003). Inorg. Chem. 42, 6056–6062.  PubMed Google Scholar
First citationArdizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507–3512.  Google Scholar
First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, K. E. & Cohen, J. B. (1932). J. Chem. Soc. pp. 723–724.  Google Scholar
First citationPrema, D. & Wiznycia, A. V. (2007). Dalton Trans. pp. 4788–4796.  Web of Science CSD CrossRef Google Scholar
First citationRamos Silva, M., Silva, J. A., Cardoso, C., Matos Beja, A., Sobral, A. J. F. N. & Martins, N. M. D. (2007). Acta Cryst. A63, s178.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y., Xi, Z., Chen, W. & Wang, D. (2008). Organometallics, 27, 5911–5920.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds