organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-(3-hy­dr­oxy­benzyl­­idene)hydrazine­carboxyl­ate dihydrate

aLinjiang College, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and cResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 31 August 2011; accepted 1 September 2011; online 14 September 2011)

The title compound, C9H10N2O3·2H2O, crystallizes with two organic mol­ecules and four water mol­ecules in the asymmetric unit. Both organic mol­ecules adopt a trans conformation with respect to the C=N bond and are close to planar [dihedral angles between the side chain and the aromatic ring = 9.34 (8) and 4.96 (8)°]. In the crystal, the components are linked into three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For background to benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43,1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O3·2H2O

  • Mr = 230.22

  • Monoclinic, P 21 /c

  • a = 11.7316 (16) Å

  • b = 20.785 (3) Å

  • c = 9.5259 (16) Å

  • β = 99.675 (3)°

  • V = 2289.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 19583 measured reflections

  • 4438 independent reflections

  • 3346 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.03

  • 4438 reflections

  • 326 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯O2W 0.85 (3) 2.02 (3) 2.859 (2) 169 (2)
O1W—H1A⋯O2Wi 0.86 (3) 1.95 (3) 2.809 (3) 172 (3)
N2—H2⋯O6ii 0.86 2.07 2.9278 (17) 171
O2W—H2A⋯O4iii 1.02 (3) 1.88 (3) 2.893 (2) 171 (3)
O2W—H2B⋯O1 0.81 (3) 2.23 (3) 2.9102 (18) 141 (3)
O2W—H2B⋯N1 0.81 (3) 2.59 (3) 3.322 (2) 149 (3)
O3W—H3A⋯O4iv 0.88 (3) 2.15 (3) 2.877 (2) 139 (3)
O3W—H3B⋯O1v 0.95 (3) 1.90 (3) 2.832 (2) 168 (3)
O3—H3W⋯O1W 0.82 1.93 2.6617 (19) 147
O4W—H4B⋯O3Wiii 0.87 (3) 2.00 (3) 2.864 (2) 172 (2)
O4W—H4A⋯O3Wvi 0.82 (4) 2.20 (4) 3.013 (3) 170 (3)
N4—H4N⋯O3vii 0.86 2.10 2.9509 (18) 169
O6—H6⋯O4W 0.92 (3) 1.75 (3) 2.665 (2) 176 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z-1; (vi) x, y, z+1; (vii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attentions for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties(Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound, (I).

The title compound, C9H10N2O3 .2H2O, crystallizes with two very similar independent molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O1/O2/C7-C9 and N3/N4/O4/O5/C16-C18 planes form dihedral angles of 9.34 (8)° and 4.96 (8)°, respectively, with the C1—C6 and C10—C15 planes. The bond lengths and angles of the main molecule agree with those observed for (E)-Methyl N'-(4-hydroxybenzylidene)hydrazinecarboxylate (Shang et al., 2007).

In the crystal structure, Intramolecular O—H···N and O—H···O hydrogen bonds are observed in each independent molecule. molecules are linked into three-dimensional network by N—H···O and O—H···Ohydrogen bonds (Table 1, Fig.2).

Related literature top

For background to benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Experimental top

3-Hydroxybenzaldehyde (1.22g, 0.01mol) and methyl hydrazinecarboxylate(0.9g, 0.01mol) were dissolved in stirred methanol (30ml) and left for 2h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 418-421 K).

Refinement top

H atoms of the water molecule were located in a difference map and were refined with O-H distances restrained to 0.81 (3) Å, 0.82 (3) Å, 0.85 (3) Å, 0.86 (3) Å, 0.87 (3) Å,0.88 (3) Å, 0.95 (3) Åand 1.02 (3) Å, H atoms were included in the riding model approximation with N-H = 0.86Å and O-H=0.82Å. C-bound H atoms were positioned geometrically (C-H = 0.93Å and 0.96Å) and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C).

Structure description top

Benzaldehydehydrazone derivatives have received considerable attentions for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties(Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound, (I).

The title compound, C9H10N2O3 .2H2O, crystallizes with two very similar independent molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O1/O2/C7-C9 and N3/N4/O4/O5/C16-C18 planes form dihedral angles of 9.34 (8)° and 4.96 (8)°, respectively, with the C1—C6 and C10—C15 planes. The bond lengths and angles of the main molecule agree with those observed for (E)-Methyl N'-(4-hydroxybenzylidene)hydrazinecarboxylate (Shang et al., 2007).

In the crystal structure, Intramolecular O—H···N and O—H···O hydrogen bonds are observed in each independent molecule. molecules are linked into three-dimensional network by N—H···O and O—H···Ohydrogen bonds (Table 1, Fig.2).

For background to benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 30% probability displacement ellipsoids. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately down the c axis. Dashed lines indicate hydrogen bonds. H atoms not intervening in H-bonding were eliminated for clarity.
(E)-methyl N'-(3-hydroxybenzylidene)hydrazinecarboxylate dihydrate top
Crystal data top
C9H10N2O3·2H2OF(000) = 976
Mr = 230.22Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4438 reflections
a = 11.7316 (16) Åθ = 1.6–26.0°
b = 20.785 (3) ŵ = 0.11 mm1
c = 9.5259 (16) ÅT = 223 K
β = 99.675 (3)°Block, colourless
V = 2289.7 (6) Å30.18 × 0.17 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4438 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1314
Tmin = 0.977, Tmax = 0.989k = 2425
19583 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.6042P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4438 reflectionsΔρmax = 0.22 e Å3
326 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0121 (13)
Crystal data top
C9H10N2O3·2H2OV = 2289.7 (6) Å3
Mr = 230.22Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.7316 (16) ŵ = 0.11 mm1
b = 20.785 (3) ÅT = 223 K
c = 9.5259 (16) Å0.18 × 0.17 × 0.15 mm
β = 99.675 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3346 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.023
19583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
4438 reflectionsΔρmin = 0.14 e Å3
326 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24171 (13)0.62113 (8)0.93235 (17)0.0448 (4)
H10.25110.57770.91390.054*
C20.29711 (14)0.66693 (8)0.86354 (17)0.0482 (4)
C30.28141 (16)0.73158 (9)0.8879 (2)0.0573 (5)
H30.31840.76240.84100.069*
C40.21077 (18)0.74998 (9)0.9821 (2)0.0646 (5)
H40.19970.79350.99810.078*
C50.15620 (16)0.70477 (8)1.0530 (2)0.0572 (5)
H50.10880.71781.11680.069*
C60.17198 (13)0.64001 (8)1.02913 (17)0.0445 (4)
C70.11467 (14)0.59292 (8)1.10740 (17)0.0473 (4)
H70.06260.60751.16400.057*
C80.08718 (13)0.43208 (8)1.18676 (17)0.0445 (4)
C90.02974 (17)0.33892 (8)1.2976 (2)0.0630 (5)
H9A0.02180.32631.36090.095*
H9B0.10770.32821.33940.095*
H9C0.00930.31671.20860.095*
C100.24610 (13)0.40621 (8)0.55031 (17)0.0480 (4)
H100.23910.36310.57350.058*
C110.17966 (14)0.45186 (8)0.60274 (19)0.0522 (4)
C120.19031 (17)0.51613 (9)0.5701 (2)0.0607 (5)
H120.14480.54690.60510.073*
C130.26877 (18)0.53409 (9)0.4855 (2)0.0644 (5)
H130.27690.57740.46430.077*
C140.33570 (16)0.48887 (9)0.43165 (19)0.0570 (5)
H140.38870.50160.37460.068*
C150.32374 (14)0.42458 (8)0.46271 (17)0.0467 (4)
C160.39374 (15)0.37710 (8)0.40232 (19)0.0539 (4)
H160.44850.39140.34930.065*
C170.44785 (15)0.21513 (8)0.36295 (19)0.0533 (4)
C180.52822 (17)0.12027 (9)0.2861 (2)0.0629 (5)
H18A0.58580.10710.23140.094*
H18B0.45410.10390.24260.094*
H18C0.54750.10370.38120.094*
N10.13314 (11)0.53299 (6)1.10118 (14)0.0444 (3)
N20.07182 (11)0.49575 (6)1.18140 (14)0.0483 (3)
H20.02350.51341.22820.058*
N30.38247 (12)0.31715 (7)0.41971 (16)0.0534 (4)
N40.45443 (13)0.27907 (7)0.35476 (18)0.0629 (4)
H4N0.50360.29650.30890.075*
O10.15029 (10)0.40159 (6)1.12288 (14)0.0586 (3)
O20.02087 (10)0.40691 (5)1.27386 (13)0.0539 (3)
O1W0.45469 (16)0.53255 (7)0.82064 (18)0.0679 (4)
O30.36825 (11)0.65024 (6)0.76926 (14)0.0668 (4)
H3W0.37070.61090.76300.100*
O2W0.33906 (13)0.44786 (8)0.98696 (18)0.0720 (4)
O40.38368 (12)0.18520 (6)0.42559 (17)0.0732 (4)
O3W0.19045 (16)0.27222 (8)0.05155 (19)0.0845 (5)
O50.52396 (11)0.18889 (6)0.29060 (15)0.0629 (4)
O4W0.10070 (16)0.31023 (8)0.7479 (2)0.0787 (5)
O60.10057 (13)0.43537 (7)0.68672 (17)0.0761 (4)
H4A0.132 (3)0.2983 (17)0.827 (4)0.141 (15)*
H1A0.518 (2)0.5347 (13)0.881 (3)0.102 (10)*
H1B0.413 (2)0.5075 (13)0.861 (3)0.094 (8)*
H4B0.135 (2)0.2862 (13)0.692 (3)0.092 (8)*
H2B0.279 (2)0.4539 (13)1.017 (3)0.106 (9)*
H2A0.347 (3)0.4003 (17)0.965 (3)0.139 (11)*
H3A0.263 (3)0.2683 (15)0.039 (3)0.126 (11)*
H3B0.187 (2)0.3149 (15)0.085 (3)0.120 (10)*
H60.103 (2)0.3920 (13)0.705 (2)0.094 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (8)0.0408 (9)0.0520 (9)0.0018 (7)0.0162 (7)0.0025 (7)
C20.0450 (9)0.0510 (10)0.0519 (9)0.0020 (7)0.0176 (7)0.0062 (7)
C30.0626 (11)0.0454 (10)0.0690 (11)0.0062 (8)0.0262 (9)0.0070 (8)
C40.0798 (13)0.0409 (10)0.0801 (13)0.0042 (9)0.0336 (11)0.0047 (9)
C50.0653 (11)0.0479 (10)0.0654 (11)0.0014 (8)0.0313 (9)0.0075 (8)
C60.0411 (8)0.0458 (9)0.0485 (9)0.0020 (7)0.0128 (7)0.0003 (7)
C70.0462 (9)0.0467 (10)0.0540 (9)0.0012 (7)0.0225 (7)0.0019 (7)
C80.0418 (8)0.0441 (9)0.0501 (9)0.0038 (7)0.0152 (7)0.0024 (7)
C90.0709 (12)0.0434 (10)0.0791 (13)0.0057 (8)0.0253 (10)0.0067 (9)
C100.0461 (9)0.0441 (9)0.0579 (10)0.0014 (7)0.0200 (8)0.0006 (7)
C110.0489 (9)0.0520 (10)0.0607 (10)0.0027 (7)0.0236 (8)0.0013 (8)
C120.0687 (12)0.0491 (11)0.0712 (12)0.0085 (9)0.0317 (10)0.0057 (8)
C130.0806 (13)0.0430 (10)0.0763 (12)0.0006 (9)0.0326 (11)0.0001 (9)
C140.0634 (11)0.0507 (10)0.0633 (11)0.0012 (8)0.0292 (9)0.0035 (8)
C150.0460 (9)0.0470 (9)0.0500 (9)0.0023 (7)0.0168 (7)0.0001 (7)
C160.0557 (10)0.0497 (11)0.0637 (11)0.0022 (8)0.0316 (9)0.0034 (8)
C170.0485 (9)0.0490 (10)0.0680 (11)0.0027 (8)0.0259 (8)0.0024 (8)
C180.0634 (11)0.0483 (11)0.0799 (13)0.0027 (8)0.0203 (10)0.0109 (9)
N10.0421 (7)0.0455 (8)0.0493 (7)0.0037 (6)0.0184 (6)0.0001 (6)
N20.0490 (7)0.0413 (8)0.0618 (8)0.0004 (6)0.0296 (7)0.0002 (6)
N30.0511 (8)0.0493 (9)0.0671 (9)0.0047 (6)0.0307 (7)0.0012 (7)
N40.0639 (9)0.0461 (9)0.0916 (11)0.0041 (7)0.0501 (9)0.0029 (8)
O10.0615 (7)0.0477 (7)0.0744 (8)0.0030 (6)0.0338 (6)0.0050 (6)
O20.0568 (7)0.0418 (6)0.0699 (8)0.0023 (5)0.0302 (6)0.0034 (5)
O1W0.0705 (10)0.0576 (9)0.0822 (10)0.0064 (7)0.0321 (9)0.0102 (7)
O30.0772 (9)0.0521 (7)0.0843 (9)0.0051 (6)0.0516 (7)0.0114 (6)
O2W0.0593 (8)0.0651 (10)0.1011 (11)0.0063 (7)0.0406 (8)0.0012 (8)
O40.0724 (9)0.0517 (8)0.1089 (11)0.0003 (6)0.0542 (8)0.0060 (7)
O3W0.0890 (11)0.0631 (10)0.1173 (13)0.0099 (8)0.0631 (10)0.0202 (9)
O50.0653 (8)0.0459 (7)0.0876 (9)0.0016 (6)0.0423 (7)0.0042 (6)
O4W0.0942 (12)0.0573 (9)0.0935 (12)0.0052 (8)0.0418 (11)0.0071 (9)
O60.0803 (10)0.0565 (9)0.1084 (12)0.0107 (7)0.0646 (9)0.0068 (8)
Geometric parameters (Å, º) top
C1—C21.379 (2)C13—C141.378 (3)
C1—C61.388 (2)C13—H130.9300
C1—H10.9300C14—C151.381 (2)
C2—O31.3695 (19)C14—H140.9300
C2—C31.381 (2)C15—C161.462 (2)
C3—C41.374 (2)C16—N31.267 (2)
C3—H30.9300C16—H160.9300
C4—C51.376 (2)C17—O41.209 (2)
C4—H40.9300C17—O51.3329 (19)
C5—C61.383 (2)C17—N41.334 (2)
C5—H50.9300C18—O51.428 (2)
C6—C71.461 (2)C18—H18A0.9600
C7—N11.267 (2)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—O11.2132 (18)N1—N21.3731 (17)
C8—N21.335 (2)N2—H20.8600
C8—O21.3357 (18)N3—N41.3776 (18)
C9—O21.432 (2)N4—H4N0.8600
C9—H9A0.9600O1W—H1A0.86 (3)
C9—H9B0.9600O1W—H1B0.85 (3)
C9—H9C0.9600O3—H3W0.8200
C10—C111.374 (2)O2W—H2B0.81 (3)
C10—C151.388 (2)O2W—H2A1.02 (3)
C10—H100.9300O3W—H3A0.88 (3)
C11—O61.367 (2)O3W—H3B0.95 (3)
C11—C121.382 (3)O4W—H4A0.82 (4)
C12—C131.373 (3)O4W—H4B0.87 (3)
C12—H120.9300O6—H60.92 (3)
C2—C1—C6119.88 (15)C11—C12—H12120.3
C2—C1—H1120.1C12—C13—C14120.89 (17)
C6—C1—H1120.1C12—C13—H13119.6
O3—C2—C1121.65 (15)C14—C13—H13119.6
O3—C2—C3118.03 (14)C13—C14—C15119.70 (16)
C1—C2—C3120.31 (15)C13—C14—H14120.2
C4—C3—C2119.52 (16)C15—C14—H14120.2
C4—C3—H3120.2C14—C15—C10119.71 (15)
C2—C3—H3120.2C14—C15—C16119.00 (15)
C3—C4—C5120.79 (17)C10—C15—C16121.30 (15)
C3—C4—H4119.6N3—C16—C15122.31 (15)
C5—C4—H4119.6N3—C16—H16118.8
C4—C5—C6119.84 (16)C15—C16—H16118.8
C4—C5—H5120.1O4—C17—O5124.86 (17)
C6—C5—H5120.1O4—C17—N4126.06 (16)
C5—C6—C1119.63 (15)O5—C17—N4109.08 (14)
C5—C6—C7118.84 (14)O5—C18—H18A109.5
C1—C6—C7121.52 (15)O5—C18—H18B109.5
N1—C7—C6122.52 (14)H18A—C18—H18B109.5
N1—C7—H7118.7O5—C18—H18C109.5
C6—C7—H7118.7H18A—C18—H18C109.5
O1—C8—N2126.05 (14)H18B—C18—H18C109.5
O1—C8—O2125.11 (15)C7—N1—N2114.72 (13)
N2—C8—O2108.84 (13)C8—N2—N1119.99 (12)
O2—C9—H9A109.5C8—N2—H2120.0
O2—C9—H9B109.5N1—N2—H2120.0
H9A—C9—H9B109.5C16—N3—N4114.91 (14)
O2—C9—H9C109.5C17—N4—N3120.01 (14)
H9A—C9—H9C109.5C17—N4—H4N120.0
H9B—C9—H9C109.5N3—N4—H4N120.0
C11—C10—C15119.87 (16)C8—O2—C9116.76 (13)
C11—C10—H10120.1H1A—O1W—H1B103 (2)
C15—C10—H10120.1C2—O3—H3W109.5
O6—C11—C10121.45 (16)H2B—O2W—H2A109 (3)
O6—C11—C12118.05 (15)H3A—O3W—H3B103 (3)
C10—C11—C12120.50 (15)C17—O5—C18117.01 (14)
C13—C12—C11119.32 (16)H4A—O4W—H4B102 (3)
C13—C12—H12120.3C11—O6—H6110.8 (15)
C6—C1—C2—O3178.82 (15)C13—C14—C15—C101.3 (3)
C6—C1—C2—C31.5 (3)C13—C14—C15—C16178.77 (18)
O3—C2—C3—C4179.89 (17)C11—C10—C15—C141.6 (3)
C1—C2—C3—C40.4 (3)C11—C10—C15—C16178.51 (17)
C2—C3—C4—C50.5 (3)C14—C15—C16—N3175.88 (18)
C3—C4—C5—C60.3 (3)C10—C15—C16—N34.2 (3)
C4—C5—C6—C10.8 (3)C6—C7—N1—N2179.94 (14)
C4—C5—C6—C7179.01 (17)O1—C8—N2—N12.0 (3)
C2—C1—C6—C51.7 (2)O2—C8—N2—N1178.36 (13)
C2—C1—C6—C7178.10 (15)C7—N1—N2—C8177.79 (15)
C5—C6—C7—N1173.42 (17)C15—C16—N3—N4179.48 (16)
C1—C6—C7—N16.4 (3)O4—C17—N4—N31.1 (3)
C15—C10—C11—O6178.56 (17)O5—C17—N4—N3178.98 (15)
C15—C10—C11—C120.7 (3)C16—N3—N4—C17178.25 (18)
O6—C11—C12—C13179.77 (19)O1—C8—O2—C92.9 (2)
C10—C11—C12—C130.5 (3)N2—C8—O2—C9177.42 (15)
C11—C12—C13—C140.8 (3)O4—C17—O5—C180.8 (3)
C12—C13—C14—C150.1 (3)N4—C17—O5—C18179.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O2W0.85 (3)2.02 (3)2.859 (2)169 (2)
O1W—H1A···O2Wi0.86 (3)1.95 (3)2.809 (3)172 (3)
N2—H2···O6ii0.862.072.9278 (17)171
O2W—H2A···O4iii1.02 (3)1.88 (3)2.893 (2)171 (3)
O2W—H2B···O10.81 (3)2.23 (3)2.9102 (18)141 (3)
O2W—H2B···N10.81 (3)2.59 (3)3.322 (2)149 (3)
O3W—H3A···O4iv0.88 (3)2.15 (3)2.877 (2)139 (3)
O3W—H3B···O1v0.95 (3)1.90 (3)2.832 (2)168 (3)
O3—H3W···O1W0.821.932.6617 (19)147
O4W—H4B···O3Wiii0.87 (3)2.00 (3)2.864 (2)172 (2)
O4W—H4A···O3Wvi0.82 (4)2.20 (4)3.013 (3)170 (3)
N4—H4N···O3vii0.862.102.9509 (18)169
O6—H6···O4W0.92 (3)1.75 (3)2.665 (2)176 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y, z1; (vi) x, y, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N2O3·2H2O
Mr230.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)11.7316 (16), 20.785 (3), 9.5259 (16)
β (°) 99.675 (3)
V3)2289.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
19583, 4438, 3346
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.03
No. of reflections4438
No. of parameters326
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O2W0.85 (3)2.02 (3)2.859 (2)169 (2)
O1W—H1A···O2Wi0.86 (3)1.95 (3)2.809 (3)172 (3)
N2—H2···O6ii0.862.072.9278 (17)171.2
O2W—H2A···O4iii1.02 (3)1.88 (3)2.893 (2)171 (3)
O2W—H2B···O10.81 (3)2.23 (3)2.9102 (18)141 (3)
O2W—H2B···N10.81 (3)2.59 (3)3.322 (2)149 (3)
O3W—H3A···O4iv0.88 (3)2.15 (3)2.877 (2)139 (3)
O3W—H3B···O1v0.95 (3)1.90 (3)2.832 (2)168 (3)
O3—H3W···O1W0.821.932.6617 (19)147.2
O4W—H4B···O3Wiii0.87 (3)2.00 (3)2.864 (2)172 (2)
O4W—H4A···O3Wvi0.82 (4)2.20 (4)3.013 (3)170 (3)
N4—H4N···O3vii0.862.102.9509 (18)169.4
O6—H6···O4W0.92 (3)1.75 (3)2.665 (2)176 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y, z1; (vi) x, y, z+1; (vii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43,1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds