organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phen­yl)-1-phenyl-1H-pyrazole-4-carbaldehyde

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 September 2011; accepted 11 September 2011; online 17 September 2011)

In the title compound, C16H11BrN2O, the phenyl and chloro­benzene rings are twisted out of the mean plane of the pyrazole ring, forming dihedral angles of 13.70 (10) and 36.48 (10)°, respectively. The carbaldehyde group is also twisted out of the pyrazole plane [the C—C—C—O torsion angle is 7.9 (3)°]. A helical supra­molecular chain along the b axis and mediated by C—H⋯O inter­actions is the most prominent feature of the crystal packing.

Related literature

For background details and biological applications of pyrazoles, see: Kaushik et al. (2010[Kaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943-3949.]); Ali et al. (2007[Ali, M. A., Shaharyar, M., Siddiqui, A. A., Sriram, D., Yogeeswari, P. & Clercq, E. D. (2007). Acta Pol. Pharm. 63, 423-428.]); Krishnamurthy et al. (2004[Krishnamurthy, M., Li, W. & Moore, B. M. (2004). Bioorg. Med. Chem. 12, 393-404.]). For a related structure, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrN2O

  • Mr = 327.18

  • Monoclinic, P 21 /n

  • a = 17.7233 (4) Å

  • b = 3.8630 (1) Å

  • c = 20.4224 (5) Å

  • β = 110.137 (3)°

  • V = 1312.75 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.23 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.418, Tmax = 0.569

  • 4619 measured reflections

  • 2593 independent reflections

  • 2542 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.02

  • 2593 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.49 3.435 (2) 171
C16—H16⋯O1ii 0.95 2.46 3.288 (3) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A broad spectrum of biological activities [anti-bacterial, anti-depressant, anti-convulsive, anti-hypertensive, anti-oxidant anti-viral and anti-tumour] have been noted for pyrazoles and their derivatives (Kaushik et al., 2010; Ali et al., 2007; Krishnamurthy et al., 2004). In continuation of structural studies in this area (Asiri et al., 2011), the title compound, (I), was investigated.

The dihedral angles formed between the central pyrazole ring [r.m.s. deviation = 0.003 Å] and the N– and C-bound benzene rings of 13.70 (10) and 36.48 (10) °, respectively, indicate significant twists in the molecule of (I), Fig. 1. Similarly, the carbaldehyde group is twisted out of the plane of the five-membered ring as seen in the value of the C13—C14—C16—O1 torsion angle of 7.9 (3) °. The relative disposition of the benzene rings preclude close intermolecular association with the imine-N2 atom which, indeed, forms a close intramolecular C2—H···N2 contact, Table 1.

The crystal packing features C—H···O interactions involving a bifurcated carbonyl-O1 atom, Table 1. These result in the formation of a helical supramolecular chain along the b axis, Fig. 2.

Related literature top

For background details and biological applications of pyrazoles, see: Kaushik et al. (2010); Ali et al. (2007); Krishnamurthy et al. (2004). For a related structure, see: Asiri et al. (2011).

Experimental top

Phosphoryl chloride (5.6 ml) was added drop wise to cold N,N-dimethylformamide (22.5 ml) under continuous stirring at 273–278 K for about 30 min. 4-Bromoacetophenone phenylhydrazone (5 g, 17 mmol) was added to the above reaction mixture. The resulting mixture was further stirred at 333 K for 6 h. and cooled to room temperature. The crude product was poured into crushed ice which resulted in a white precipitate. The resultant solid was filtered, dried and purified by column chromatography using chloroform. Recrystallization was by slow evaporation of chloroform solution of (I) which yielded colourless prisms. M.pt. 413–415 K. Yield: 56%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

A broad spectrum of biological activities [anti-bacterial, anti-depressant, anti-convulsive, anti-hypertensive, anti-oxidant anti-viral and anti-tumour] have been noted for pyrazoles and their derivatives (Kaushik et al., 2010; Ali et al., 2007; Krishnamurthy et al., 2004). In continuation of structural studies in this area (Asiri et al., 2011), the title compound, (I), was investigated.

The dihedral angles formed between the central pyrazole ring [r.m.s. deviation = 0.003 Å] and the N– and C-bound benzene rings of 13.70 (10) and 36.48 (10) °, respectively, indicate significant twists in the molecule of (I), Fig. 1. Similarly, the carbaldehyde group is twisted out of the plane of the five-membered ring as seen in the value of the C13—C14—C16—O1 torsion angle of 7.9 (3) °. The relative disposition of the benzene rings preclude close intermolecular association with the imine-N2 atom which, indeed, forms a close intramolecular C2—H···N2 contact, Table 1.

The crystal packing features C—H···O interactions involving a bifurcated carbonyl-O1 atom, Table 1. These result in the formation of a helical supramolecular chain along the b axis, Fig. 2.

For background details and biological applications of pyrazoles, see: Kaushik et al. (2010); Ali et al. (2007); Krishnamurthy et al. (2004). For a related structure, see: Asiri et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Helical supramolecular chain in (I) mediated by C—H···O (orange dashed lines) interactions.
3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C16H11BrN2OF(000) = 656
Mr = 327.18Dx = 1.655 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 3680 reflections
a = 17.7233 (4) Åθ = 2.7–74.1°
b = 3.8630 (1) ŵ = 4.23 mm1
c = 20.4224 (5) ÅT = 100 K
β = 110.137 (3)°Prism, colourless
V = 1312.75 (6) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2593 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2542 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 2.9°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 44
Tmin = 0.418, Tmax = 0.569l = 1925
4619 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.2934P]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max = 0.004
181 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C16H11BrN2OV = 1312.75 (6) Å3
Mr = 327.18Z = 4
Monoclinic, P21/nCu Kα radiation
a = 17.7233 (4) ŵ = 4.23 mm1
b = 3.8630 (1) ÅT = 100 K
c = 20.4224 (5) Å0.25 × 0.20 × 0.15 mm
β = 110.137 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2593 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2542 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.569Rint = 0.012
4619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2593 reflectionsΔρmin = 0.66 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.979494 (11)0.14952 (5)1.111751 (9)0.01554 (9)
O10.66107 (9)0.4209 (4)0.71084 (7)0.0183 (3)
N10.54596 (9)0.8378 (4)0.84419 (8)0.0106 (3)
N20.60504 (9)0.7642 (4)0.90629 (8)0.0114 (3)
C10.47250 (10)0.9916 (5)0.84392 (9)0.0112 (3)
C20.45581 (11)0.9963 (5)0.90561 (10)0.0146 (4)
H20.49290.90080.94710.018*
C30.38437 (12)1.1422 (5)0.90583 (11)0.0170 (4)
H30.37291.14960.94800.020*
C40.32952 (12)1.2773 (5)0.84520 (11)0.0169 (4)
H40.28051.37440.84560.020*
C50.34673 (11)1.2698 (5)0.78370 (10)0.0165 (4)
H50.30921.36170.74210.020*
C60.41865 (12)1.1284 (5)0.78272 (10)0.0148 (4)
H60.43071.12550.74080.018*
C70.73867 (11)0.5078 (5)0.94282 (9)0.0112 (4)
C80.73831 (12)0.3647 (5)1.00557 (10)0.0128 (4)
H80.68880.33961.01350.015*
C90.80911 (12)0.2589 (5)1.05641 (9)0.0141 (4)
H90.80850.16391.09910.017*
C100.88090 (11)0.2942 (5)1.04391 (10)0.0135 (4)
C110.88296 (11)0.4357 (5)0.98216 (10)0.0146 (4)
H110.93260.45800.97440.018*
C120.81210 (11)0.5442 (5)0.93190 (9)0.0133 (4)
H120.81330.64400.88980.016*
C130.56590 (11)0.7418 (5)0.78887 (9)0.0117 (3)
H130.53400.76940.74110.014*
C140.64162 (11)0.5954 (5)0.81478 (10)0.0115 (4)
C150.66323 (11)0.6177 (5)0.88888 (9)0.0105 (4)
C160.68436 (11)0.4243 (5)0.77447 (10)0.0135 (4)
H160.73320.30850.79910.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01392 (13)0.01863 (13)0.01135 (12)0.00306 (7)0.00088 (9)0.00292 (7)
O10.0176 (7)0.0277 (7)0.0116 (6)0.0046 (6)0.0076 (5)0.0054 (6)
N10.0085 (7)0.0138 (8)0.0094 (7)0.0002 (6)0.0029 (6)0.0001 (5)
N20.0103 (7)0.0144 (7)0.0089 (7)0.0004 (6)0.0024 (6)0.0000 (6)
C10.0089 (8)0.0110 (9)0.0143 (8)0.0015 (7)0.0048 (7)0.0025 (7)
C20.0142 (9)0.0164 (9)0.0134 (8)0.0000 (7)0.0051 (7)0.0003 (7)
C30.0168 (10)0.0180 (10)0.0195 (10)0.0001 (7)0.0103 (8)0.0031 (7)
C40.0130 (9)0.0141 (9)0.0246 (10)0.0002 (8)0.0076 (8)0.0026 (8)
C50.0113 (9)0.0161 (9)0.0192 (9)0.0009 (8)0.0014 (7)0.0006 (8)
C60.0139 (9)0.0172 (10)0.0136 (9)0.0002 (7)0.0051 (8)0.0002 (7)
C70.0107 (8)0.0111 (9)0.0113 (8)0.0002 (7)0.0032 (7)0.0014 (7)
C80.0131 (9)0.0150 (9)0.0127 (9)0.0004 (7)0.0075 (7)0.0008 (7)
C90.0190 (9)0.0149 (9)0.0097 (8)0.0004 (8)0.0067 (7)0.0011 (7)
C100.0129 (9)0.0141 (9)0.0110 (8)0.0007 (7)0.0010 (7)0.0009 (7)
C110.0106 (9)0.0200 (9)0.0138 (9)0.0019 (7)0.0049 (7)0.0012 (8)
C120.0135 (9)0.0167 (9)0.0108 (8)0.0006 (7)0.0053 (7)0.0018 (7)
C130.0123 (8)0.0145 (9)0.0082 (8)0.0018 (7)0.0034 (7)0.0014 (7)
C140.0119 (8)0.0132 (8)0.0103 (8)0.0016 (7)0.0051 (7)0.0010 (7)
C150.0114 (9)0.0117 (8)0.0094 (9)0.0026 (6)0.0048 (7)0.0009 (6)
C160.0118 (8)0.0168 (9)0.0134 (9)0.0020 (7)0.0064 (7)0.0031 (7)
Geometric parameters (Å, º) top
Br1—C101.9023 (19)C7—C81.398 (3)
O1—C161.220 (2)C7—C121.401 (2)
N1—C131.347 (2)C7—C151.472 (3)
N1—N21.368 (2)C8—C91.387 (3)
N1—C11.429 (2)C8—H80.9500
N2—C151.328 (2)C9—C101.388 (3)
C1—C61.390 (3)C9—H90.9500
C1—C21.390 (3)C10—C111.386 (3)
C2—C31.387 (3)C11—C121.385 (3)
C2—H20.9500C11—H110.9500
C3—C41.386 (3)C12—H120.9500
C3—H30.9500C13—C141.383 (3)
C4—C51.391 (3)C13—H130.9500
C4—H40.9500C14—C151.430 (2)
C5—C61.393 (3)C14—C161.455 (3)
C5—H50.9500C16—H160.9500
C6—H60.9500
C13—N1—N2112.47 (15)C9—C8—H8119.5
C13—N1—C1127.81 (16)C7—C8—H8119.5
N2—N1—C1119.70 (15)C8—C9—C10118.95 (17)
C15—N2—N1104.93 (14)C8—C9—H9120.5
C6—C1—C2121.05 (17)C10—C9—H9120.5
C6—C1—N1120.28 (16)C11—C10—C9121.26 (17)
C2—C1—N1118.67 (17)C11—C10—Br1118.24 (14)
C3—C2—C1119.17 (18)C9—C10—Br1120.50 (14)
C3—C2—H2120.4C12—C11—C10119.49 (17)
C1—C2—H2120.4C12—C11—H11120.3
C2—C3—C4120.68 (18)C10—C11—H11120.3
C2—C3—H3119.7C11—C12—C7120.44 (17)
C4—C3—H3119.7C11—C12—H12119.8
C3—C4—C5119.61 (18)C7—C12—H12119.8
C3—C4—H4120.2N1—C13—C14106.98 (16)
C5—C4—H4120.2N1—C13—H13126.5
C4—C5—C6120.48 (19)C14—C13—H13126.5
C4—C5—H5119.8C13—C14—C15104.56 (16)
C6—C5—H5119.8C13—C14—C16126.51 (17)
C1—C6—C5118.99 (18)C15—C14—C16128.61 (17)
C1—C6—H6120.5N2—C15—C14111.05 (16)
C5—C6—H6120.5N2—C15—C7120.77 (16)
C8—C7—C12118.90 (17)C14—C15—C7128.17 (16)
C8—C7—C15120.71 (16)O1—C16—C14123.78 (18)
C12—C7—C15120.40 (16)O1—C16—H16118.1
C9—C8—C7120.97 (17)C14—C16—H16118.1
C13—N1—N2—C150.1 (2)Br1—C10—C11—C12179.81 (15)
C1—N1—N2—C15178.39 (16)C10—C11—C12—C70.8 (3)
C13—N1—C1—C614.2 (3)C8—C7—C12—C110.9 (3)
N2—N1—C1—C6167.59 (17)C15—C7—C12—C11178.95 (18)
C13—N1—C1—C2164.85 (18)N2—N1—C13—C140.3 (2)
N2—N1—C1—C213.4 (3)C1—N1—C13—C14178.04 (17)
C6—C1—C2—C30.4 (3)N1—C13—C14—C150.3 (2)
N1—C1—C2—C3179.44 (17)N1—C13—C14—C16173.58 (18)
C1—C2—C3—C41.0 (3)N1—N2—C15—C140.1 (2)
C2—C3—C4—C50.7 (3)N1—N2—C15—C7178.76 (16)
C3—C4—C5—C60.1 (3)C13—C14—C15—N20.3 (2)
C2—C1—C6—C50.4 (3)C16—C14—C15—N2173.44 (19)
N1—C1—C6—C5178.59 (18)C13—C14—C15—C7178.49 (18)
C4—C5—C6—C10.7 (3)C16—C14—C15—C77.8 (3)
C12—C7—C8—C90.2 (3)C8—C7—C15—N237.3 (3)
C15—C7—C8—C9179.64 (17)C12—C7—C15—N2142.86 (19)
C7—C8—C9—C100.6 (3)C8—C7—C15—C14143.99 (19)
C8—C9—C10—C110.7 (3)C12—C7—C15—C1435.8 (3)
C8—C9—C10—Br1179.51 (15)C13—C14—C16—O17.9 (3)
C9—C10—C11—C120.0 (3)C15—C14—C16—O1179.63 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.493.435 (2)171
C16—H16···O1ii0.952.463.288 (3)145
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H11BrN2O
Mr327.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.7233 (4), 3.8630 (1), 20.4224 (5)
β (°) 110.137 (3)
V3)1312.75 (6)
Z4
Radiation typeCu Kα
µ (mm1)4.23
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.418, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
4619, 2593, 2542
Rint0.012
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.02
No. of reflections2593
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.66

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.493.435 (2)171
C16—H16···O1ii0.952.463.288 (3)145
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@yahoo.co.in.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, M. A., Shaharyar, M., Siddiqui, A. A., Sriram, D., Yogeeswari, P. & Clercq, E. D. (2007). Acta Pol. Pharm. 63, 423–428.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943–3949.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrishnamurthy, M., Li, W. & Moore, B. M. (2004). Bioorg. Med. Chem. 12, 393–404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds