organic compounds
1-(6,8-Dibromo-2-methylquinolin-3-yl)ethanone
aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
Two independent molecules,1 and 2, with similar conformations comprise the 12H9Br2NO. The major difference between the molecules relates to the relative orientation of the ketone–methyl groups [the C—C—C—C torsion angles are −1.7 (6) and −16.8 (6)° for molecules 1 and 2, respectively]; in each case, the ketone O atom is directed towards the ring-bound methyl group. The crystal packing comprises layers of molecules, sustained by C—H⋯O and π–π {ring centroid(C6) of molecule 2 with NC5 of molecule 1 [3.584 (3) Å] and NC5 of molecule 2 [3.615 (3) Å]} interactions. C—H⋯Br contacts also occur.
in the title compound, CRelated literature
For background details and the biological applications of quinolines, see: Kalluraya & Sreenivasa (1998); Xiang et al. (2006). For a related structure, see: Prasath et al. (2011). For additional structure analysis, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811037044/hb6406sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037044/hb6406Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811037044/hb6406Isup3.cml
To a mixture of 2-amino-3,5-dibromobenzaldehyde (0.01 M, 2.70 g) and acetylacetone (0.01 M, 1.02 ml), 10 ml of 1 N HCl was added. The reaction mixture was stirred at 363 K for 3 h. At the end of this period, the resulting suspension was neutralized with 10 ml of 1 N NaOH. The resultant solid was filtered, dried and purified by
using a 1:1 mixture of chloroform and hexane. Recrystallization was by slow evaporation of a chloroform solution of (I) which yielded light-brown prisms. Yield: 90%. M.pt. 433–435 K.Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the
in the riding model approximation. The maximum and minimum residual electron density peaks of 1.60 and 1.38 e Å-3, respectively, were located 0.93 Å and 0.70 Å from the Br3 and Br2 atoms, respectively.Quinoline derivatives continue to attract wide interest owing to their occurrence in natural products and for their biological activity (Kalluraya & Sreenivasa, 1998; Xiang et al., 2006). In continuation of structural research in this area (Prasath et al., 2011), the title compound, (I), was investigated.
Two independent molecules comprise the crystallographic asymmetric of (I), Fig. 1. The molecules are virtually super-imposable as seen in Fig. 2. The r.m.s. deviations for the bond distances and angles are 0.0088 Å and 0.507 °, respectively (Spek, 2009). The major differences between the molecules are manifested in the values of the C7—C8—C11—C12 and C19—C20—C23—C24 torsion angles of -1.7 (6) and -16.8 (6) °, respectively indicating a twist of the ketone residue out of the plane of the quinolinyl ring in the second independent molecule. In each case, the ketone-O atom is directed towards the ring-methyl group.
In the crystal packing, C—H···O, Table 1, and π–π interactions are noted. The C—H···O and two closest π–π interactions lead to the formation of layers in the ac plane. The π–π interactions occur between the (C13–C18) ring and each of the (N1,C1,C6–C9)i [3.584 (3) Å] and (N2,C13,C18–C21)ii [3.615 (3) Å] rings; i: 1 - x, 1 - y, 1 - z and ii: 1 - x, 1 - y, 2 - z. The resultant layers stack along the b axis, Fig. 3.
For background details and the biological applications of quinolines, see: Kalluraya & Sreenivasa (1998); Xiang et al. (2006). For a related structure, see: Prasath et al. (2011). For additional structure analysis, see: Spek (2009).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).C12H9Br2NO | Z = 4 |
Mr = 343.02 | F(000) = 664 |
Triclinic, P1 | Dx = 1.987 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 9.7549 (5) Å | Cell parameters from 4985 reflections |
b = 11.1719 (6) Å | θ = 3.9–74.1° |
c = 11.5629 (5) Å | µ = 8.78 mm−1 |
α = 99.043 (4)° | T = 100 K |
β = 93.330 (4)° | Prism, light-brown |
γ = 111.733 (5)° | 0.25 × 0.20 × 0.15 mm |
V = 1146.69 (10) Å3 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4462 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4281 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 74.3°, θmin = 3.9° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −13→13 |
Tmin = 0.218, Tmax = 0.353 | l = −14→7 |
6906 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0872P)2 + 3.5949P] where P = (Fo2 + 2Fc2)/3 |
4462 reflections | (Δ/σ)max = 0.001 |
293 parameters | Δρmax = 1.60 e Å−3 |
0 restraints | Δρmin = −1.38 e Å−3 |
C12H9Br2NO | γ = 111.733 (5)° |
Mr = 343.02 | V = 1146.69 (10) Å3 |
Triclinic, P1 | Z = 4 |
a = 9.7549 (5) Å | Cu Kα radiation |
b = 11.1719 (6) Å | µ = 8.78 mm−1 |
c = 11.5629 (5) Å | T = 100 K |
α = 99.043 (4)° | 0.25 × 0.20 × 0.15 mm |
β = 93.330 (4)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4462 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 4281 reflections with I > 2σ(I) |
Tmin = 0.218, Tmax = 0.353 | Rint = 0.039 |
6906 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.11 | Δρmax = 1.60 e Å−3 |
4462 reflections | Δρmin = −1.38 e Å−3 |
293 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.64524 (5) | 0.65200 (5) | 0.49508 (4) | 0.01426 (16) | |
Br2 | 0.92320 (5) | 1.16226 (5) | 0.40306 (4) | 0.01406 (16) | |
Br3 | 0.85223 (5) | 0.34850 (5) | 1.00127 (4) | 0.01197 (15) | |
Br4 | 0.24944 (5) | 0.00166 (4) | 0.93076 (4) | 0.01288 (15) | |
O1 | −0.0502 (4) | 0.7000 (4) | 0.2695 (3) | 0.0221 (8) | |
O2 | 0.5755 (4) | 0.8053 (4) | 0.7753 (3) | 0.0192 (8) | |
N1 | 0.3618 (4) | 0.6815 (4) | 0.3952 (3) | 0.0095 (7) | |
N2 | 0.7242 (4) | 0.5237 (4) | 0.8901 (3) | 0.0081 (7) | |
C1 | 0.4870 (5) | 0.7915 (4) | 0.3957 (4) | 0.0080 (8) | |
C2 | 0.6289 (5) | 0.7963 (4) | 0.4388 (4) | 0.0096 (8) | |
C3 | 0.7562 (5) | 0.9045 (5) | 0.4393 (4) | 0.0112 (9) | |
H3 | 0.8503 | 0.9061 | 0.4678 | 0.013* | |
C4 | 0.7460 (5) | 1.0134 (4) | 0.3971 (4) | 0.0092 (9) | |
C5 | 0.6127 (5) | 1.0128 (5) | 0.3557 (4) | 0.0134 (9) | |
H5 | 0.6077 | 1.0865 | 0.3271 | 0.016* | |
C6 | 0.4816 (5) | 0.9023 (5) | 0.3553 (4) | 0.0107 (9) | |
C7 | 0.3414 (5) | 0.8974 (5) | 0.3137 (4) | 0.0117 (9) | |
H7 | 0.3340 | 0.9701 | 0.2849 | 0.014* | |
C8 | 0.2144 (5) | 0.7890 (5) | 0.3138 (4) | 0.0103 (9) | |
C9 | 0.2302 (5) | 0.6785 (4) | 0.3544 (4) | 0.0084 (8) | |
C10 | 0.1013 (5) | 0.5530 (5) | 0.3547 (4) | 0.0165 (10) | |
H10A | 0.1373 | 0.4915 | 0.3852 | 0.025* | |
H10B | 0.0511 | 0.5143 | 0.2740 | 0.025* | |
H10C | 0.0311 | 0.5710 | 0.4051 | 0.025* | |
C11 | 0.0666 (5) | 0.7922 (5) | 0.2724 (4) | 0.0141 (10) | |
C12 | 0.0674 (6) | 0.9161 (5) | 0.2366 (6) | 0.0250 (12) | |
H12A | −0.0349 | 0.9111 | 0.2240 | 0.037* | |
H12B | 0.1125 | 0.9265 | 0.1634 | 0.037* | |
H12C | 0.1252 | 0.9916 | 0.2992 | 0.037* | |
C13 | 0.6151 (5) | 0.4096 (4) | 0.9012 (4) | 0.0071 (8) | |
C14 | 0.6509 (5) | 0.3130 (5) | 0.9490 (4) | 0.0095 (8) | |
C15 | 0.5430 (5) | 0.1943 (4) | 0.9581 (4) | 0.0099 (8) | |
H15 | 0.5698 | 0.1309 | 0.9890 | 0.012* | |
C16 | 0.3936 (5) | 0.1679 (5) | 0.9212 (4) | 0.0104 (9) | |
C17 | 0.3516 (5) | 0.2581 (4) | 0.8784 (4) | 0.0084 (8) | |
H17 | 0.2495 | 0.2398 | 0.8563 | 0.010* | |
C18 | 0.4625 (5) | 0.3792 (4) | 0.8676 (4) | 0.0093 (8) | |
C19 | 0.4264 (5) | 0.4746 (4) | 0.8214 (4) | 0.0089 (8) | |
H19 | 0.3252 | 0.4584 | 0.7980 | 0.011* | |
C20 | 0.5357 (5) | 0.5907 (4) | 0.8098 (4) | 0.0097 (8) | |
C21 | 0.6871 (5) | 0.6116 (4) | 0.8459 (4) | 0.0093 (8) | |
C22 | 0.8165 (5) | 0.7332 (5) | 0.8342 (4) | 0.0146 (9) | |
H22A | 0.9094 | 0.7198 | 0.8477 | 0.022* | |
H22B | 0.8186 | 0.8079 | 0.8925 | 0.022* | |
H22C | 0.8057 | 0.7512 | 0.7546 | 0.022* | |
C23 | 0.4916 (6) | 0.6915 (5) | 0.7634 (4) | 0.0134 (9) | |
C24 | 0.3351 (6) | 0.6467 (5) | 0.7000 (4) | 0.0173 (10) | |
H24A | 0.3369 | 0.6938 | 0.6351 | 0.026* | |
H24B | 0.2702 | 0.6652 | 0.7557 | 0.026* | |
H24C | 0.2972 | 0.5521 | 0.6685 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0141 (3) | 0.0157 (3) | 0.0155 (3) | 0.0064 (2) | −0.00005 (19) | 0.0089 (2) |
Br2 | 0.0070 (3) | 0.0118 (3) | 0.0201 (3) | −0.0001 (2) | 0.00311 (18) | 0.0024 (2) |
Br3 | 0.0070 (3) | 0.0125 (3) | 0.0165 (3) | 0.0031 (2) | −0.00128 (18) | 0.00586 (19) |
Br4 | 0.0103 (3) | 0.0077 (3) | 0.0200 (3) | 0.00088 (19) | 0.00047 (18) | 0.00814 (19) |
O1 | 0.0065 (16) | 0.029 (2) | 0.029 (2) | 0.0018 (15) | 0.0026 (14) | 0.0116 (16) |
O2 | 0.0233 (19) | 0.0126 (17) | 0.0236 (18) | 0.0072 (15) | 0.0012 (15) | 0.0084 (14) |
N1 | 0.0104 (18) | 0.0121 (19) | 0.0070 (16) | 0.0043 (15) | 0.0040 (14) | 0.0041 (14) |
N2 | 0.0091 (17) | 0.0099 (18) | 0.0050 (16) | 0.0028 (15) | 0.0022 (13) | 0.0020 (14) |
C1 | 0.012 (2) | 0.009 (2) | 0.0046 (18) | 0.0048 (18) | 0.0032 (15) | 0.0024 (15) |
C2 | 0.012 (2) | 0.012 (2) | 0.0048 (18) | 0.0042 (18) | 0.0013 (15) | 0.0031 (16) |
C3 | 0.009 (2) | 0.015 (2) | 0.012 (2) | 0.0071 (18) | 0.0010 (16) | 0.0048 (17) |
C4 | 0.010 (2) | 0.007 (2) | 0.011 (2) | 0.0027 (17) | 0.0027 (16) | 0.0020 (16) |
C5 | 0.012 (2) | 0.014 (2) | 0.015 (2) | 0.0051 (19) | 0.0035 (17) | 0.0044 (18) |
C6 | 0.007 (2) | 0.015 (2) | 0.0092 (19) | 0.0044 (18) | 0.0032 (16) | 0.0018 (17) |
C7 | 0.015 (2) | 0.013 (2) | 0.011 (2) | 0.0076 (19) | 0.0046 (17) | 0.0044 (17) |
C8 | 0.007 (2) | 0.017 (2) | 0.0076 (19) | 0.0062 (18) | 0.0015 (15) | 0.0032 (17) |
C9 | 0.010 (2) | 0.010 (2) | 0.0053 (18) | 0.0023 (18) | 0.0031 (15) | 0.0031 (16) |
C10 | 0.008 (2) | 0.015 (2) | 0.018 (2) | −0.0032 (19) | 0.0038 (18) | −0.0005 (19) |
C11 | 0.012 (2) | 0.019 (2) | 0.011 (2) | 0.006 (2) | 0.0016 (17) | 0.0012 (18) |
C12 | 0.013 (2) | 0.017 (3) | 0.050 (4) | 0.010 (2) | 0.003 (2) | 0.008 (2) |
C13 | 0.0066 (19) | 0.008 (2) | 0.0073 (18) | 0.0032 (17) | 0.0016 (15) | 0.0015 (15) |
C14 | 0.008 (2) | 0.015 (2) | 0.0061 (19) | 0.0050 (18) | 0.0001 (15) | 0.0017 (16) |
C15 | 0.012 (2) | 0.0070 (19) | 0.014 (2) | 0.0060 (18) | 0.0008 (17) | 0.0062 (16) |
C16 | 0.009 (2) | 0.009 (2) | 0.012 (2) | 0.0013 (18) | 0.0022 (16) | 0.0028 (17) |
C17 | 0.007 (2) | 0.009 (2) | 0.011 (2) | 0.0048 (17) | 0.0006 (15) | 0.0047 (16) |
C18 | 0.014 (2) | 0.012 (2) | 0.0048 (18) | 0.0062 (18) | 0.0027 (16) | 0.0047 (16) |
C19 | 0.013 (2) | 0.009 (2) | 0.0063 (19) | 0.0060 (18) | 0.0003 (16) | 0.0017 (16) |
C20 | 0.018 (2) | 0.008 (2) | 0.0054 (18) | 0.0063 (18) | 0.0031 (16) | 0.0024 (16) |
C21 | 0.014 (2) | 0.010 (2) | 0.0042 (18) | 0.0040 (18) | 0.0036 (16) | 0.0026 (16) |
C22 | 0.014 (2) | 0.012 (2) | 0.016 (2) | 0.0012 (19) | 0.0046 (18) | 0.0093 (18) |
C23 | 0.019 (2) | 0.016 (2) | 0.011 (2) | 0.010 (2) | 0.0049 (18) | 0.0086 (18) |
C24 | 0.018 (2) | 0.016 (2) | 0.021 (2) | 0.008 (2) | 0.0006 (19) | 0.0103 (19) |
Br1—C2 | 1.886 (5) | C10—H10C | 0.9800 |
Br2—C4 | 1.892 (5) | C11—C12 | 1.503 (7) |
Br3—C14 | 1.895 (4) | C12—H12A | 0.9800 |
Br4—C16 | 1.894 (5) | C12—H12B | 0.9800 |
O1—C11 | 1.215 (6) | C12—H12C | 0.9800 |
O2—C23 | 1.211 (6) | C13—C18 | 1.414 (6) |
N1—C9 | 1.328 (6) | C13—C14 | 1.426 (6) |
N1—C1 | 1.374 (6) | C14—C15 | 1.379 (6) |
N2—C21 | 1.324 (6) | C15—C16 | 1.401 (6) |
N2—C13 | 1.355 (6) | C15—H15 | 0.9500 |
C1—C6 | 1.407 (6) | C16—C17 | 1.366 (6) |
C1—C2 | 1.422 (6) | C17—C18 | 1.415 (6) |
C2—C3 | 1.374 (7) | C17—H17 | 0.9500 |
C3—C4 | 1.413 (6) | C18—C19 | 1.407 (6) |
C3—H3 | 0.9500 | C19—C20 | 1.373 (6) |
C4—C5 | 1.357 (7) | C19—H19 | 0.9500 |
C5—C6 | 1.410 (7) | C20—C21 | 1.433 (7) |
C5—H5 | 0.9500 | C20—C23 | 1.505 (6) |
C6—C7 | 1.402 (7) | C21—C22 | 1.505 (6) |
C7—C8 | 1.375 (7) | C22—H22A | 0.9800 |
C7—H7 | 0.9500 | C22—H22B | 0.9800 |
C8—C9 | 1.443 (6) | C22—H22C | 0.9800 |
C8—C11 | 1.508 (6) | C23—C24 | 1.519 (7) |
C9—C10 | 1.499 (6) | C24—H24A | 0.9800 |
C10—H10A | 0.9800 | C24—H24B | 0.9800 |
C10—H10B | 0.9800 | C24—H24C | 0.9800 |
C9—N1—C1 | 119.1 (4) | H12B—C12—H12C | 109.5 |
C21—N2—C13 | 118.9 (4) | N2—C13—C18 | 123.0 (4) |
N1—C1—C6 | 122.5 (4) | N2—C13—C14 | 120.4 (4) |
N1—C1—C2 | 119.9 (4) | C18—C13—C14 | 116.5 (4) |
C6—C1—C2 | 117.6 (4) | C15—C14—C13 | 121.8 (4) |
C3—C2—C1 | 121.2 (4) | C15—C14—Br3 | 119.0 (3) |
C3—C2—Br1 | 118.7 (3) | C13—C14—Br3 | 119.2 (3) |
C1—C2—Br1 | 120.1 (3) | C14—C15—C16 | 119.4 (4) |
C2—C3—C4 | 119.5 (4) | C14—C15—H15 | 120.3 |
C2—C3—H3 | 120.3 | C16—C15—H15 | 120.3 |
C4—C3—H3 | 120.3 | C17—C16—C15 | 121.6 (4) |
C5—C4—C3 | 121.1 (4) | C17—C16—Br4 | 120.3 (4) |
C5—C4—Br2 | 120.6 (4) | C15—C16—Br4 | 118.1 (3) |
C3—C4—Br2 | 118.2 (3) | C16—C17—C18 | 119.0 (4) |
C4—C5—C6 | 119.7 (4) | C16—C17—H17 | 120.5 |
C4—C5—H5 | 120.2 | C18—C17—H17 | 120.5 |
C6—C5—H5 | 120.2 | C19—C18—C17 | 121.6 (4) |
C7—C6—C1 | 117.3 (4) | C19—C18—C13 | 116.8 (4) |
C7—C6—C5 | 121.7 (4) | C17—C18—C13 | 121.6 (4) |
C1—C6—C5 | 121.0 (4) | C20—C19—C18 | 120.8 (4) |
C8—C7—C6 | 121.1 (4) | C20—C19—H19 | 119.6 |
C8—C7—H7 | 119.4 | C18—C19—H19 | 119.6 |
C6—C7—H7 | 119.4 | C19—C20—C21 | 118.1 (4) |
C7—C8—C9 | 118.0 (4) | C19—C20—C23 | 118.9 (4) |
C7—C8—C11 | 118.4 (4) | C21—C20—C23 | 122.9 (4) |
C9—C8—C11 | 123.6 (4) | N2—C21—C20 | 122.4 (4) |
N1—C9—C8 | 121.9 (4) | N2—C21—C22 | 114.8 (4) |
N1—C9—C10 | 114.9 (4) | C20—C21—C22 | 122.8 (4) |
C8—C9—C10 | 123.2 (4) | C21—C22—H22A | 109.5 |
C9—C10—H10A | 109.5 | C21—C22—H22B | 109.5 |
C9—C10—H10B | 109.5 | H22A—C22—H22B | 109.5 |
H10A—C10—H10B | 109.5 | C21—C22—H22C | 109.5 |
C9—C10—H10C | 109.5 | H22A—C22—H22C | 109.5 |
H10A—C10—H10C | 109.5 | H22B—C22—H22C | 109.5 |
H10B—C10—H10C | 109.5 | O2—C23—C20 | 122.5 (4) |
O1—C11—C12 | 120.3 (5) | O2—C23—C24 | 119.7 (4) |
O1—C11—C8 | 122.1 (5) | C20—C23—C24 | 117.8 (4) |
C12—C11—C8 | 117.5 (4) | C23—C24—H24A | 109.5 |
C11—C12—H12A | 109.5 | C23—C24—H24B | 109.5 |
C11—C12—H12B | 109.5 | H24A—C24—H24B | 109.5 |
H12A—C12—H12B | 109.5 | C23—C24—H24C | 109.5 |
C11—C12—H12C | 109.5 | H24A—C24—H24C | 109.5 |
H12A—C12—H12C | 109.5 | H24B—C24—H24C | 109.5 |
C9—N1—C1—C6 | 0.4 (6) | C21—N2—C13—C18 | 0.2 (6) |
C9—N1—C1—C2 | −179.8 (4) | C21—N2—C13—C14 | −179.6 (4) |
N1—C1—C2—C3 | 179.3 (4) | N2—C13—C14—C15 | −177.9 (4) |
C6—C1—C2—C3 | −0.9 (6) | C18—C13—C14—C15 | 2.3 (6) |
N1—C1—C2—Br1 | 0.0 (5) | N2—C13—C14—Br3 | 1.9 (5) |
C6—C1—C2—Br1 | 179.8 (3) | C18—C13—C14—Br3 | −177.9 (3) |
C1—C2—C3—C4 | 0.5 (6) | C13—C14—C15—C16 | −1.1 (7) |
Br1—C2—C3—C4 | 179.8 (3) | Br3—C14—C15—C16 | 179.1 (3) |
C2—C3—C4—C5 | −0.2 (7) | C14—C15—C16—C17 | −1.2 (7) |
C2—C3—C4—Br2 | 178.4 (3) | C14—C15—C16—Br4 | 178.2 (3) |
C3—C4—C5—C6 | 0.4 (7) | C15—C16—C17—C18 | 2.1 (7) |
Br2—C4—C5—C6 | −178.1 (3) | Br4—C16—C17—C18 | −177.3 (3) |
N1—C1—C6—C7 | 0.2 (6) | C16—C17—C18—C19 | 178.4 (4) |
C2—C1—C6—C7 | −179.6 (4) | C16—C17—C18—C13 | −0.8 (6) |
N1—C1—C6—C5 | −179.2 (4) | N2—C13—C18—C19 | −0.4 (6) |
C2—C1—C6—C5 | 1.1 (6) | C14—C13—C18—C19 | 179.4 (4) |
C4—C5—C6—C7 | 179.8 (4) | N2—C13—C18—C17 | 178.8 (4) |
C4—C5—C6—C1 | −0.9 (7) | C14—C13—C18—C17 | −1.3 (6) |
C1—C6—C7—C8 | 0.7 (7) | C17—C18—C19—C20 | −179.0 (4) |
C5—C6—C7—C8 | −180.0 (4) | C13—C18—C19—C20 | 0.3 (6) |
C6—C7—C8—C9 | −2.0 (6) | C18—C19—C20—C21 | 0.1 (6) |
C6—C7—C8—C11 | 177.6 (4) | C18—C19—C20—C23 | −178.2 (4) |
C1—N1—C9—C8 | −1.9 (6) | C13—N2—C21—C20 | 0.2 (6) |
C1—N1—C9—C10 | 178.5 (4) | C13—N2—C21—C22 | −178.4 (4) |
C7—C8—C9—N1 | 2.7 (6) | C19—C20—C21—N2 | −0.4 (6) |
C11—C8—C9—N1 | −176.9 (4) | C23—C20—C21—N2 | 177.9 (4) |
C7—C8—C9—C10 | −177.7 (4) | C19—C20—C21—C22 | 178.2 (4) |
C11—C8—C9—C10 | 2.7 (7) | C23—C20—C21—C22 | −3.6 (6) |
C7—C8—C11—O1 | 179.7 (4) | C19—C20—C23—O2 | 162.9 (5) |
C9—C8—C11—O1 | −0.7 (7) | C21—C20—C23—O2 | −15.4 (7) |
C7—C8—C11—C12 | −1.7 (6) | C19—C20—C23—C24 | −16.8 (6) |
C9—C8—C11—C12 | 177.9 (4) | C21—C20—C23—C24 | 165.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O2i | 0.95 | 2.56 | 3.453 (7) | 157 |
C15—H15···Br4ii | 0.95 | 2.89 | 3.796 (5) | 160 |
C19—H19···O1iii | 0.95 | 2.60 | 3.462 (6) | 152 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H9Br2NO |
Mr | 343.02 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.7549 (5), 11.1719 (6), 11.5629 (5) |
α, β, γ (°) | 99.043 (4), 93.330 (4), 111.733 (5) |
V (Å3) | 1146.69 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 8.78 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.218, 0.353 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6906, 4462, 4281 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.139, 1.11 |
No. of reflections | 4462 |
No. of parameters | 293 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.60, −1.38 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O2i | 0.95 | 2.56 | 3.453 (7) | 157 |
C15—H15···Br4ii | 0.95 | 2.89 | 3.796 (5) | 160 |
C19—H19···O1iii | 0.95 | 2.60 | 3.462 (6) | 152 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: juliebhavana@yahoo.co.in.
Acknowledgements
PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors also thank the University of Malaya for support of the crystallographic facility.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. Web of Science CrossRef PubMed CAS Google Scholar
Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. Web of Science CrossRef CAS PubMed Google Scholar
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796–o797. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives continue to attract wide interest owing to their occurrence in natural products and for their biological activity (Kalluraya & Sreenivasa, 1998; Xiang et al., 2006). In continuation of structural research in this area (Prasath et al., 2011), the title compound, (I), was investigated.
Two independent molecules comprise the crystallographic asymmetric of (I), Fig. 1. The molecules are virtually super-imposable as seen in Fig. 2. The r.m.s. deviations for the bond distances and angles are 0.0088 Å and 0.507 °, respectively (Spek, 2009). The major differences between the molecules are manifested in the values of the C7—C8—C11—C12 and C19—C20—C23—C24 torsion angles of -1.7 (6) and -16.8 (6) °, respectively indicating a twist of the ketone residue out of the plane of the quinolinyl ring in the second independent molecule. In each case, the ketone-O atom is directed towards the ring-methyl group.
In the crystal packing, C—H···O, Table 1, and π–π interactions are noted. The C—H···O and two closest π–π interactions lead to the formation of layers in the ac plane. The π–π interactions occur between the (C13–C18) ring and each of the (N1,C1,C6–C9)i [3.584 (3) Å] and (N2,C13,C18–C21)ii [3.615 (3) Å] rings; symmetry operation i: 1 - x, 1 - y, 1 - z and ii: 1 - x, 1 - y, 2 - z. The resultant layers stack along the b axis, Fig. 3.