organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(6,8-Di­bromo-2-methyl­quinolin-3-yl)ethanone

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 September 2011; accepted 13 September 2011; online 17 September 2011)

Two independent mol­ecules,1 and 2, with similar conformations comprise the asymmetric unit in the title compound, C12H9Br2NO. The major difference between the mol­ecules relates to the relative orientation of the ketone–methyl groups [the C—C—C—C torsion angles are −1.7 (6) and −16.8 (6)° for mol­ecules 1 and 2, respectively]; in each case, the ketone O atom is directed towards the ring-bound methyl group. The crystal packing comprises layers of mol­ecules, sustained by C—H⋯O and ππ {ring centroid(C6) of molecule 2 with NC5 of molecule 1 [3.584 (3) Å] and NC5 of molecule 2 [3.615 (3) Å]} interactions. C—H⋯Br contacts also occur.

Related literature

For background details and the biological applications of quinolines, see: Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Xiang et al. (2006[Xiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175-187.]). For a related structure, see: Prasath et al. (2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796-o797.]). For additional structure analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9Br2NO

  • Mr = 343.02

  • Triclinic, [P \overline 1]

  • a = 9.7549 (5) Å

  • b = 11.1719 (6) Å

  • c = 11.5629 (5) Å

  • α = 99.043 (4)°

  • β = 93.330 (4)°

  • γ = 111.733 (5)°

  • V = 1146.69 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.78 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.218, Tmax = 0.353

  • 6906 measured reflections

  • 4462 independent reflections

  • 4281 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.11

  • 4462 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.56 3.453 (7) 157
C15—H15⋯Br4ii 0.95 2.89 3.796 (5) 160
C19—H19⋯O1iii 0.95 2.60 3.462 (6) 152
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y, -z+2; (iii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoline derivatives continue to attract wide interest owing to their occurrence in natural products and for their biological activity (Kalluraya & Sreenivasa, 1998; Xiang et al., 2006). In continuation of structural research in this area (Prasath et al., 2011), the title compound, (I), was investigated.

Two independent molecules comprise the crystallographic asymmetric of (I), Fig. 1. The molecules are virtually super-imposable as seen in Fig. 2. The r.m.s. deviations for the bond distances and angles are 0.0088 Å and 0.507 °, respectively (Spek, 2009). The major differences between the molecules are manifested in the values of the C7—C8—C11—C12 and C19—C20—C23—C24 torsion angles of -1.7 (6) and -16.8 (6) °, respectively indicating a twist of the ketone residue out of the plane of the quinolinyl ring in the second independent molecule. In each case, the ketone-O atom is directed towards the ring-methyl group.

In the crystal packing, C—H···O, Table 1, and ππ interactions are noted. The C—H···O and two closest ππ interactions lead to the formation of layers in the ac plane. The ππ interactions occur between the (C13–C18) ring and each of the (N1,C1,C6–C9)i [3.584 (3) Å] and (N2,C13,C18–C21)ii [3.615 (3) Å] rings; symmetry operation i: 1 - x, 1 - y, 1 - z and ii: 1 - x, 1 - y, 2 - z. The resultant layers stack along the b axis, Fig. 3.

Related literature top

For background details and the biological applications of quinolines, see: Kalluraya & Sreenivasa (1998); Xiang et al. (2006). For a related structure, see: Prasath et al. (2011). For additional structure analysis, see: Spek (2009).

Experimental top

To a mixture of 2-amino-3,5-dibromobenzaldehyde (0.01 M, 2.70 g) and acetylacetone (0.01 M, 1.02 ml), 10 ml of 1 N HCl was added. The reaction mixture was stirred at 363 K for 3 h. At the end of this period, the resulting suspension was neutralized with 10 ml of 1 N NaOH. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of chloroform and hexane. Recrystallization was by slow evaporation of a chloroform solution of (I) which yielded light-brown prisms. Yield: 90%. M.pt. 433–435 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.60 and 1.38 e Å-3, respectively, were located 0.93 Å and 0.70 Å from the Br3 and Br2 atoms, respectively.

Structure description top

Quinoline derivatives continue to attract wide interest owing to their occurrence in natural products and for their biological activity (Kalluraya & Sreenivasa, 1998; Xiang et al., 2006). In continuation of structural research in this area (Prasath et al., 2011), the title compound, (I), was investigated.

Two independent molecules comprise the crystallographic asymmetric of (I), Fig. 1. The molecules are virtually super-imposable as seen in Fig. 2. The r.m.s. deviations for the bond distances and angles are 0.0088 Å and 0.507 °, respectively (Spek, 2009). The major differences between the molecules are manifested in the values of the C7—C8—C11—C12 and C19—C20—C23—C24 torsion angles of -1.7 (6) and -16.8 (6) °, respectively indicating a twist of the ketone residue out of the plane of the quinolinyl ring in the second independent molecule. In each case, the ketone-O atom is directed towards the ring-methyl group.

In the crystal packing, C—H···O, Table 1, and ππ interactions are noted. The C—H···O and two closest ππ interactions lead to the formation of layers in the ac plane. The ππ interactions occur between the (C13–C18) ring and each of the (N1,C1,C6–C9)i [3.584 (3) Å] and (N2,C13,C18–C21)ii [3.615 (3) Å] rings; symmetry operation i: 1 - x, 1 - y, 1 - z and ii: 1 - x, 1 - y, 2 - z. The resultant layers stack along the b axis, Fig. 3.

For background details and the biological applications of quinolines, see: Kalluraya & Sreenivasa (1998); Xiang et al. (2006). For a related structure, see: Prasath et al. (2011). For additional structure analysis, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules comprising the asymmetric unit of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules comprising the asymmetric unit of (I). The first independent molecule (with atom S1) is shown in red.
[Figure 3] Fig. 3. A view in projection down the c axis of the crystal packing in (I) highlighting the stacking of layers along the b axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
1-(6,8-Dibromo-2-methylquinolin-3-yl)ethanone top
Crystal data top
C12H9Br2NOZ = 4
Mr = 343.02F(000) = 664
Triclinic, P1Dx = 1.987 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.7549 (5) ÅCell parameters from 4985 reflections
b = 11.1719 (6) Åθ = 3.9–74.1°
c = 11.5629 (5) ŵ = 8.78 mm1
α = 99.043 (4)°T = 100 K
β = 93.330 (4)°Prism, light-brown
γ = 111.733 (5)°0.25 × 0.20 × 0.15 mm
V = 1146.69 (10) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4462 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4281 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 3.9°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1313
Tmin = 0.218, Tmax = 0.353l = 147
6906 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0872P)2 + 3.5949P]
where P = (Fo2 + 2Fc2)/3
4462 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
C12H9Br2NOγ = 111.733 (5)°
Mr = 343.02V = 1146.69 (10) Å3
Triclinic, P1Z = 4
a = 9.7549 (5) ÅCu Kα radiation
b = 11.1719 (6) ŵ = 8.78 mm1
c = 11.5629 (5) ÅT = 100 K
α = 99.043 (4)°0.25 × 0.20 × 0.15 mm
β = 93.330 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4462 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4281 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.353Rint = 0.039
6906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.11Δρmax = 1.60 e Å3
4462 reflectionsΔρmin = 1.38 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.64524 (5)0.65200 (5)0.49508 (4)0.01426 (16)
Br20.92320 (5)1.16226 (5)0.40306 (4)0.01406 (16)
Br30.85223 (5)0.34850 (5)1.00127 (4)0.01197 (15)
Br40.24944 (5)0.00166 (4)0.93076 (4)0.01288 (15)
O10.0502 (4)0.7000 (4)0.2695 (3)0.0221 (8)
O20.5755 (4)0.8053 (4)0.7753 (3)0.0192 (8)
N10.3618 (4)0.6815 (4)0.3952 (3)0.0095 (7)
N20.7242 (4)0.5237 (4)0.8901 (3)0.0081 (7)
C10.4870 (5)0.7915 (4)0.3957 (4)0.0080 (8)
C20.6289 (5)0.7963 (4)0.4388 (4)0.0096 (8)
C30.7562 (5)0.9045 (5)0.4393 (4)0.0112 (9)
H30.85030.90610.46780.013*
C40.7460 (5)1.0134 (4)0.3971 (4)0.0092 (9)
C50.6127 (5)1.0128 (5)0.3557 (4)0.0134 (9)
H50.60771.08650.32710.016*
C60.4816 (5)0.9023 (5)0.3553 (4)0.0107 (9)
C70.3414 (5)0.8974 (5)0.3137 (4)0.0117 (9)
H70.33400.97010.28490.014*
C80.2144 (5)0.7890 (5)0.3138 (4)0.0103 (9)
C90.2302 (5)0.6785 (4)0.3544 (4)0.0084 (8)
C100.1013 (5)0.5530 (5)0.3547 (4)0.0165 (10)
H10A0.13730.49150.38520.025*
H10B0.05110.51430.27400.025*
H10C0.03110.57100.40510.025*
C110.0666 (5)0.7922 (5)0.2724 (4)0.0141 (10)
C120.0674 (6)0.9161 (5)0.2366 (6)0.0250 (12)
H12A0.03490.91110.22400.037*
H12B0.11250.92650.16340.037*
H12C0.12520.99160.29920.037*
C130.6151 (5)0.4096 (4)0.9012 (4)0.0071 (8)
C140.6509 (5)0.3130 (5)0.9490 (4)0.0095 (8)
C150.5430 (5)0.1943 (4)0.9581 (4)0.0099 (8)
H150.56980.13090.98900.012*
C160.3936 (5)0.1679 (5)0.9212 (4)0.0104 (9)
C170.3516 (5)0.2581 (4)0.8784 (4)0.0084 (8)
H170.24950.23980.85630.010*
C180.4625 (5)0.3792 (4)0.8676 (4)0.0093 (8)
C190.4264 (5)0.4746 (4)0.8214 (4)0.0089 (8)
H190.32520.45840.79800.011*
C200.5357 (5)0.5907 (4)0.8098 (4)0.0097 (8)
C210.6871 (5)0.6116 (4)0.8459 (4)0.0093 (8)
C220.8165 (5)0.7332 (5)0.8342 (4)0.0146 (9)
H22A0.90940.71980.84770.022*
H22B0.81860.80790.89250.022*
H22C0.80570.75120.75460.022*
C230.4916 (6)0.6915 (5)0.7634 (4)0.0134 (9)
C240.3351 (6)0.6467 (5)0.7000 (4)0.0173 (10)
H24A0.33690.69380.63510.026*
H24B0.27020.66520.75570.026*
H24C0.29720.55210.66850.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0141 (3)0.0157 (3)0.0155 (3)0.0064 (2)0.00005 (19)0.0089 (2)
Br20.0070 (3)0.0118 (3)0.0201 (3)0.0001 (2)0.00311 (18)0.0024 (2)
Br30.0070 (3)0.0125 (3)0.0165 (3)0.0031 (2)0.00128 (18)0.00586 (19)
Br40.0103 (3)0.0077 (3)0.0200 (3)0.00088 (19)0.00047 (18)0.00814 (19)
O10.0065 (16)0.029 (2)0.029 (2)0.0018 (15)0.0026 (14)0.0116 (16)
O20.0233 (19)0.0126 (17)0.0236 (18)0.0072 (15)0.0012 (15)0.0084 (14)
N10.0104 (18)0.0121 (19)0.0070 (16)0.0043 (15)0.0040 (14)0.0041 (14)
N20.0091 (17)0.0099 (18)0.0050 (16)0.0028 (15)0.0022 (13)0.0020 (14)
C10.012 (2)0.009 (2)0.0046 (18)0.0048 (18)0.0032 (15)0.0024 (15)
C20.012 (2)0.012 (2)0.0048 (18)0.0042 (18)0.0013 (15)0.0031 (16)
C30.009 (2)0.015 (2)0.012 (2)0.0071 (18)0.0010 (16)0.0048 (17)
C40.010 (2)0.007 (2)0.011 (2)0.0027 (17)0.0027 (16)0.0020 (16)
C50.012 (2)0.014 (2)0.015 (2)0.0051 (19)0.0035 (17)0.0044 (18)
C60.007 (2)0.015 (2)0.0092 (19)0.0044 (18)0.0032 (16)0.0018 (17)
C70.015 (2)0.013 (2)0.011 (2)0.0076 (19)0.0046 (17)0.0044 (17)
C80.007 (2)0.017 (2)0.0076 (19)0.0062 (18)0.0015 (15)0.0032 (17)
C90.010 (2)0.010 (2)0.0053 (18)0.0023 (18)0.0031 (15)0.0031 (16)
C100.008 (2)0.015 (2)0.018 (2)0.0032 (19)0.0038 (18)0.0005 (19)
C110.012 (2)0.019 (2)0.011 (2)0.006 (2)0.0016 (17)0.0012 (18)
C120.013 (2)0.017 (3)0.050 (4)0.010 (2)0.003 (2)0.008 (2)
C130.0066 (19)0.008 (2)0.0073 (18)0.0032 (17)0.0016 (15)0.0015 (15)
C140.008 (2)0.015 (2)0.0061 (19)0.0050 (18)0.0001 (15)0.0017 (16)
C150.012 (2)0.0070 (19)0.014 (2)0.0060 (18)0.0008 (17)0.0062 (16)
C160.009 (2)0.009 (2)0.012 (2)0.0013 (18)0.0022 (16)0.0028 (17)
C170.007 (2)0.009 (2)0.011 (2)0.0048 (17)0.0006 (15)0.0047 (16)
C180.014 (2)0.012 (2)0.0048 (18)0.0062 (18)0.0027 (16)0.0047 (16)
C190.013 (2)0.009 (2)0.0063 (19)0.0060 (18)0.0003 (16)0.0017 (16)
C200.018 (2)0.008 (2)0.0054 (18)0.0063 (18)0.0031 (16)0.0024 (16)
C210.014 (2)0.010 (2)0.0042 (18)0.0040 (18)0.0036 (16)0.0026 (16)
C220.014 (2)0.012 (2)0.016 (2)0.0012 (19)0.0046 (18)0.0093 (18)
C230.019 (2)0.016 (2)0.011 (2)0.010 (2)0.0049 (18)0.0086 (18)
C240.018 (2)0.016 (2)0.021 (2)0.008 (2)0.0006 (19)0.0103 (19)
Geometric parameters (Å, º) top
Br1—C21.886 (5)C10—H10C0.9800
Br2—C41.892 (5)C11—C121.503 (7)
Br3—C141.895 (4)C12—H12A0.9800
Br4—C161.894 (5)C12—H12B0.9800
O1—C111.215 (6)C12—H12C0.9800
O2—C231.211 (6)C13—C181.414 (6)
N1—C91.328 (6)C13—C141.426 (6)
N1—C11.374 (6)C14—C151.379 (6)
N2—C211.324 (6)C15—C161.401 (6)
N2—C131.355 (6)C15—H150.9500
C1—C61.407 (6)C16—C171.366 (6)
C1—C21.422 (6)C17—C181.415 (6)
C2—C31.374 (7)C17—H170.9500
C3—C41.413 (6)C18—C191.407 (6)
C3—H30.9500C19—C201.373 (6)
C4—C51.357 (7)C19—H190.9500
C5—C61.410 (7)C20—C211.433 (7)
C5—H50.9500C20—C231.505 (6)
C6—C71.402 (7)C21—C221.505 (6)
C7—C81.375 (7)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C91.443 (6)C22—H22C0.9800
C8—C111.508 (6)C23—C241.519 (7)
C9—C101.499 (6)C24—H24A0.9800
C10—H10A0.9800C24—H24B0.9800
C10—H10B0.9800C24—H24C0.9800
C9—N1—C1119.1 (4)H12B—C12—H12C109.5
C21—N2—C13118.9 (4)N2—C13—C18123.0 (4)
N1—C1—C6122.5 (4)N2—C13—C14120.4 (4)
N1—C1—C2119.9 (4)C18—C13—C14116.5 (4)
C6—C1—C2117.6 (4)C15—C14—C13121.8 (4)
C3—C2—C1121.2 (4)C15—C14—Br3119.0 (3)
C3—C2—Br1118.7 (3)C13—C14—Br3119.2 (3)
C1—C2—Br1120.1 (3)C14—C15—C16119.4 (4)
C2—C3—C4119.5 (4)C14—C15—H15120.3
C2—C3—H3120.3C16—C15—H15120.3
C4—C3—H3120.3C17—C16—C15121.6 (4)
C5—C4—C3121.1 (4)C17—C16—Br4120.3 (4)
C5—C4—Br2120.6 (4)C15—C16—Br4118.1 (3)
C3—C4—Br2118.2 (3)C16—C17—C18119.0 (4)
C4—C5—C6119.7 (4)C16—C17—H17120.5
C4—C5—H5120.2C18—C17—H17120.5
C6—C5—H5120.2C19—C18—C17121.6 (4)
C7—C6—C1117.3 (4)C19—C18—C13116.8 (4)
C7—C6—C5121.7 (4)C17—C18—C13121.6 (4)
C1—C6—C5121.0 (4)C20—C19—C18120.8 (4)
C8—C7—C6121.1 (4)C20—C19—H19119.6
C8—C7—H7119.4C18—C19—H19119.6
C6—C7—H7119.4C19—C20—C21118.1 (4)
C7—C8—C9118.0 (4)C19—C20—C23118.9 (4)
C7—C8—C11118.4 (4)C21—C20—C23122.9 (4)
C9—C8—C11123.6 (4)N2—C21—C20122.4 (4)
N1—C9—C8121.9 (4)N2—C21—C22114.8 (4)
N1—C9—C10114.9 (4)C20—C21—C22122.8 (4)
C8—C9—C10123.2 (4)C21—C22—H22A109.5
C9—C10—H10A109.5C21—C22—H22B109.5
C9—C10—H10B109.5H22A—C22—H22B109.5
H10A—C10—H10B109.5C21—C22—H22C109.5
C9—C10—H10C109.5H22A—C22—H22C109.5
H10A—C10—H10C109.5H22B—C22—H22C109.5
H10B—C10—H10C109.5O2—C23—C20122.5 (4)
O1—C11—C12120.3 (5)O2—C23—C24119.7 (4)
O1—C11—C8122.1 (5)C20—C23—C24117.8 (4)
C12—C11—C8117.5 (4)C23—C24—H24A109.5
C11—C12—H12A109.5C23—C24—H24B109.5
C11—C12—H12B109.5H24A—C24—H24B109.5
H12A—C12—H12B109.5C23—C24—H24C109.5
C11—C12—H12C109.5H24A—C24—H24C109.5
H12A—C12—H12C109.5H24B—C24—H24C109.5
C9—N1—C1—C60.4 (6)C21—N2—C13—C180.2 (6)
C9—N1—C1—C2179.8 (4)C21—N2—C13—C14179.6 (4)
N1—C1—C2—C3179.3 (4)N2—C13—C14—C15177.9 (4)
C6—C1—C2—C30.9 (6)C18—C13—C14—C152.3 (6)
N1—C1—C2—Br10.0 (5)N2—C13—C14—Br31.9 (5)
C6—C1—C2—Br1179.8 (3)C18—C13—C14—Br3177.9 (3)
C1—C2—C3—C40.5 (6)C13—C14—C15—C161.1 (7)
Br1—C2—C3—C4179.8 (3)Br3—C14—C15—C16179.1 (3)
C2—C3—C4—C50.2 (7)C14—C15—C16—C171.2 (7)
C2—C3—C4—Br2178.4 (3)C14—C15—C16—Br4178.2 (3)
C3—C4—C5—C60.4 (7)C15—C16—C17—C182.1 (7)
Br2—C4—C5—C6178.1 (3)Br4—C16—C17—C18177.3 (3)
N1—C1—C6—C70.2 (6)C16—C17—C18—C19178.4 (4)
C2—C1—C6—C7179.6 (4)C16—C17—C18—C130.8 (6)
N1—C1—C6—C5179.2 (4)N2—C13—C18—C190.4 (6)
C2—C1—C6—C51.1 (6)C14—C13—C18—C19179.4 (4)
C4—C5—C6—C7179.8 (4)N2—C13—C18—C17178.8 (4)
C4—C5—C6—C10.9 (7)C14—C13—C18—C171.3 (6)
C1—C6—C7—C80.7 (7)C17—C18—C19—C20179.0 (4)
C5—C6—C7—C8180.0 (4)C13—C18—C19—C200.3 (6)
C6—C7—C8—C92.0 (6)C18—C19—C20—C210.1 (6)
C6—C7—C8—C11177.6 (4)C18—C19—C20—C23178.2 (4)
C1—N1—C9—C81.9 (6)C13—N2—C21—C200.2 (6)
C1—N1—C9—C10178.5 (4)C13—N2—C21—C22178.4 (4)
C7—C8—C9—N12.7 (6)C19—C20—C21—N20.4 (6)
C11—C8—C9—N1176.9 (4)C23—C20—C21—N2177.9 (4)
C7—C8—C9—C10177.7 (4)C19—C20—C21—C22178.2 (4)
C11—C8—C9—C102.7 (7)C23—C20—C21—C223.6 (6)
C7—C8—C11—O1179.7 (4)C19—C20—C23—O2162.9 (5)
C9—C8—C11—O10.7 (7)C21—C20—C23—O215.4 (7)
C7—C8—C11—C121.7 (6)C19—C20—C23—C2416.8 (6)
C9—C8—C11—C12177.9 (4)C21—C20—C23—C24165.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.563.453 (7)157
C15—H15···Br4ii0.952.893.796 (5)160
C19—H19···O1iii0.952.603.462 (6)152
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H9Br2NO
Mr343.02
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7549 (5), 11.1719 (6), 11.5629 (5)
α, β, γ (°)99.043 (4), 93.330 (4), 111.733 (5)
V3)1146.69 (10)
Z4
Radiation typeCu Kα
µ (mm1)8.78
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.218, 0.353
No. of measured, independent and
observed [I > 2σ(I)] reflections
6906, 4462, 4281
Rint0.039
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.11
No. of reflections4462
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 1.38

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.563.453 (7)157
C15—H15···Br4ii0.952.893.796 (5)160
C19—H19···O1iii0.952.603.462 (6)152
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+2; (iii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@yahoo.co.in.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796–o797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds