organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-(4-chloro­phen­yl)carbamate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 30 August 2011; accepted 13 September 2011; online 30 September 2011)

In the title compound, C8H8ClNO2, the dihedral angle between the chloro­benzene ring and the side chain is 8.79 (11)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a C(4) chain propagating in the b-axis direction.

Related literature

For related structures, see: Li (2011a[Li, Y.-F. (2011a). Acta Cryst. E67, o1796.],b[Li, Y.-F. (2011b). Acta Cryst. E67, o2492.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO2

  • Mr = 185.60

  • Monoclinic, P 21 /c

  • a = 11.126 (2) Å

  • b = 9.833 (2) Å

  • c = 8.0076 (16) Å

  • β = 99.34 (3)°

  • V = 864.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 8281 measured reflections

  • 1987 independent reflections

  • 1011 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.159

  • S = 1.06

  • 1987 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.22 3.069 (2) 168
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For related structures, see: Li (2011a,b).

Experimental top

A mixture of methanol (0.06 mol), and (4-chlorophenyl)carbamic chloride (0.06 mol) was stirred in refluxing ethanol (15 ml) for 4 h to afford the title compound (0.05 mol, yield 83%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

For related structures, see: Li (2011a,b).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
Methyl N-(4-chlorophenyl)carbamate top
Crystal data top
C8H8ClNO2F(000) = 384
Mr = 185.60Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1987 reflections
a = 11.126 (2) Åθ = 3.0–27.2°
b = 9.833 (2) ŵ = 0.40 mm1
c = 8.0076 (16) ÅT = 293 K
β = 99.34 (3)°Block, colorless
V = 864.5 (3) Å30.23 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1011 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
φ and ω scansh = 1413
8281 measured reflectionsk = 1212
1987 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.081P)2 + 0.0499P]
where P = (Fo2 + 2Fc2)/3
1987 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H8ClNO2V = 864.5 (3) Å3
Mr = 185.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.126 (2) ŵ = 0.40 mm1
b = 9.833 (2) ÅT = 293 K
c = 8.0076 (16) Å0.23 × 0.20 × 0.18 mm
β = 99.34 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1011 reflections with I > 2σ(I)
8281 measured reflectionsRint = 0.036
1987 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
1987 reflectionsΔρmin = 0.26 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51185 (8)0.66723 (9)0.21431 (13)0.1092 (4)
N10.95328 (17)0.52547 (19)0.6982 (3)0.0611 (5)
H1A0.95430.44200.73040.073*
O21.06775 (16)0.71949 (15)0.7364 (2)0.0699 (5)
C80.8511 (2)0.56561 (19)0.5821 (3)0.0527 (6)
O11.12660 (16)0.52441 (16)0.8735 (2)0.0749 (5)
C21.0498 (2)0.6012 (2)0.7656 (3)0.0570 (6)
C70.8409 (2)0.6894 (2)0.4978 (3)0.0628 (6)
H7A0.90420.75210.51660.075*
C60.7360 (2)0.7191 (2)0.3855 (3)0.0660 (7)
H6A0.72940.80210.32900.079*
C50.6422 (2)0.6283 (2)0.3568 (3)0.0665 (7)
C40.6513 (2)0.5048 (2)0.4395 (3)0.0715 (7)
H4A0.58780.44230.41950.086*
C30.7548 (2)0.4750 (2)0.5514 (3)0.0644 (6)
H3A0.76040.39200.60790.077*
C11.2359 (3)0.5899 (3)0.9546 (4)0.0819 (8)
H1B1.28410.52641.02820.123*
H1C1.21510.66591.01960.123*
H1D1.28170.62120.87030.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0837 (6)0.1053 (7)0.1253 (8)0.0005 (4)0.0225 (5)0.0310 (5)
N10.0645 (12)0.0440 (10)0.0726 (14)0.0029 (8)0.0044 (10)0.0032 (8)
O20.0731 (11)0.0436 (9)0.0893 (13)0.0026 (7)0.0018 (9)0.0033 (8)
C80.0568 (13)0.0435 (11)0.0582 (14)0.0003 (9)0.0104 (11)0.0046 (9)
O10.0764 (12)0.0545 (9)0.0866 (13)0.0024 (8)0.0085 (10)0.0031 (8)
C20.0626 (14)0.0463 (12)0.0608 (15)0.0040 (10)0.0063 (11)0.0061 (10)
C70.0694 (16)0.0509 (12)0.0679 (16)0.0083 (10)0.0106 (13)0.0044 (10)
C60.0761 (17)0.0530 (13)0.0683 (17)0.0025 (11)0.0105 (13)0.0114 (11)
C50.0677 (16)0.0597 (13)0.0713 (17)0.0040 (12)0.0086 (13)0.0046 (11)
C40.0665 (16)0.0555 (13)0.0897 (19)0.0079 (11)0.0045 (14)0.0013 (13)
C30.0683 (15)0.0418 (11)0.0811 (17)0.0030 (10)0.0059 (13)0.0041 (10)
C10.0753 (19)0.0700 (16)0.091 (2)0.0008 (13)0.0140 (15)0.0020 (14)
Geometric parameters (Å, º) top
Cl1—C51.736 (3)C7—H7A0.9300
N1—C21.345 (3)C6—C51.364 (4)
N1—C81.404 (3)C6—H6A0.9300
N1—H1A0.8600C5—C41.379 (3)
O2—C21.209 (3)C4—C31.371 (3)
C8—C31.385 (3)C4—H4A0.9300
C8—C71.388 (3)C3—H3A0.9300
O1—C21.345 (3)C1—H1B0.9600
O1—C11.435 (3)C1—H1C0.9600
C7—C61.384 (4)C1—H1D0.9600
C2—N1—C8128.2 (2)C6—C5—C4120.1 (2)
C2—N1—H1A115.9C6—C5—Cl1120.07 (19)
C8—N1—H1A115.9C4—C5—Cl1119.9 (2)
C3—C8—C7118.6 (2)C3—C4—C5119.4 (2)
C3—C8—N1117.20 (19)C3—C4—H4A120.3
C7—C8—N1124.2 (2)C5—C4—H4A120.3
C2—O1—C1116.3 (2)C4—C3—C8121.5 (2)
O2—C2—O1123.8 (2)C4—C3—H3A119.3
O2—C2—N1126.9 (2)C8—C3—H3A119.3
O1—C2—N1109.2 (2)O1—C1—H1B109.5
C6—C7—C8119.7 (2)O1—C1—H1C109.5
C6—C7—H7A120.2H1B—C1—H1C109.5
C8—C7—H7A120.2O1—C1—H1D109.5
C5—C6—C7120.8 (2)H1B—C1—H1D109.5
C5—C6—H6A119.6H1C—C1—H1D109.5
C7—C6—H6A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.223.069 (2)168
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H8ClNO2
Mr185.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.126 (2), 9.833 (2), 8.0076 (16)
β (°) 99.34 (3)
V3)864.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8281, 1987, 1011
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.159, 1.06
No. of reflections1987
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.223.069 (2)168
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

This study was supported by the Natural Science Foundation of Shandong Province (no. ZR2010BL025).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2011a). Acta Cryst. E67, o1796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. (2011b). Acta Cryst. E67, o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds