organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,2-bis­­(2,4-di­nitro­phen­yl)ethano­ate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, bDepartment of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India, and cDepartment of Chemistry, Faculty of Engineering and Technology, SRM University, Kattankulathur 603 203, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 31 August 2011; accepted 7 September 2011; online 30 September 2011)

In the title compound, C15H10N4O10, the dihedral angle between the aromatic rings is 89.05 (16)°. One O atom of one of the nitro groups is disordered over two sites in a 0.70:0.30 ratio. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature

For related structures, see: Chudek et al. (1989[Chudek, J. A., Foster, R. & Keith, S. (1989). Gazz. Chim. Ital. 119, 51-53.]); Ertas et al. (1998[Ertas, E., Ozturk, T., Wallis, J. D. & Watson, W. H. (1998). J. Chem. Crystallogr. 28, 409-412.]). For background to the uses of eth­yl/methyl 2,2-bis­(2,4-dinitro­phen­yl)ethano­ates, see: Hu (2005[Hu, M. (2005). Chinese Patent 1 594 464, March 16.]); Kawai & Watanabe (2002[Kawai, Y. & Watanabe, T. (2002). Japanese Patent 2002 071665, March 12.]); Liu et al. (2009[Liu, Q., Chen, X., Dong, R., Wang, S., Shuang, S. & Dong, C. (2009). Chinese Patent 101 381 965, March 11.]). For further synthetic details, see: McIvor & Miller (1965[McIvor, R. A. & Miller, R. K. (1965). Canada Patent 7 23 181, Dec. 7.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N4O10

  • Mr = 406.27

  • Monoclinic, P 21 /c

  • a = 9.812 (5) Å

  • b = 10.974 (6) Å

  • c = 16.025 (9) Å

  • β = 91.589 (10)°

  • V = 1724.8 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.34 × 0.29 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.965

  • 13533 measured reflections

  • 3525 independent reflections

  • 1981 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.293

  • S = 0.98

  • 3525 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.98 2.43 3.301 (5) 149
C7—H7⋯O10ii 0.93 2.38 3.273 (5) 160
C15—H15A⋯O8iii 0.96 2.59 3.255 (5) 127
C15—H15B⋯O3i 0.96 2.41 3.216 (9) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-III (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ethyl / methyl 2,2-bis(2,4-dinitrophenyl)ethanoates have been used in many analytical detections (Kawai & Watanabe, 2002) and for the preparation of photo degradable aqueous inks (Hu, 2005) and tailor's chalk (Liu et al., 2009). Articles have also appeared on the structure of ethyl 2,2-bis(2,4-dinitrophenyl) ethanoate (Chudek et al., 1989, Ertas et al., 1998).

Ethyl 2,2-bis(2,4-dinitrophenyl)ethanoate has been synthesized (yield 32–71%) by mixing equimolar amounts of 1-chloro-2,4-dinitrobenzene and ethyl 2,4-dinitrophenylacetate in the presence of tripropylamine in dimethylformamide medium (McIvor and Miller, 1965). The same authors have also prepared methyl 2,2-bis(2,4-dinitrophenyl)ethanoate (title molecule) only in 32% yield by adopting the same procedure. In this article we report an efficient new one pot synthesis to prepare title molecule (scheme) in good yield (65–70%) with high purity. The acetyl group of methyl 3-oxobutanoate has cleaved off during the formation of the title molecule.

The ORTEP diagram of title molecule is presented in Figure 1. The packing of the molecules features a number of C—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Chudek et al. (1989); Ertas et al. (1998). For background to the uses of ethyl/methyl 2,2-bis(2,4-dinitrophenyl)ethanoates, see: Hu (2005); Kawai & Watanabe (2002); Liu et al. (2009). For further synthetic details, see: McIvor & Miller (1965).

Experimental top

1-Chloro-2,4-dinitrobenzene (2 g, 0.01 mol) in absolute ethanol was mixed with methyl 3-oxobutanoate (1.2 g, 0.01 mol) in absolute ethanol. Triethylamine (5 g, 0.05 mol) was then added and the mixture was shaken well for 5 to 6 h. On standing pale yellow crystals come out from the solution after 15 days. The crystals were filtered and washed well with distilled water and dried. The dried crystals were powdered and washed with copious amount of ether to remove the unreacted reactants and then with little absolute alcohol. The crystals obtained after washing were recrystallized either from ethylacetate or chloroform to yield colourless blocks of the title compound (yield 65–70%: m.pt. 428 K).

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Structure description top

Ethyl / methyl 2,2-bis(2,4-dinitrophenyl)ethanoates have been used in many analytical detections (Kawai & Watanabe, 2002) and for the preparation of photo degradable aqueous inks (Hu, 2005) and tailor's chalk (Liu et al., 2009). Articles have also appeared on the structure of ethyl 2,2-bis(2,4-dinitrophenyl) ethanoate (Chudek et al., 1989, Ertas et al., 1998).

Ethyl 2,2-bis(2,4-dinitrophenyl)ethanoate has been synthesized (yield 32–71%) by mixing equimolar amounts of 1-chloro-2,4-dinitrobenzene and ethyl 2,4-dinitrophenylacetate in the presence of tripropylamine in dimethylformamide medium (McIvor and Miller, 1965). The same authors have also prepared methyl 2,2-bis(2,4-dinitrophenyl)ethanoate (title molecule) only in 32% yield by adopting the same procedure. In this article we report an efficient new one pot synthesis to prepare title molecule (scheme) in good yield (65–70%) with high purity. The acetyl group of methyl 3-oxobutanoate has cleaved off during the formation of the title molecule.

The ORTEP diagram of title molecule is presented in Figure 1. The packing of the molecules features a number of C—H···O hydrogen bonds (Table 1).

For related structures, see: Chudek et al. (1989); Ertas et al. (1998). For background to the uses of ethyl/methyl 2,2-bis(2,4-dinitrophenyl)ethanoates, see: Hu (2005); Kawai & Watanabe (2002); Liu et al. (2009). For further synthetic details, see: McIvor & Miller (1965).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-III (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
Methyl 2,2-bis(2,4-dinitrophenyl)ethanoate top
Crystal data top
C15H10N4O10F(000) = 832
Mr = 406.27Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.812 (5) ÅCell parameters from 567 reflections
b = 10.974 (6) Åθ = 2.5–26.0°
c = 16.025 (9) ŵ = 0.14 mm1
β = 91.589 (10)°T = 293 K
V = 1724.8 (16) Å3Block, colorless
Z = 40.34 × 0.29 × 0.27 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3525 independent reflections
Radiation source: fine-focus sealed tube1981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 0.3 pixels mm-1θmax = 26.4°, θmin = 2.1°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1313
Tmin = 0.955, Tmax = 0.965l = 2020
13533 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycleSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.293H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
3525 reflections(Δ/σ)max = 0.012
262 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C15H10N4O10V = 1724.8 (16) Å3
Mr = 406.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.812 (5) ŵ = 0.14 mm1
b = 10.974 (6) ÅT = 293 K
c = 16.025 (9) Å0.34 × 0.29 × 0.27 mm
β = 91.589 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1981 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.965Rint = 0.046
13533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.293H-atom parameters constrained
S = 0.98Δρmax = 0.86 e Å3
3525 reflectionsΔρmin = 0.52 e Å3
262 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell s.u.'s are taken

into account individually in the estimation of s.u.'s in distances, angles

and torsion angles; correlations between s.u.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5549 (3)0.1001 (4)0.33068 (19)0.1017 (12)
O20.5029 (2)0.1801 (3)0.20813 (16)0.0676 (8)
O30.5184 (7)0.3122 (6)0.4951 (5)0.136 (2)*0.7
O3A0.4078 (11)0.3806 (10)0.5064 (7)0.086 (3)*0.3
O40.4263 (4)0.3497 (3)0.38083 (18)0.0951 (10)
O50.2382 (4)0.1011 (2)0.69206 (16)0.0784 (9)
O60.1291 (3)0.0550 (3)0.64934 (17)0.0822 (9)
O70.0686 (2)0.2483 (2)0.30932 (14)0.0568 (6)
O80.0449 (3)0.2648 (3)0.19403 (17)0.0695 (8)
O90.0984 (4)0.1013 (3)0.03896 (17)0.0908 (10)
O100.0800 (5)0.2084 (3)0.0167 (2)0.1186 (14)
N10.4152 (5)0.3015 (4)0.4429 (2)0.1069 (15)
N20.1982 (3)0.0338 (3)0.63757 (17)0.0529 (7)
N30.0397 (3)0.2146 (2)0.23940 (17)0.0455 (7)
N40.0206 (4)0.1288 (3)0.05241 (18)0.0742 (11)
C10.4734 (4)0.1400 (4)0.2825 (2)0.0544 (9)
C20.3221 (3)0.1506 (3)0.29780 (19)0.0424 (8)
H20.29690.23610.28890.051*
C30.2927 (3)0.1203 (3)0.38819 (19)0.0420 (8)
C40.3366 (4)0.1903 (3)0.4556 (2)0.0557 (9)
C50.3089 (4)0.1621 (3)0.5366 (2)0.0565 (10)
H50.34120.21080.58040.068*
C60.2338 (3)0.0622 (3)0.55141 (19)0.0444 (8)
C70.1878 (4)0.0127 (3)0.4884 (2)0.0555 (9)
H70.13710.08190.49990.067*
C80.2183 (4)0.0169 (3)0.4073 (2)0.0548 (9)
H80.18810.03390.36420.066*
C90.2407 (3)0.0761 (3)0.23477 (18)0.0420 (7)
C100.1093 (3)0.1079 (3)0.20720 (18)0.0399 (7)
C110.0366 (4)0.0419 (3)0.14770 (19)0.0485 (8)
H110.05060.06540.13020.058*
C120.0968 (4)0.0586 (3)0.1154 (2)0.0547 (10)
C130.2250 (5)0.0943 (3)0.1401 (2)0.0610 (11)
H130.26450.16320.11710.073*
C140.2945 (4)0.0269 (3)0.1994 (2)0.0586 (10)
H140.38150.05170.21640.07*
C150.6420 (4)0.1669 (5)0.1825 (3)0.0790 (13)
H15A0.70020.21840.21630.119*
H15B0.64830.190.1250.119*
H15C0.670.08360.18920.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0536 (16)0.175 (3)0.0770 (19)0.039 (2)0.0044 (14)0.038 (2)
O20.0451 (13)0.099 (2)0.0595 (15)0.0030 (14)0.0116 (11)0.0197 (14)
O40.130 (3)0.091 (2)0.0644 (17)0.057 (2)0.0008 (17)0.0107 (15)
O50.114 (2)0.0730 (19)0.0486 (14)0.0012 (17)0.0103 (14)0.0108 (13)
O60.0809 (19)0.104 (2)0.0625 (16)0.0308 (17)0.0112 (14)0.0161 (15)
O70.0572 (14)0.0635 (15)0.0499 (12)0.0047 (12)0.0041 (11)0.0124 (11)
O80.0556 (15)0.0680 (17)0.0838 (17)0.0205 (13)0.0170 (13)0.0031 (14)
O90.142 (3)0.0722 (19)0.0568 (15)0.0440 (19)0.0298 (16)0.0104 (13)
O100.233 (4)0.0577 (18)0.0638 (18)0.013 (2)0.018 (2)0.0165 (15)
N10.144 (3)0.124 (3)0.0516 (19)0.089 (3)0.020 (2)0.010 (2)
N20.0522 (17)0.0567 (18)0.0501 (15)0.0065 (14)0.0086 (13)0.0082 (13)
N30.0356 (13)0.0472 (16)0.0535 (15)0.0013 (12)0.0002 (11)0.0005 (12)
N40.136 (3)0.0434 (17)0.0423 (16)0.0151 (19)0.0114 (17)0.0084 (13)
C10.0470 (19)0.065 (2)0.0512 (19)0.0017 (18)0.0009 (16)0.0027 (17)
C20.0379 (16)0.0461 (18)0.0433 (16)0.0005 (14)0.0026 (13)0.0064 (14)
C30.0373 (16)0.0432 (18)0.0455 (16)0.0003 (14)0.0018 (13)0.0016 (14)
C40.060 (2)0.058 (2)0.0494 (18)0.0170 (18)0.0038 (16)0.0050 (16)
C50.064 (2)0.062 (2)0.0436 (18)0.0139 (19)0.0057 (16)0.0023 (16)
C60.0417 (17)0.0492 (19)0.0425 (16)0.0015 (15)0.0021 (13)0.0025 (14)
C70.070 (2)0.0450 (19)0.0515 (19)0.0121 (18)0.0027 (17)0.0065 (16)
C80.072 (2)0.046 (2)0.0463 (18)0.0109 (18)0.0038 (16)0.0014 (15)
C90.0449 (17)0.0445 (18)0.0370 (15)0.0010 (15)0.0097 (13)0.0024 (13)
C100.0456 (17)0.0385 (17)0.0360 (15)0.0007 (14)0.0049 (13)0.0029 (12)
C110.059 (2)0.0480 (19)0.0385 (16)0.0071 (17)0.0011 (14)0.0073 (14)
C120.084 (3)0.0434 (19)0.0364 (16)0.0099 (19)0.0033 (16)0.0040 (14)
C130.090 (3)0.042 (2)0.052 (2)0.008 (2)0.018 (2)0.0016 (16)
C140.063 (2)0.053 (2)0.060 (2)0.0132 (19)0.0123 (18)0.0016 (18)
C150.052 (2)0.111 (4)0.075 (3)0.007 (2)0.016 (2)0.001 (3)
Geometric parameters (Å, º) top
O1—C11.180 (4)C3—C41.385 (5)
O2—C11.311 (4)C3—C81.387 (5)
O2—C151.443 (5)C4—C51.369 (5)
O3—N11.302 (7)C5—C61.346 (5)
O3—O3A1.336 (12)C5—H50.9300
O3A—N11.341 (11)C6—C71.369 (5)
O4—N11.134 (4)C7—C81.380 (5)
O5—N21.201 (3)C7—H70.9300
O6—N21.206 (3)C8—H80.9300
O7—N31.206 (3)C9—C141.376 (5)
O8—N31.220 (3)C9—C101.396 (5)
O9—N41.219 (4)C10—C111.380 (4)
O10—N41.204 (4)C11—C121.360 (5)
N1—C41.460 (5)C11—H110.9300
N2—C61.467 (4)C12—C131.365 (6)
N3—C101.457 (4)C13—C141.371 (5)
N4—C121.459 (5)C13—H130.9300
C1—C21.516 (5)C14—H140.9300
C2—C91.510 (4)C15—H15A0.9600
C2—C31.522 (4)C15—H15B0.9600
C2—H20.9800C15—H15C0.9600
C1—O2—C15117.4 (3)C4—C5—H5120.8
N1—O3—O3A61.1 (6)C5—C6—C7122.0 (3)
O3—O3A—N158.2 (6)C5—C6—N2119.0 (3)
O4—N1—O3115.4 (5)C7—C6—N2119.0 (3)
O4—N1—O3A111.8 (6)C6—C7—C8118.5 (3)
O3—N1—O3A60.7 (6)C6—C7—H7120.7
O4—N1—C4125.2 (3)C8—C7—H7120.7
O3—N1—C4113.0 (5)C7—C8—C3121.9 (3)
O3A—N1—C4113.3 (6)C7—C8—H8119.0
O5—N2—O6123.9 (2)C3—C8—H8119.0
O5—N2—C6118.2 (3)C14—C9—C10115.9 (3)
O6—N2—C6117.9 (3)C14—C9—C2121.2 (3)
O7—N3—O8123.7 (2)C10—C9—C2122.9 (3)
O7—N3—C10118.4 (2)C11—C10—C9122.9 (3)
O8—N3—C10118.0 (2)C11—C10—N3115.4 (3)
O10—N4—O9124.7 (3)C9—C10—N3121.8 (3)
O10—N4—C12117.8 (3)C12—C11—C10117.8 (3)
O9—N4—C12117.5 (3)C12—C11—H11121.1
O1—C1—O2123.8 (3)C10—C11—H11121.1
O1—C1—C2124.9 (3)C11—C12—C13121.9 (3)
O2—C1—C2111.3 (3)C11—C12—N4118.1 (4)
C9—C2—C1110.6 (3)C13—C12—N4120.0 (3)
C9—C2—C3114.1 (3)C12—C13—C14118.8 (3)
C1—C2—C3110.5 (3)C12—C13—H13120.6
C9—C2—H2107.1C14—C13—H13120.6
C1—C2—H2107.1C13—C14—C9122.7 (4)
C3—C2—H2107.1C13—C14—H14118.7
C4—C3—C8115.8 (3)C9—C14—H14118.7
C4—C3—C2124.0 (3)O2—C15—H15A109.5
C8—C3—C2120.2 (3)O2—C15—H15B109.5
C5—C4—C3123.3 (3)H15A—C15—H15B109.5
C5—C4—N1116.2 (3)O2—C15—H15C109.5
C3—C4—N1120.5 (3)H15A—C15—H15C109.5
C6—C5—C4118.4 (3)H15B—C15—H15C109.5
C6—C5—H5120.8
O3A—O3—N1—O4101.8 (7)O6—N2—C6—C70.1 (4)
O3A—O3—N1—C4104.7 (7)C5—C6—C7—C80.9 (6)
O3—O3A—N1—O4107.8 (6)N2—C6—C7—C8178.0 (3)
O3—O3A—N1—C4104.2 (6)C6—C7—C8—C30.6 (6)
C15—O2—C1—O14.1 (6)C4—C3—C8—C71.3 (5)
C15—O2—C1—C2175.4 (3)C2—C3—C8—C7179.0 (3)
O1—C1—C2—C9118.9 (4)C1—C2—C9—C1428.9 (4)
O2—C1—C2—C960.5 (4)C3—C2—C9—C1496.4 (4)
O1—C1—C2—C38.4 (6)C1—C2—C9—C10149.5 (3)
O2—C1—C2—C3172.2 (3)C3—C2—C9—C1085.2 (4)
C9—C2—C3—C4168.3 (3)C14—C9—C10—C110.5 (5)
C1—C2—C3—C466.4 (4)C2—C9—C10—C11177.9 (3)
C9—C2—C3—C812.1 (4)C14—C9—C10—N3179.9 (3)
C1—C2—C3—C8113.3 (4)C2—C9—C10—N31.6 (5)
C8—C3—C4—C50.5 (6)O7—N3—C10—C11152.1 (3)
C2—C3—C4—C5179.8 (3)O8—N3—C10—C1127.7 (4)
C8—C3—C4—N1179.7 (4)O7—N3—C10—C928.3 (4)
C2—C3—C4—N10.6 (6)O8—N3—C10—C9151.9 (3)
O4—N1—C4—C5165.2 (5)C9—C10—C11—C120.4 (5)
O3—N1—C4—C544.4 (6)N3—C10—C11—C12179.9 (3)
O3A—N1—C4—C522.2 (7)C10—C11—C12—C130.2 (5)
O4—N1—C4—C314.1 (7)C10—C11—C12—N4179.9 (3)
O3—N1—C4—C3136.3 (5)O10—N4—C12—C11171.1 (3)
O3A—N1—C4—C3157.0 (6)O9—N4—C12—C118.0 (4)
C3—C4—C5—C60.9 (6)O10—N4—C12—C138.7 (5)
N1—C4—C5—C6178.4 (4)O9—N4—C12—C13172.2 (3)
C4—C5—C6—C71.6 (6)C11—C12—C13—C140.2 (6)
C4—C5—C6—N2177.3 (3)N4—C12—C13—C14180.0 (3)
O5—N2—C6—C50.3 (4)C12—C13—C14—C90.5 (6)
O6—N2—C6—C5178.8 (3)C10—C9—C14—C130.6 (5)
O5—N2—C6—C7179.2 (3)C2—C9—C14—C13177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.982.433.301 (5)149
C7—H7···O10ii0.932.383.273 (5)160
C15—H15A···O8iii0.962.593.255 (5)127
C15—H15B···O3i0.962.413.216 (9)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H10N4O10
Mr406.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.812 (5), 10.974 (6), 16.025 (9)
β (°) 91.589 (10)
V3)1724.8 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.34 × 0.29 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.955, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
13533, 3525, 1981
Rint0.046
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.293, 0.98
No. of reflections3525
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.52

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-III (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.982.433.301 (5)149
C7—H7···O10ii0.932.383.273 (5)160
C15—H15A···O8iii0.962.593.255 (5)127
C15—H15B···O3i0.962.413.216 (9)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Netaji of the IISc Bangalore for the data collection.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChudek, J. A., Foster, R. & Keith, S. (1989). Gazz. Chim. Ital. 119, 51–53.  CAS Google Scholar
First citationErtas, E., Ozturk, T., Wallis, J. D. & Watson, W. H. (1998). J. Chem. Crystallogr. 28, 409–412.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, M. (2005). Chinese Patent 1 594 464, March 16.  Google Scholar
First citationKawai, Y. & Watanabe, T. (2002). Japanese Patent 2002 071665, March 12.  Google Scholar
First citationLiu, Q., Chen, X., Dong, R., Wang, S., Shuang, S. & Dong, C. (2009). Chinese Patent 101 381 965, March 11.  Google Scholar
First citationMcIvor, R. A. & Miller, R. K. (1965). Canada Patent 7 23 181, Dec. 7.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds