metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(E)-(5-tert-butyl-2-hy­dr­oxy­phen­yl)diazen­yl]benzoato}di­methyl­tin(IV)

aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 5 September 2011; accepted 8 September 2011; online 14 September 2011)

In the title diorganotin dicarboxyl­ate, [Sn(CH3)2(C17H17N2O3)2], the tin(IV) atom is six-coordinated by four O atoms derived from asymmetrically coordinating carboxyl­ate ligands, and two methyl-C atoms. The resulting C2O4 donor set defines a skew-trapezoidal bipyramid with the Sn—C bonds disposed over the weaker Sn—O bonds. Within each carboxyl­ate ligand, the hydroxyl-H atom forms bifurcated O—H⋯(O,N) hydrogen bonds with carboxyl­ate-O and azo-N atoms. The dihedral angles between the benzene rings in the two ligands are 10.44 (11) and 34.24 (11)°. In the crystal, centrosymmetric dimers are formed through pairs of Sn⋯O inter­actions [2.8802 (16) Å], and the dimers are linked into supra­molecular layers in the ac plane by C—H⋯π inter­actions.

Related literature

For background to the potential anti-cancer activity of related compounds, see: Basu Baul et al. (2011[Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., Duthie, A., de Vos, D. & Tiekink, E. R. T. (2011). Invest. New Drugs, 29, 285-299.]). For the synthesis of the ligand, see: Basu Baul et al. (2008[Basu Baul, T. S., Paul, A., Arman, H. D. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o2125.]). For related structural studies, see: Basu Baul et al. (2010[Basu Baul, T. S., Paul, A. & Tiekink, E. R. T. (2010). Z. Kristallogr. 225, 153-157.]). For a review of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C17H17N2O3)2]

  • Mr = 743.43

  • Monoclinic, P 21 /c

  • a = 9.6298 (1) Å

  • b = 31.8788 (4) Å

  • c = 11.0963 (1) Å

  • β = 93.502 (1)°

  • V = 3400.05 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.36 × 0.13 × 0.03 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 1

  • 26762 measured reflections

  • 7749 independent reflections

  • 6165 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.071

  • S = 1.04

  • 7749 reflections

  • 434 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Sn—O1 2.1118 (16)
Sn—O2 2.6967 (16)
Sn—O4 2.1120 (16)
Sn—O5 2.4482 (16)
Sn—C35 2.081 (3)
Sn—C36 2.098 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.84 2.49 3.142 (2) 136
O3—H3⋯N1 0.84 1.87 2.573 (2) 140
O6—H6⋯O5 0.84 2.20 2.877 (3) 137
O6—H6⋯N3 0.84 1.93 2.620 (3) 139
C10—H10⋯Cg1i 0.95 2.97 3.863 (2) 157
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organotin carboxylates related to the title compound, (I), have been investigated for potential anti-cancer activity (Basu Baul et al., 2011). Complementing biological studies are structural investigations (Basu Baul et al., 2010). In (I), the Sn atom is bound by two asymmetrically coordinating carboxylate ligands and two methyl groups, Fig. 1 and Table 1. The coordination geometry is based on a skew-trapezoidal bipyramid with the methyl groups disposed to lie over the weaker Sn—O bonds; the C35—Sn—C36 angle is 149.63 (10) °. The overall molecular conformation matches those normally observed for structures of the general formula R2Sn(O2CR')2 (Tiekink, 1991).

Centrosymmetrically related molecules associate into dimeric aggregates via weak Sn···O2i contacts of 2.8802 (16) Å, Fig. 1, symmetry operation i: -x, 1 - y, -z. A consequence of this association is the significant lengthening of the Sn—O2 bond with respect to the chemically equivalent Sn—O5 bond, Table 1. The relative dispositions of the carboxylate residues are different in order to reduce steric hindrance. Thus, while the hydroxy group of the O1-carboxylate ligand is orientated towards the more strongly coordinating O1 atom, the hydroxy group of the O4-carboxylate ligand is orientated towards the weakly coordinating O5 atom, Fig. 1. Within each carboxylate ligand, intramolecular O—H···O,N hydrogen bonds are noted, Table 2. Despite these, the ligands exhibit significant deviations from planarity. The values of the O1—C1—C2—C3 and O4—C18—C19—C20 torsion angles of 15.2 (3) and 158.7 (2) °, respectively, indicate that the carboxylate groups lie out of the plane of the respective benzene ring to which it is attached. Significant twisting is found in the O1-carboxylate ligand with the dihedral angle formed between the two benzene rings being 34.24 (11) °. This arises in part to avoid a steric clash with a benzene ring of the adjacent carboxylate ligand. The O4-carboxylate ligand, being directed away from the rest of the molecule, is less twisted with the dihedral angle formed between the two benzene rings being 10.44 (11) °.

Over and above the intermolecular Sn···O interactions mentioned above, the most prominent feature of the crystal packing is the formation of C—H···π interactions, Table 2. These serve to link dimeric aggregates into supramolecular arrays in the ac plane. A view of the unit-cell contents is shown in Fig. 2 which highlights the stacking of layers along the b axis.

Related literature top

For background to the potential anti-cancer activity of related compounds, see: Basu Baul et al. (2011). For the synthesis of the ligand, see: Basu Baul et al. (2008). For related structural studies, see: Basu Baul et al. (2010). For a review of the structural chemistry of organotin carboxylates, see: Tiekink (1991).

Experimental top

The title compound was prepared by reacting 2-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoic acid (Basu Baul et al., 2008) (0.30 g, 1.00 mmol) and Me2SnO (0.08 g, 0.49 mmol) in anhydrous toluene (50 ml) using a Dean and Stark apparatus for 6 h. The red solution was filtered while hot, concentrated to one tenth of its initial volume and precipitated with hexane. The red precipitate was separated by filtration, washed with hexane (2 x 5 ml) and dried in vacuo. The dried residue was dissolved in chloroform-hexane (10:1 v/v) and filtered. The filtrate was allowed to evaporate at room temperature, which afforded red prisms. Yield: 0.15 g, 40%, M.pt. 439–441 K. Elemental analysis, found: C 58.44, H 5.61, N 7.37%. C36H40N4O6Sn requires: C 58.14, H, 5.43, N 7.54%. IR (KBr, cm-1): 1589 ν(OCO)asym. 1H-NMR (CDCl3, 400.44 MHz): δ H: 12.8 [br, 1H, OH], 8.22 [d, 8 Hz, 1H, H7], 7.92 [d, 8 Hz, 1H, H4], 7.78 [d, 2.5 Hz, 1H, H13], 7.60 [t, 8 Hz, 1H, H5], 7.50 [t, 8 Hz, 1H, H6], 7.37 [dd, 2.5, 8 Hz, 1H, H11], 6.96 [d, 8 Hz, 1H, H10], 1.32 [s, 9H, CH3], 1.19 [s, 3H, Sn—CH3] p.p.m. 119Sn-NMR (CDCl3, 149.33): δ -112.7 p.p.m.

Refinement top

All H-atoms were placed in calculated positions (O—H = 0.84 Å, and C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(carrier atom).

Structure description top

Organotin carboxylates related to the title compound, (I), have been investigated for potential anti-cancer activity (Basu Baul et al., 2011). Complementing biological studies are structural investigations (Basu Baul et al., 2010). In (I), the Sn atom is bound by two asymmetrically coordinating carboxylate ligands and two methyl groups, Fig. 1 and Table 1. The coordination geometry is based on a skew-trapezoidal bipyramid with the methyl groups disposed to lie over the weaker Sn—O bonds; the C35—Sn—C36 angle is 149.63 (10) °. The overall molecular conformation matches those normally observed for structures of the general formula R2Sn(O2CR')2 (Tiekink, 1991).

Centrosymmetrically related molecules associate into dimeric aggregates via weak Sn···O2i contacts of 2.8802 (16) Å, Fig. 1, symmetry operation i: -x, 1 - y, -z. A consequence of this association is the significant lengthening of the Sn—O2 bond with respect to the chemically equivalent Sn—O5 bond, Table 1. The relative dispositions of the carboxylate residues are different in order to reduce steric hindrance. Thus, while the hydroxy group of the O1-carboxylate ligand is orientated towards the more strongly coordinating O1 atom, the hydroxy group of the O4-carboxylate ligand is orientated towards the weakly coordinating O5 atom, Fig. 1. Within each carboxylate ligand, intramolecular O—H···O,N hydrogen bonds are noted, Table 2. Despite these, the ligands exhibit significant deviations from planarity. The values of the O1—C1—C2—C3 and O4—C18—C19—C20 torsion angles of 15.2 (3) and 158.7 (2) °, respectively, indicate that the carboxylate groups lie out of the plane of the respective benzene ring to which it is attached. Significant twisting is found in the O1-carboxylate ligand with the dihedral angle formed between the two benzene rings being 34.24 (11) °. This arises in part to avoid a steric clash with a benzene ring of the adjacent carboxylate ligand. The O4-carboxylate ligand, being directed away from the rest of the molecule, is less twisted with the dihedral angle formed between the two benzene rings being 10.44 (11) °.

Over and above the intermolecular Sn···O interactions mentioned above, the most prominent feature of the crystal packing is the formation of C—H···π interactions, Table 2. These serve to link dimeric aggregates into supramolecular arrays in the ac plane. A view of the unit-cell contents is shown in Fig. 2 which highlights the stacking of layers along the b axis.

For background to the potential anti-cancer activity of related compounds, see: Basu Baul et al. (2011). For the synthesis of the ligand, see: Basu Baul et al. (2008). For related structural studies, see: Basu Baul et al. (2010). For a review of the structural chemistry of organotin carboxylates, see: Tiekink (1991).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Centrosymmetrically related molecules associate via Sn···O interactions shown as dashed lines. Symmetry operation i: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. View in projection down the a axis of the crystal packing in (I), highlighting the stacking of supramolecular arrays sustained by C—H···π interactions shown as purple dashed lines.
Bis{2-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoato}dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C17H17N2O3)2]F(000) = 1528
Mr = 743.43Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9596 reflections
a = 9.6298 (1) Åθ = 2.5–27.5°
b = 31.8788 (4) ŵ = 0.80 mm1
c = 11.0963 (1) ÅT = 100 K
β = 93.502 (1)°Prism, red
V = 3400.05 (6) Å30.36 × 0.13 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
7749 independent reflections
Radiation source: sealed tube6165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.895, Tmax = 1k = 4131
26762 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0302P)2 + 2.0032P]
where P = (Fo2 + 2Fc2)/3
7749 reflections(Δ/σ)max = 0.001
434 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Sn(CH3)2(C17H17N2O3)2]V = 3400.05 (6) Å3
Mr = 743.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6298 (1) ŵ = 0.80 mm1
b = 31.8788 (4) ÅT = 100 K
c = 11.0963 (1) Å0.36 × 0.13 × 0.03 mm
β = 93.502 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
7749 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6165 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 1Rint = 0.031
26762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
7749 reflectionsΔρmin = 0.41 e Å3
434 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.277358 (16)0.493245 (5)0.417857 (14)0.01732 (5)
O10.23555 (16)0.45124 (6)0.55829 (14)0.0217 (4)
O20.45495 (17)0.46778 (6)0.60060 (14)0.0216 (4)
O30.08900 (17)0.37965 (6)0.40295 (14)0.0236 (4)
H30.14120.38560.46390.035*
O40.06960 (16)0.47867 (6)0.36115 (14)0.0214 (4)
O50.16032 (17)0.52164 (6)0.23347 (14)0.0217 (4)
O60.18551 (16)0.60409 (6)0.13158 (15)0.0216 (4)
H60.13780.58230.13940.032*
N10.15350 (19)0.37784 (6)0.63135 (17)0.0165 (4)
N20.03907 (19)0.36266 (6)0.65957 (17)0.0175 (4)
N30.0403 (2)0.55980 (6)0.08342 (16)0.0180 (4)
N40.0860 (2)0.58421 (7)0.00045 (16)0.0177 (4)
C10.3515 (2)0.44669 (8)0.6217 (2)0.0180 (5)
C20.3565 (2)0.41453 (8)0.71981 (19)0.0163 (5)
C30.2554 (2)0.38306 (8)0.72847 (19)0.0157 (5)
C40.2650 (2)0.35474 (8)0.8236 (2)0.0187 (5)
H40.19630.33360.82940.022*
C50.3747 (2)0.35728 (8)0.9100 (2)0.0213 (5)
H50.38000.33820.97580.026*
C60.4769 (2)0.38759 (8)0.9010 (2)0.0219 (5)
H6A0.55300.38890.95960.026*
C70.4674 (2)0.41596 (8)0.8063 (2)0.0192 (5)
H70.53750.43670.80030.023*
C80.0562 (2)0.35492 (8)0.5600 (2)0.0164 (5)
C90.0301 (2)0.36295 (8)0.4384 (2)0.0176 (5)
C100.1336 (2)0.35283 (8)0.3498 (2)0.0200 (5)
H100.11850.35790.26730.024*
C110.2576 (2)0.33549 (8)0.3808 (2)0.0208 (5)
H110.32600.32870.31860.025*
C120.2865 (2)0.32747 (8)0.5013 (2)0.0180 (5)
C130.1839 (2)0.33798 (8)0.5883 (2)0.0185 (5)
H130.20090.33350.67070.022*
C140.4276 (2)0.30919 (8)0.5294 (2)0.0210 (5)
C150.4387 (3)0.30246 (10)0.6645 (2)0.0301 (6)
H15A0.53120.29150.67930.045*
H15B0.42420.32920.70690.045*
H15C0.36770.28230.69420.045*
C160.4500 (3)0.26688 (9)0.4652 (3)0.0303 (6)
H16A0.37850.24700.49560.046*
H16B0.44350.27070.37810.046*
H16C0.54220.25590.48100.046*
C170.5426 (3)0.33979 (9)0.4843 (2)0.0246 (6)
H17A0.63340.32870.50380.037*
H17B0.54030.34320.39670.037*
H17C0.52750.36710.52370.037*
C180.0605 (2)0.49959 (8)0.2613 (2)0.0190 (5)
C190.0703 (2)0.49363 (8)0.1842 (2)0.0182 (5)
C200.1186 (2)0.52255 (8)0.09590 (19)0.0163 (5)
C210.2430 (2)0.51461 (8)0.0285 (2)0.0203 (5)
H210.27720.53430.03030.024*
C220.3161 (3)0.47835 (9)0.0468 (2)0.0236 (6)
H220.40020.47300.00010.028*
C230.2682 (3)0.44941 (9)0.1332 (2)0.0242 (6)
H230.31910.42440.14540.029*
C240.1463 (2)0.45724 (8)0.2012 (2)0.0216 (5)
H240.11370.43750.26050.026*
C250.0119 (2)0.62188 (8)0.00658 (19)0.0164 (5)
C260.1145 (2)0.63123 (8)0.0583 (2)0.0174 (5)
C270.1705 (2)0.67117 (8)0.0446 (2)0.0205 (5)
H270.25740.67800.08510.025*
C280.1019 (2)0.70090 (8)0.0266 (2)0.0191 (5)
H280.14150.72810.03160.023*
C290.0242 (2)0.69246 (8)0.09212 (19)0.0155 (5)
C300.0765 (2)0.65243 (8)0.08173 (19)0.0167 (5)
H300.15980.64530.12740.020*
C310.0990 (2)0.72721 (8)0.1662 (2)0.0176 (5)
C320.2250 (2)0.71042 (8)0.2421 (2)0.0235 (5)
H32A0.29270.69880.18870.035*
H32B0.19490.68840.29620.035*
H32C0.26820.73330.29000.035*
C330.1492 (3)0.76023 (8)0.0787 (2)0.0217 (5)
H33A0.19770.78270.12440.033*
H33B0.06910.77190.03130.033*
H33C0.21300.74720.02420.033*
C340.0008 (2)0.74802 (8)0.2511 (2)0.0206 (5)
H34A0.04750.77080.29550.031*
H34B0.03220.72720.30830.031*
H34C0.08140.75930.20350.031*
C350.2588 (3)0.55181 (8)0.4982 (2)0.0254 (6)
H35A0.31640.55260.57410.038*
H35B0.16140.55680.51470.038*
H35C0.29000.57360.44370.038*
C360.3840 (3)0.45265 (8)0.3069 (2)0.0247 (6)
H36A0.44120.46910.25410.037*
H36B0.31670.43590.25750.037*
H36C0.44390.43390.35710.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01744 (8)0.01519 (9)0.01906 (8)0.00012 (7)0.00111 (5)0.00331 (7)
O10.0198 (9)0.0215 (10)0.0234 (9)0.0022 (7)0.0033 (7)0.0076 (7)
O20.0215 (9)0.0198 (10)0.0234 (9)0.0055 (7)0.0016 (7)0.0046 (7)
O30.0213 (9)0.0288 (11)0.0209 (9)0.0067 (8)0.0034 (7)0.0011 (8)
O40.0198 (8)0.0237 (10)0.0202 (8)0.0014 (7)0.0034 (6)0.0076 (7)
O50.0186 (8)0.0233 (10)0.0230 (8)0.0011 (7)0.0016 (7)0.0054 (7)
O60.0180 (8)0.0192 (10)0.0269 (9)0.0003 (7)0.0045 (7)0.0059 (7)
N10.0160 (10)0.0126 (11)0.0207 (10)0.0010 (8)0.0000 (7)0.0002 (8)
N20.0162 (10)0.0158 (12)0.0205 (10)0.0001 (8)0.0010 (8)0.0002 (8)
N30.0196 (10)0.0169 (12)0.0172 (10)0.0029 (8)0.0004 (8)0.0013 (8)
N40.0199 (10)0.0180 (12)0.0150 (9)0.0027 (8)0.0011 (7)0.0008 (8)
C10.0200 (12)0.0168 (14)0.0171 (11)0.0002 (10)0.0014 (9)0.0014 (9)
C20.0176 (11)0.0144 (13)0.0170 (11)0.0010 (9)0.0017 (9)0.0004 (9)
C30.0141 (11)0.0169 (14)0.0164 (11)0.0021 (9)0.0016 (8)0.0010 (9)
C40.0183 (12)0.0179 (14)0.0202 (11)0.0027 (10)0.0041 (9)0.0000 (10)
C50.0232 (12)0.0237 (15)0.0171 (11)0.0019 (10)0.0017 (9)0.0040 (10)
C60.0190 (12)0.0273 (16)0.0188 (12)0.0014 (10)0.0028 (9)0.0013 (10)
C70.0180 (12)0.0196 (14)0.0201 (11)0.0025 (10)0.0011 (9)0.0010 (10)
C80.0170 (11)0.0126 (13)0.0197 (11)0.0031 (9)0.0010 (9)0.0005 (9)
C90.0183 (11)0.0132 (13)0.0215 (12)0.0010 (9)0.0030 (9)0.0009 (9)
C100.0251 (13)0.0195 (14)0.0155 (11)0.0013 (10)0.0030 (9)0.0032 (9)
C110.0204 (12)0.0203 (15)0.0212 (12)0.0011 (10)0.0027 (9)0.0060 (10)
C120.0154 (11)0.0145 (14)0.0239 (12)0.0022 (9)0.0013 (9)0.0017 (10)
C130.0172 (11)0.0188 (14)0.0194 (11)0.0029 (10)0.0016 (9)0.0000 (10)
C140.0161 (12)0.0210 (15)0.0257 (12)0.0005 (10)0.0003 (9)0.0021 (10)
C150.0187 (12)0.0437 (19)0.0281 (14)0.0076 (12)0.0015 (10)0.0069 (12)
C160.0184 (13)0.0252 (17)0.0471 (16)0.0022 (11)0.0003 (12)0.0053 (13)
C170.0198 (12)0.0253 (16)0.0288 (13)0.0023 (11)0.0007 (10)0.0038 (11)
C180.0195 (11)0.0175 (15)0.0200 (11)0.0025 (10)0.0008 (9)0.0000 (9)
C190.0193 (11)0.0197 (13)0.0157 (10)0.0018 (10)0.0005 (8)0.0001 (10)
C200.0185 (11)0.0167 (13)0.0138 (10)0.0024 (9)0.0023 (8)0.0011 (9)
C210.0231 (12)0.0188 (15)0.0188 (11)0.0019 (10)0.0007 (9)0.0010 (10)
C220.0218 (12)0.0262 (15)0.0221 (12)0.0020 (11)0.0040 (9)0.0023 (11)
C230.0259 (13)0.0224 (15)0.0244 (12)0.0053 (11)0.0027 (10)0.0005 (11)
C240.0235 (12)0.0215 (15)0.0196 (12)0.0016 (10)0.0004 (9)0.0038 (10)
C250.0179 (11)0.0161 (15)0.0154 (10)0.0014 (9)0.0028 (8)0.0004 (9)
C260.0156 (11)0.0191 (14)0.0176 (11)0.0043 (9)0.0010 (9)0.0014 (9)
C270.0150 (11)0.0238 (15)0.0224 (12)0.0012 (10)0.0022 (9)0.0012 (10)
C280.0207 (12)0.0160 (14)0.0206 (12)0.0028 (10)0.0008 (9)0.0000 (10)
C290.0153 (11)0.0192 (14)0.0122 (10)0.0013 (9)0.0018 (8)0.0003 (9)
C300.0147 (11)0.0220 (14)0.0134 (10)0.0000 (9)0.0008 (8)0.0013 (9)
C310.0166 (11)0.0181 (14)0.0178 (11)0.0004 (9)0.0006 (9)0.0017 (9)
C320.0244 (13)0.0212 (15)0.0239 (12)0.0008 (10)0.0064 (10)0.0041 (10)
C330.0235 (13)0.0203 (15)0.0213 (12)0.0030 (10)0.0017 (9)0.0008 (10)
C340.0260 (12)0.0148 (15)0.0211 (11)0.0024 (10)0.0029 (9)0.0026 (10)
C350.0271 (13)0.0199 (15)0.0292 (14)0.0030 (11)0.0027 (10)0.0013 (11)
C360.0256 (13)0.0215 (15)0.0266 (13)0.0019 (11)0.0012 (10)0.0032 (11)
Geometric parameters (Å, º) top
Sn—O12.1118 (16)C15—H15C0.9800
Sn—O22.6967 (16)C16—H16A0.9800
Sn—O42.1120 (16)C16—H16B0.9800
Sn—O52.4482 (16)C16—H16C0.9800
Sn—C352.081 (3)C17—H17A0.9800
Sn—C362.098 (2)C17—H17B0.9800
Sn—O2i2.8802 (16)C17—H17C0.9800
O1—C11.291 (3)C18—C191.491 (3)
O2—C11.236 (3)C19—C241.391 (3)
O3—C91.345 (3)C19—C201.404 (3)
O3—H30.8400C20—C211.396 (3)
O4—C181.291 (3)C21—C221.375 (4)
O5—C181.245 (3)C21—H210.9500
O6—C261.345 (3)C22—C231.389 (4)
O6—H60.8400C22—H220.9500
N1—N21.260 (3)C23—C241.379 (3)
N1—C31.422 (3)C23—H230.9500
N2—C81.414 (3)C24—H240.9500
N3—N41.264 (3)C25—C301.403 (3)
N3—C201.418 (3)C25—C261.408 (3)
N4—C251.402 (3)C26—C271.395 (3)
C1—C21.494 (3)C27—C281.377 (3)
C2—C71.392 (3)C27—H270.9500
C2—C31.405 (3)C28—C291.403 (3)
C3—C41.388 (3)C28—H280.9500
C4—C51.385 (3)C29—C301.379 (3)
C4—H40.9500C29—C311.533 (3)
C5—C61.387 (3)C30—H300.9500
C5—H50.9500C31—C331.530 (3)
C6—C71.385 (3)C31—C321.531 (3)
C6—H6A0.9500C31—C341.536 (3)
C7—H70.9500C32—H32A0.9800
C8—C131.397 (3)C32—H32B0.9800
C8—C91.411 (3)C32—H32C0.9800
C9—C101.394 (3)C33—H33A0.9800
C10—C111.379 (3)C33—H33B0.9800
C10—H100.9500C33—H33C0.9800
C11—C121.405 (3)C34—H34A0.9800
C11—H110.9500C34—H34B0.9800
C12—C131.379 (3)C34—H34C0.9800
C12—C141.529 (3)C35—H35A0.9800
C13—H130.9500C35—H35B0.9800
C14—C151.525 (3)C35—H35C0.9800
C14—C161.534 (4)C36—H36A0.9800
C14—C171.536 (3)C36—H36B0.9800
C15—H15A0.9800C36—H36C0.9800
C15—H15B0.9800
C35—Sn—C36149.63 (10)C14—C16—H16B109.5
C35—Sn—O4102.74 (9)H16A—C16—H16B109.5
C36—Sn—O4100.26 (8)C14—C16—H16C109.5
C35—Sn—O1103.14 (9)H16A—C16—H16C109.5
C36—Sn—O199.46 (9)H16B—C16—H16C109.5
O4—Sn—O181.98 (6)C14—C17—H17A109.5
C35—Sn—O588.82 (8)C14—C17—H17B109.5
C36—Sn—O587.38 (8)H17A—C17—H17B109.5
O4—Sn—O556.84 (6)C14—C17—H17C109.5
O1—Sn—O5138.79 (6)H17A—C17—H17C109.5
C35—Sn—C1897.36 (9)H17B—C17—H17C109.5
C36—Sn—C1893.25 (8)O5—C18—O4119.5 (2)
O4—Sn—C1828.89 (7)O5—C18—C19124.6 (2)
O1—Sn—C18110.80 (7)O4—C18—C19115.9 (2)
O5—Sn—C1827.98 (6)O5—C18—Sn67.37 (12)
C35—Sn—O290.85 (8)O4—C18—Sn52.20 (11)
C36—Sn—O286.85 (8)C19—C18—Sn166.89 (17)
O4—Sn—O2134.70 (6)C24—C19—C20119.2 (2)
O1—Sn—O252.77 (5)C24—C19—C18117.5 (2)
O5—Sn—O2168.00 (5)C20—C19—C18123.3 (2)
C18—Sn—O2163.18 (6)C21—C20—C19119.5 (2)
C35—Sn—O2i75.17 (8)C21—C20—N3122.9 (2)
C36—Sn—O2i75.64 (8)C19—C20—N3117.6 (2)
O4—Sn—O2i155.42 (5)C22—C21—C20120.3 (2)
O1—Sn—O2i122.54 (5)C22—C21—H21119.9
O5—Sn—O2i98.59 (5)C20—C21—H21119.9
C18—Sn—O2i126.53 (6)C21—C22—C23120.5 (2)
O2—Sn—O2i69.77 (5)C21—C22—H22119.7
C1—O1—Sn106.00 (14)C23—C22—H22119.7
C1—O2—Sn79.89 (13)C24—C23—C22119.6 (2)
C9—O3—H3109.5C24—C23—H23120.2
C18—O4—Sn98.92 (14)C22—C23—H23120.2
C18—O5—Sn84.64 (13)C23—C24—C19120.9 (2)
C26—O6—H6109.5C23—C24—H24119.5
N2—N1—C3115.46 (18)C19—C24—H24119.5
N1—N2—C8114.07 (18)N4—C25—C30114.8 (2)
N4—N3—C20115.05 (19)N4—C25—C26125.5 (2)
N3—N4—C25114.36 (19)C30—C25—C26119.7 (2)
O2—C1—O1121.1 (2)O6—C26—C27117.8 (2)
O2—C1—C2121.4 (2)O6—C26—C25124.4 (2)
O1—C1—C2117.5 (2)C27—C26—C25117.8 (2)
C7—C2—C3118.8 (2)C28—C27—C26121.0 (2)
C7—C2—C1118.0 (2)C28—C27—H27119.5
C3—C2—C1123.3 (2)C26—C27—H27119.5
C4—C3—C2120.2 (2)C27—C28—C29122.4 (2)
C4—C3—N1120.7 (2)C27—C28—H28118.8
C2—C3—N1118.7 (2)C29—C28—H28118.8
C5—C4—C3120.1 (2)C30—C29—C28116.3 (2)
C5—C4—H4120.0C30—C29—C31123.4 (2)
C3—C4—H4120.0C28—C29—C31120.2 (2)
C4—C5—C6120.4 (2)C29—C30—C25122.7 (2)
C4—C5—H5119.8C29—C30—H30118.6
C6—C5—H5119.8C25—C30—H30118.6
C7—C6—C5119.7 (2)C33—C31—C32108.61 (19)
C7—C6—H6A120.2C33—C31—C29108.23 (18)
C5—C6—H6A120.2C32—C31—C29111.9 (2)
C6—C7—C2120.9 (2)C33—C31—C34109.0 (2)
C6—C7—H7119.5C32—C31—C34108.57 (19)
C2—C7—H7119.5C29—C31—C34110.45 (18)
C13—C8—C9119.7 (2)C31—C32—H32A109.5
C13—C8—N2115.5 (2)C31—C32—H32B109.5
C9—C8—N2124.8 (2)H32A—C32—H32B109.5
O3—C9—C10118.1 (2)C31—C32—H32C109.5
O3—C9—C8123.8 (2)H32A—C32—H32C109.5
C10—C9—C8118.1 (2)H32B—C32—H32C109.5
C11—C10—C9120.6 (2)C31—C33—H33A109.5
C11—C10—H10119.7C31—C33—H33B109.5
C9—C10—H10119.7H33A—C33—H33B109.5
C10—C11—C12122.4 (2)C31—C33—H33C109.5
C10—C11—H11118.8H33A—C33—H33C109.5
C12—C11—H11118.8H33B—C33—H33C109.5
C13—C12—C11116.5 (2)C31—C34—H34A109.5
C13—C12—C14123.9 (2)C31—C34—H34B109.5
C11—C12—C14119.6 (2)H34A—C34—H34B109.5
C12—C13—C8122.6 (2)C31—C34—H34C109.5
C12—C13—H13118.7H34A—C34—H34C109.5
C8—C13—H13118.7H34B—C34—H34C109.5
C15—C14—C12111.73 (19)Sn—C35—H35A109.5
C15—C14—C16108.4 (2)Sn—C35—H35B109.5
C12—C14—C16110.0 (2)H35A—C35—H35B109.5
C15—C14—C17108.5 (2)Sn—C35—H35C109.5
C12—C14—C17108.9 (2)H35A—C35—H35C109.5
C16—C14—C17109.2 (2)H35B—C35—H35C109.5
C14—C15—H15A109.5Sn—C36—H36A109.5
C14—C15—H15B109.5Sn—C36—H36B109.5
H15A—C15—H15B109.5H36A—C36—H36B109.5
C14—C15—H15C109.5Sn—C36—H36C109.5
H15A—C15—H15C109.5H36A—C36—H36C109.5
H15B—C15—H15C109.5H36B—C36—H36C109.5
C14—C16—H16A109.5
C35—Sn—O1—C183.78 (16)C11—C12—C14—C1659.1 (3)
C36—Sn—O1—C175.78 (16)C13—C12—C14—C17117.6 (3)
O4—Sn—O1—C1174.93 (16)C11—C12—C14—C1760.6 (3)
O5—Sn—O1—C1172.67 (13)Sn—O5—C18—O43.3 (2)
C18—Sn—O1—C1172.96 (15)Sn—O5—C18—C19173.8 (2)
O2—Sn—O1—C12.88 (13)Sn—O4—C18—O53.9 (2)
O2i—Sn—O1—C13.15 (17)Sn—O4—C18—C19173.52 (17)
C35—Sn—O2—C1108.86 (15)C35—Sn—C18—O573.29 (15)
C36—Sn—O2—C1101.45 (16)C36—Sn—C18—O578.19 (15)
O4—Sn—O2—C10.12 (17)O4—Sn—C18—O5176.4 (2)
O1—Sn—O2—C12.94 (14)O1—Sn—C18—O5179.59 (13)
O5—Sn—O2—C1162.8 (3)O2—Sn—C18—O5168.08 (17)
C18—Sn—O2—C110.6 (3)O2i—Sn—C18—O53.68 (17)
O2i—Sn—O2—C1177.31 (17)C35—Sn—C18—O4103.08 (15)
C35—Sn—O4—C1882.07 (16)C36—Sn—C18—O4105.44 (15)
C36—Sn—O4—C1877.96 (16)O1—Sn—C18—O44.04 (16)
O1—Sn—O4—C18176.19 (15)O5—Sn—C18—O4176.4 (2)
O5—Sn—O4—C182.03 (13)O2—Sn—C18—O415.6 (3)
O2—Sn—O4—C18173.73 (12)O2i—Sn—C18—O4179.96 (12)
O2i—Sn—O4—C180.1 (2)C35—Sn—C18—C19129.7 (7)
C35—Sn—O5—C18108.18 (15)C36—Sn—C18—C1978.9 (7)
C36—Sn—O5—C18101.96 (16)O4—Sn—C18—C1926.6 (7)
O4—Sn—O5—C182.09 (13)O1—Sn—C18—C1922.6 (7)
O1—Sn—O5—C180.57 (18)O5—Sn—C18—C19157.0 (8)
O2—Sn—O5—C18163.3 (2)O2—Sn—C18—C1911.0 (9)
O2i—Sn—O5—C18177.01 (14)O2i—Sn—C18—C19153.4 (7)
C3—N1—N2—C8175.48 (19)O5—C18—C19—C24155.3 (2)
C20—N3—N4—C25176.77 (18)O4—C18—C19—C2421.9 (3)
Sn—O2—C1—O14.5 (2)Sn—C18—C19—C241.2 (8)
Sn—O2—C1—C2174.5 (2)O5—C18—C19—C2024.1 (4)
Sn—O1—C1—O25.9 (3)O4—C18—C19—C20158.7 (2)
Sn—O1—C1—C2173.12 (16)Sn—C18—C19—C20178.2 (6)
O2—C1—C2—C716.0 (3)C24—C19—C20—C211.2 (3)
O1—C1—C2—C7165.0 (2)C18—C19—C20—C21179.5 (2)
O2—C1—C2—C3163.7 (2)C24—C19—C20—N3178.4 (2)
O1—C1—C2—C315.2 (3)C18—C19—C20—N32.3 (3)
C7—C2—C3—C41.6 (3)N4—N3—C20—C214.8 (3)
C1—C2—C3—C4178.6 (2)N4—N3—C20—C19178.1 (2)
C7—C2—C3—N1171.1 (2)C19—C20—C21—C221.3 (3)
C1—C2—C3—N18.6 (3)N3—C20—C21—C22178.3 (2)
N2—N1—C3—C434.5 (3)C20—C21—C22—C230.7 (4)
N2—N1—C3—C2152.8 (2)C21—C22—C23—C240.1 (4)
C2—C3—C4—C50.3 (3)C22—C23—C24—C190.2 (4)
N1—C3—C4—C5172.3 (2)C20—C19—C24—C230.4 (4)
C3—C4—C5—C61.1 (4)C18—C19—C24—C23179.8 (2)
C4—C5—C6—C71.3 (4)N3—N4—C25—C30168.2 (2)
C5—C6—C7—C20.1 (4)N3—N4—C25—C268.9 (3)
C3—C2—C7—C61.5 (3)N4—C25—C26—O63.8 (4)
C1—C2—C7—C6178.7 (2)C30—C25—C26—O6179.2 (2)
N1—N2—C8—C13179.8 (2)N4—C25—C26—C27176.9 (2)
N1—N2—C8—C90.0 (3)C30—C25—C26—C270.0 (3)
C13—C8—C9—O3179.2 (2)O6—C26—C27—C28178.4 (2)
N2—C8—C9—O31.0 (4)C25—C26—C27—C282.3 (3)
C13—C8—C9—C101.1 (4)C26—C27—C28—C292.3 (4)
N2—C8—C9—C10178.7 (2)C27—C28—C29—C300.2 (3)
O3—C9—C10—C11179.8 (2)C27—C28—C29—C31177.6 (2)
C8—C9—C10—C110.0 (4)C28—C29—C30—C252.5 (3)
C9—C10—C11—C120.5 (4)C31—C29—C30—C25175.2 (2)
C10—C11—C12—C130.2 (4)N4—C25—C30—C29174.8 (2)
C10—C11—C12—C14178.5 (2)C26—C25—C30—C292.5 (3)
C11—C12—C13—C81.3 (4)C30—C29—C31—C33110.7 (2)
C14—C12—C13—C8179.5 (2)C28—C29—C31—C3367.0 (3)
C9—C8—C13—C121.8 (4)C30—C29—C31—C329.0 (3)
N2—C8—C13—C12178.0 (2)C28—C29—C31—C32173.4 (2)
C13—C12—C14—C152.2 (3)C30—C29—C31—C34130.1 (2)
C11—C12—C14—C15179.6 (2)C28—C29—C31—C3452.3 (3)
C13—C12—C14—C16122.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.842.493.142 (2)136
O3—H3···N10.841.872.573 (2)140
O6—H6···O50.842.202.877 (3)137
O6—H6···N30.841.932.620 (3)139
C10—H10···Cg1ii0.952.973.863 (2)157
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C17H17N2O3)2]
Mr743.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6298 (1), 31.8788 (4), 11.0963 (1)
β (°) 93.502 (1)
V3)3400.05 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.36 × 0.13 × 0.03
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.895, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
26762, 7749, 6165
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 1.04
No. of reflections7749
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Sn—O12.1118 (16)Sn—O52.4482 (16)
Sn—O22.6967 (16)Sn—C352.081 (3)
Sn—O42.1120 (16)Sn—C362.098 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.842.493.142 (2)136
O3—H3···N10.841.872.573 (2)140
O6—H6···O50.842.202.877 (3)137
O6—H6···N30.841.932.620 (3)139
C10—H10···Cg1i0.952.973.863 (2)157
Symmetry code: (i) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: basubaul@hotmail.com.

Acknowledgements

The financial support of the Department of Science and Technology, New Delhi, India (grant No. SR/S1/IC-03/2005,TSBB), the Council of Scientific and Industrial Research, New Delhi, India [grant No. 09/347/(0197)/2011/EMR I, for the award of a Senior Research Fellowship to AP] and the University Grants Commission, New Delhi, India, through SAP–DSA, Phase-III, are gratefully acknowledged.

References

First citationBasu Baul, T. S., Paul, A., Arman, H. D. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o2125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBasu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., Duthie, A., de Vos, D. & Tiekink, E. R. T. (2011). Invest. New Drugs, 29, 285–299.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBasu Baul, T. S., Paul, A. & Tiekink, E. R. T. (2010). Z. Kristallogr. 225, 153–157.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds