organic compounds
(E)-4-Hydroxy-N′-(3-hydroxy-4-methoxybenzylidene)benzohydrazide
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my
The molecule of the title benzohydrazide derivative, C15H14N2O4, exists in a trans conformation with respect to the C=N double bond and is twisted, the dihedral angle between the two benzene rings being 24.17 (6)°. The methoxy group is almost co-planar with respect to the attached benzene ring [Cm—O—C—C (m = methyl) = −1.45 (17)°]. In the crystal, the molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into sheets parallel to the bc plane. These sheets are further connected into a three-dimensional network by weak C—H⋯O and C—H⋯π interactions.
Related literature
For bond-length data, see: Allen et al. (1987). For related structures, see: Li & Ban (2009); Zhang (2011). For background to and applications of benzohydrazide derivatives, see: Bedia et al. (2006); Bhole & Bhusari (2009); Loncle et al. (2004); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811036579/hb6400sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811036579/hb6400Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811036579/hb6400Isup3.cml
The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (0.1 mmol, 0.15 g) in ethanol (15 ml). A solution of 3-hydroxy-4-methoxybenzaldehyde (0.1 mmol, 0.15 g) in ethanol (15 ml) was then added slowly to the reaction. The mixture was refluxed for around 5 hr. The solution was then cooled to room temperature. Colorless blocks of (I) were obtained after slow evaporation of the solvent at room temperature after several days, Mp. 516 K (decompose).
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.84 Å, d(N-H) = 0.88 Å, d(C-H) = 0.95 Å for aromatic and CH and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C1 and the deepest hole is located at 0.21 Å from H2A.Benzohydrazide derivatives have a wide variety of biological properties, such as antibacterial (Bhole & Bhusari, 2009), antifungal (Loncle et al., 2004), antitubecular (Bedia et al., 2006) and antiproliferative (Raj et al., 2007) activities.
These interesting properties lead us to synthesize the title compound (I), which contains hydroxyl and methoxy substituents, in order to study and compare its biological properties with other related benzohydrazide derivatives. Herein the
of (I) is reported.The molecule of the title benzohydrazide derivative (Fig. 1), C15H14N2O4, exists in a trans-configuration with respect to the C8═N2 bond [1.2811 (13) Å] and the torsion angle N1–N2–C8–C9 = 178.77 (9)°. The molecule is twisted with the dihedral angle between the two benzene rings being 24.17 (6)°. Atom O1, C7, N1, N2 and C8 of the middle bridge lie nearly on the same plane with the torsion angle O1–C7–N1–N2 = -3.15 (14)°. The mean plane through this middle bridge makes the dihedral angles of 4.82 (7) and 25.95 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The methoxy group is almost co-planar with the attached benzene ring with the torsion angle C15–O4–C12–C13 = -1.45 (17)°. Bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Li & Ban, 2009; Zhang, 2011).
In the crystal packing (Fig. 2), the molecules are linked by N—H···O and O—H···O hydrogen bonds (Table 1) into sheets parallel to the bc plane and these sheets are further connected into three dimensional network. The crystal is stabilized N—H···O and O—H···O hydrogen bonds together with C—H···O weak interaction. C—H···π weak interaction (Table 1) was also observed.
For bond-length data, see: Allen et al. (1987). For related structures, see: Li & Ban (2009); Zhang (2011). For background to and applications of benzohydrazide derivatives, see: Bedia et al. (2006); Bhole & Bhusari (2009); Loncle et al. (2004); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. | |
Fig. 2. The crystal packing of the title compound viewed along the a axis, Hydrogen bonds were shown as dashed lines. |
C15H14N2O4 | F(000) = 600 |
Mr = 286.28 | Dx = 1.404 Mg m−3 |
Monoclinic, P21/c | Melting point = 516 (decompose)–516 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.7484 (5) Å | Cell parameters from 3910 reflections |
b = 9.4669 (4) Å | θ = 2.2–30.0° |
c = 15.7198 (5) Å | µ = 0.10 mm−1 |
β = 122.166 (2)° | T = 100 K |
V = 1354.04 (10) Å3 | Block, colorless |
Z = 4 | 0.42 × 0.29 × 0.19 mm |
Bruker APEX DUO CCD diffractometer | 3910 independent reflections |
Radiation source: sealed tube | 3438 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scans | θmax = 30.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→15 |
Tmin = 0.958, Tmax = 0.981 | k = −13→13 |
16525 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0719P)2 + 0.4766P] where P = (Fo2 + 2Fc2)/3 |
3910 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
C15H14N2O4 | V = 1354.04 (10) Å3 |
Mr = 286.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.7484 (5) Å | µ = 0.10 mm−1 |
b = 9.4669 (4) Å | T = 100 K |
c = 15.7198 (5) Å | 0.42 × 0.29 × 0.19 mm |
β = 122.166 (2)° |
Bruker APEX DUO CCD diffractometer | 3910 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3438 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.981 | Rint = 0.021 |
16525 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.45 e Å−3 |
3910 reflections | Δρmin = −0.49 e Å−3 |
191 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.43925 (8) | 1.18018 (8) | 0.58385 (5) | 0.01852 (17) | |
O2 | 0.49471 (9) | 1.47445 (8) | 0.24675 (6) | 0.01967 (17) | |
H2A | 0.4792 | 1.4316 | 0.1952 | 0.030* | |
O3 | 0.26685 (8) | 0.66939 (8) | 0.80751 (6) | 0.01987 (17) | |
H3A | 0.3556 | 0.6774 | 0.8260 | 0.030* | |
O4 | 0.01675 (9) | 0.54612 (9) | 0.72204 (6) | 0.02306 (18) | |
N1 | 0.28428 (10) | 1.03431 (9) | 0.45801 (6) | 0.01717 (18) | |
H1A | 0.2380 | 1.0104 | 0.3942 | 0.021* | |
N2 | 0.26221 (9) | 0.96119 (9) | 0.52515 (6) | 0.01676 (18) | |
C1 | 0.40755 (10) | 1.22076 (10) | 0.42422 (7) | 0.01464 (18) | |
C2 | 0.50952 (12) | 1.33110 (12) | 0.46469 (8) | 0.0208 (2) | |
H2B | 0.5603 | 1.3494 | 0.5348 | 0.025* | |
C3 | 0.53774 (12) | 1.41401 (12) | 0.40453 (8) | 0.0229 (2) | |
H3B | 0.6071 | 1.4888 | 0.4334 | 0.027* | |
C4 | 0.46467 (10) | 1.38813 (10) | 0.30166 (7) | 0.01553 (19) | |
C5 | 0.36654 (12) | 1.27532 (12) | 0.26061 (8) | 0.0210 (2) | |
H5A | 0.3193 | 1.2547 | 0.1910 | 0.025* | |
C6 | 0.33780 (12) | 1.19320 (12) | 0.32125 (8) | 0.0208 (2) | |
H6A | 0.2699 | 1.1173 | 0.2925 | 0.025* | |
C7 | 0.37956 (10) | 1.14385 (10) | 0.49418 (7) | 0.01477 (18) | |
C8 | 0.15580 (12) | 0.87261 (12) | 0.48512 (8) | 0.0204 (2) | |
H8A | 0.0982 | 0.8631 | 0.4141 | 0.024* | |
C9 | 0.12146 (11) | 0.78585 (11) | 0.54692 (8) | 0.0189 (2) | |
C10 | 0.21899 (10) | 0.77112 (10) | 0.65114 (7) | 0.01542 (19) | |
H10A | 0.3115 | 0.8176 | 0.6838 | 0.019* | |
C11 | 0.18034 (10) | 0.68906 (10) | 0.70614 (7) | 0.01506 (19) | |
C12 | 0.04194 (11) | 0.62256 (11) | 0.65889 (8) | 0.0189 (2) | |
C13 | −0.05414 (13) | 0.63664 (15) | 0.55581 (9) | 0.0306 (3) | |
H13A | −0.1475 | 0.5918 | 0.5232 | 0.037* | |
C14 | −0.01309 (13) | 0.71667 (15) | 0.50042 (9) | 0.0312 (3) | |
H14A | −0.0781 | 0.7241 | 0.4297 | 0.037* | |
C15 | −0.12259 (13) | 0.47708 (14) | 0.67802 (10) | 0.0297 (3) | |
H15D | −0.1294 | 0.4289 | 0.7306 | 0.045* | |
H15A | −0.1325 | 0.4077 | 0.6285 | 0.045* | |
H15B | −0.2014 | 0.5473 | 0.6448 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0209 (3) | 0.0232 (4) | 0.0119 (3) | −0.0039 (3) | 0.0090 (3) | −0.0025 (3) |
O2 | 0.0247 (4) | 0.0215 (4) | 0.0148 (3) | −0.0043 (3) | 0.0119 (3) | 0.0004 (3) |
O3 | 0.0180 (3) | 0.0263 (4) | 0.0132 (3) | −0.0006 (3) | 0.0069 (3) | 0.0032 (3) |
O4 | 0.0221 (4) | 0.0259 (4) | 0.0225 (4) | −0.0044 (3) | 0.0128 (3) | 0.0058 (3) |
N1 | 0.0221 (4) | 0.0188 (4) | 0.0119 (4) | −0.0044 (3) | 0.0100 (3) | −0.0008 (3) |
N2 | 0.0198 (4) | 0.0186 (4) | 0.0146 (4) | 0.0001 (3) | 0.0110 (3) | 0.0020 (3) |
C1 | 0.0162 (4) | 0.0159 (4) | 0.0129 (4) | −0.0002 (3) | 0.0085 (3) | −0.0002 (3) |
C2 | 0.0222 (5) | 0.0248 (5) | 0.0121 (4) | −0.0074 (4) | 0.0069 (4) | −0.0013 (4) |
C3 | 0.0244 (5) | 0.0265 (5) | 0.0142 (5) | −0.0107 (4) | 0.0079 (4) | −0.0018 (4) |
C4 | 0.0170 (4) | 0.0172 (4) | 0.0142 (4) | 0.0007 (3) | 0.0096 (3) | 0.0014 (3) |
C5 | 0.0263 (5) | 0.0244 (5) | 0.0131 (4) | −0.0077 (4) | 0.0111 (4) | −0.0040 (4) |
C6 | 0.0265 (5) | 0.0221 (5) | 0.0155 (5) | −0.0097 (4) | 0.0124 (4) | −0.0055 (4) |
C7 | 0.0158 (4) | 0.0163 (4) | 0.0130 (4) | 0.0009 (3) | 0.0081 (3) | 0.0004 (3) |
C8 | 0.0211 (5) | 0.0246 (5) | 0.0141 (4) | −0.0031 (4) | 0.0084 (4) | 0.0021 (4) |
C9 | 0.0184 (4) | 0.0219 (5) | 0.0153 (4) | −0.0030 (3) | 0.0083 (4) | 0.0023 (3) |
C10 | 0.0146 (4) | 0.0165 (4) | 0.0154 (4) | −0.0009 (3) | 0.0081 (3) | −0.0003 (3) |
C11 | 0.0155 (4) | 0.0156 (4) | 0.0137 (4) | 0.0017 (3) | 0.0076 (3) | 0.0006 (3) |
C12 | 0.0189 (4) | 0.0199 (5) | 0.0189 (5) | −0.0023 (3) | 0.0106 (4) | 0.0030 (4) |
C13 | 0.0200 (5) | 0.0428 (7) | 0.0205 (5) | −0.0137 (5) | 0.0050 (4) | 0.0054 (5) |
C14 | 0.0225 (5) | 0.0452 (7) | 0.0158 (5) | −0.0128 (5) | 0.0032 (4) | 0.0066 (5) |
C15 | 0.0267 (5) | 0.0295 (6) | 0.0348 (6) | −0.0092 (4) | 0.0177 (5) | 0.0038 (5) |
O1—C7 | 1.2465 (12) | C4—C5 | 1.3946 (14) |
O2—C4 | 1.3468 (12) | C5—C6 | 1.3864 (14) |
O2—H2A | 0.8400 | C5—H5A | 0.9500 |
O3—C11 | 1.3642 (12) | C6—H6A | 0.9500 |
O3—H3A | 0.8400 | C8—C9 | 1.4616 (14) |
O4—C12 | 1.3671 (12) | C8—H8A | 0.9500 |
O4—C15 | 1.4302 (13) | C9—C14 | 1.3889 (15) |
N1—C7 | 1.3518 (13) | C9—C10 | 1.4049 (13) |
N1—N2 | 1.3841 (11) | C10—C11 | 1.3804 (13) |
N1—H1A | 0.8800 | C10—H10A | 0.9500 |
N2—C8 | 1.2811 (13) | C11—C12 | 1.4087 (14) |
C1—C2 | 1.3981 (13) | C12—C13 | 1.3886 (15) |
C1—C6 | 1.3992 (13) | C13—C14 | 1.3913 (16) |
C1—C7 | 1.4774 (13) | C13—H13A | 0.9500 |
C2—C3 | 1.3813 (14) | C14—H14A | 0.9500 |
C2—H2B | 0.9500 | C15—H15D | 0.9800 |
C3—C4 | 1.3927 (14) | C15—H15A | 0.9800 |
C3—H3B | 0.9500 | C15—H15B | 0.9800 |
C4—O2—H2A | 109.5 | N2—C8—C9 | 121.12 (9) |
C11—O3—H3A | 109.5 | N2—C8—H8A | 119.4 |
C12—O4—C15 | 116.86 (9) | C9—C8—H8A | 119.4 |
C7—N1—N2 | 117.51 (8) | C14—C9—C10 | 119.23 (10) |
C7—N1—H1A | 121.2 | C14—C9—C8 | 118.41 (9) |
N2—N1—H1A | 121.2 | C10—C9—C8 | 122.36 (9) |
C8—N2—N1 | 115.06 (8) | C11—C10—C9 | 119.98 (9) |
C2—C1—C6 | 118.24 (9) | C11—C10—H10A | 120.0 |
C2—C1—C7 | 116.77 (9) | C9—C10—H10A | 120.0 |
C6—C1—C7 | 124.97 (9) | O3—C11—C10 | 124.27 (9) |
C3—C2—C1 | 121.18 (9) | O3—C11—C12 | 115.25 (9) |
C3—C2—H2B | 119.4 | C10—C11—C12 | 120.44 (9) |
C1—C2—H2B | 119.4 | O4—C12—C13 | 125.91 (9) |
C2—C3—C4 | 120.09 (9) | O4—C12—C11 | 114.55 (9) |
C2—C3—H3B | 120.0 | C13—C12—C11 | 119.53 (9) |
C4—C3—H3B | 120.0 | C12—C13—C14 | 119.73 (10) |
O2—C4—C3 | 117.26 (9) | C12—C13—H13A | 120.1 |
O2—C4—C5 | 123.26 (9) | C14—C13—H13A | 120.1 |
C3—C4—C5 | 119.48 (9) | C9—C14—C13 | 121.04 (10) |
C6—C5—C4 | 120.11 (9) | C9—C14—H14A | 119.5 |
C6—C5—H5A | 119.9 | C13—C14—H14A | 119.5 |
C4—C5—H5A | 119.9 | O4—C15—H15D | 109.5 |
C5—C6—C1 | 120.83 (9) | O4—C15—H15A | 109.5 |
C5—C6—H6A | 119.6 | H15D—C15—H15A | 109.5 |
C1—C6—H6A | 119.6 | O4—C15—H15B | 109.5 |
O1—C7—N1 | 120.39 (9) | H15D—C15—H15B | 109.5 |
O1—C7—C1 | 121.31 (9) | H15A—C15—H15B | 109.5 |
N1—C7—C1 | 118.28 (8) | ||
C7—N1—N2—C8 | 170.09 (9) | N2—C8—C9—C14 | 165.34 (12) |
C6—C1—C2—C3 | 2.04 (16) | N2—C8—C9—C10 | −14.19 (17) |
C7—C1—C2—C3 | −176.66 (10) | C14—C9—C10—C11 | −0.25 (16) |
C1—C2—C3—C4 | −0.29 (18) | C8—C9—C10—C11 | 179.28 (10) |
C2—C3—C4—O2 | 178.66 (10) | C9—C10—C11—O3 | −179.40 (9) |
C2—C3—C4—C5 | −2.01 (17) | C9—C10—C11—C12 | −1.60 (15) |
O2—C4—C5—C6 | −178.17 (10) | C15—O4—C12—C13 | −1.45 (17) |
C3—C4—C5—C6 | 2.53 (16) | C15—O4—C12—C11 | 179.62 (10) |
C4—C5—C6—C1 | −0.77 (17) | O3—C11—C12—O4 | −1.13 (13) |
C2—C1—C6—C5 | −1.50 (16) | C10—C11—C12—O4 | −179.13 (9) |
C7—C1—C6—C5 | 177.08 (10) | O3—C11—C12—C13 | 179.87 (11) |
N2—N1—C7—O1 | −3.15 (14) | C10—C11—C12—C13 | 1.87 (16) |
N2—N1—C7—C1 | 178.39 (8) | O4—C12—C13—C14 | −179.17 (12) |
C2—C1—C7—O1 | 3.16 (14) | C11—C12—C13—C14 | −0.3 (2) |
C6—C1—C7—O1 | −175.44 (10) | C10—C9—C14—C13 | 1.8 (2) |
C2—C1—C7—N1 | −178.39 (9) | C8—C9—C14—C13 | −177.71 (13) |
C6—C1—C7—N1 | 3.01 (15) | C12—C13—C14—C9 | −1.6 (2) |
N1—N2—C8—C9 | 178.77 (9) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.88 | 2.30 | 2.9798 (12) | 134 |
N1—H1A···O4i | 0.88 | 2.53 | 3.3542 (12) | 156 |
O2—H2A···O1ii | 0.84 | 1.89 | 2.7259 (11) | 174 |
O3—H3A···O1iii | 0.84 | 1.88 | 2.6762 (13) | 157 |
C10—H10A···O2iv | 0.95 | 2.58 | 3.4786 (14) | 158 |
C15—H15B···Cg1v | 0.98 | 2.85 | 3.7211 (16) | 149 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+5/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x, −y+5/2, z+1/2; (v) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H14N2O4 |
Mr | 286.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.7484 (5), 9.4669 (4), 15.7198 (5) |
β (°) | 122.166 (2) |
V (Å3) | 1354.04 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.42 × 0.29 × 0.19 |
Data collection | |
Diffractometer | Bruker APEX DUO CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.958, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16525, 3910, 3438 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.125, 1.03 |
No. of reflections | 3910 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.49 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.88 | 2.30 | 2.9798 (12) | 134 |
N1—H1A···O4i | 0.88 | 2.53 | 3.3542 (12) | 156 |
O2—H2A···O1ii | 0.84 | 1.89 | 2.7259 (11) | 174 |
O3—H3A···O1iii | 0.84 | 1.88 | 2.6762 (13) | 157 |
C10—H10A···O2iv | 0.95 | 2.58 | 3.4786 (14) | 158 |
C15—H15B···Cg1v | 0.98 | 2.85 | 3.7211 (16) | 149 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+5/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x, −y+5/2, z+1/2; (v) −x, −y+2, −z+1. |
Acknowledgements
JH thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. Web of Science CrossRef PubMed CAS Google Scholar
Bhole, R. P. & Bhusari, K. P. (2009). QSAR Comb. Sci. 28, 1405–1417. Web of Science CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071. Web of Science CrossRef PubMed CAS Google Scholar
Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429. PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Z. (2011). Acta Cryst. E67, o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzohydrazide derivatives have a wide variety of biological properties, such as antibacterial (Bhole & Bhusari, 2009), antifungal (Loncle et al., 2004), antitubecular (Bedia et al., 2006) and antiproliferative (Raj et al., 2007) activities.
These interesting properties lead us to synthesize the title compound (I), which contains hydroxyl and methoxy substituents, in order to study and compare its biological properties with other related benzohydrazide derivatives. Herein the crystal structure of (I) is reported.
The molecule of the title benzohydrazide derivative (Fig. 1), C15H14N2O4, exists in a trans-configuration with respect to the C8═N2 bond [1.2811 (13) Å] and the torsion angle N1–N2–C8–C9 = 178.77 (9)°. The molecule is twisted with the dihedral angle between the two benzene rings being 24.17 (6)°. Atom O1, C7, N1, N2 and C8 of the middle bridge lie nearly on the same plane with the torsion angle O1–C7–N1–N2 = -3.15 (14)°. The mean plane through this middle bridge makes the dihedral angles of 4.82 (7) and 25.95 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The methoxy group is almost co-planar with the attached benzene ring with the torsion angle C15–O4–C12–C13 = -1.45 (17)°. Bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Li & Ban, 2009; Zhang, 2011).
In the crystal packing (Fig. 2), the molecules are linked by N—H···O and O—H···O hydrogen bonds (Table 1) into sheets parallel to the bc plane and these sheets are further connected into three dimensional network. The crystal is stabilized N—H···O and O—H···O hydrogen bonds together with C—H···O weak interaction. C—H···π weak interaction (Table 1) was also observed.