organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­cyclo­hexyl-3-[(pyridin-2-yl)carbon­yl]urea monohydrate from synchrotron radiation

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 September 2011; accepted 14 September 2011; online 17 September 2011)

The title urea derivative crystallizes as a monohydrate, C19H27N3O2·H2O. The central C3N grouping is almost planar (r.m.s. deviation = 0.0092 Å), and the amide and pyridine groups are substanti­ally twisted out this plane [dihedral angles = 62.80 (12) and 34.98 (10)°, respectively]. Supra­molecular double chains propagating along the b-axis direction feature in the crystal packing whereby linear chains sustained by N—H⋯O hydrogen bonds formed between the amide groups are linked by helical chains of water mol­ecules (linked by O—H⋯O hydrogen bonds). The H atom that participates in these water chains is disordered over two positions of equal occupancy. The double chains are connected into a two-dimensional array by C—H⋯O contacts and the layers stack along the a axis.

Related literature

For the preparation of N-(arenecarbon­yl)-N,N′-dicyclo­hexyl­urea derivatives, see: Kaiser et al. (2008[Kaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. pp. 468-472.]); Neves Filho et al. (2007[Neves Filho, R. A. W., de Oliveira, R. N. & Srivastava, R. M. (2007). J. Braz. Chem. Soc. 18, 1410-1414.]); Schotman (1991[Schotman, A. K. (1991). Rec. Trav. Chim. Pays-Bas, 110, 319-325.]). For the crystal structures of related N-(arenecarbon­yl)-N,N′-dicyclo­hexyl­urea derivatives, see: Chérioux et al. (2002[Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27-o29.]); Cai et al. (2009[Cai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211-212.]); Dhinaa et al. (2010[Dhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291.]); Orea Flores et al. (2006[Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922-o2923.]); Gallagher et al. (1999[Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607-1610.]); Wang & Zhou (2008[Wang, C.-K. & Zhou, F.-Y. (2008). Acta Cryst. E64, o1451.]); Wu et al. (2006[Wu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435-o437.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27N3O2·H2O

  • Mr = 347.46

  • Monoclinic, P 21 /c

  • a = 18.639 (19) Å

  • b = 5.035 (5) Å

  • c = 21.59 (2) Å

  • β = 111.395 (9)°

  • V = 1887 (3) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.6905 Å

  • μ = 0.05 mm−1

  • T = 120 K

  • 0.25 × 0.08 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 1.000

  • 13440 measured reflections

  • 3810 independent reflections

  • 3200 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.06

  • 3810 reflections

  • 238 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 (1) 2.07 (1) 2.908 (3) 160 (2)
O1w—H1w⋯O2 0.84 (2) 1.98 (2) 2.820 (3) 174 (2)
O1w—H2w⋯O1wii 0.84 (3) 1.97 (3) 2.773 (4) 162 (4)
O1w—H3w⋯O1wiii 0.84 (3) 1.98 (3) 2.799 (4) 167 (4)
C17—H17⋯O1wiv 0.95 2.59 3.517 (4) 164
C18—H18⋯O2v 0.95 2.47 3.367 (4) 157
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Reactions of arenecarboxylic acids with dicyclohexylcarbodiimide (DCC) in the presence of a catalyst, such as 1-hydroxybenzotriazole, HOBt, produce N-(arenecarbonyl)-N,N'-dicyclohexylureas (Kaiser et al., 2008; Neves Filho et al., 2007; Schotman, 1991). Several crystal structures of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives have been reported (Chérioux et al., 2002; Cai et al., 2009; Dhinaa et al., 2010; Orea Flores et al., 2006; Gallagher et al., 1999; Wang et al., 2008; Wu et al., 2006). Herein, we now report the crystal structure of the monohydrate of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea, (I).

A molecule of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea and a water molecule of solvation comprise the asymmetric unit of (I). Two of the water bound H atoms are disordered and have been assigned site occupancy factors of 0.50. The disorder is accounted for in terms of the dictates of hydrogen bonding in the crystal structure, see below. The pyridine ring is twisted out of the central C3N plane (r.m.s. deviation = 0.0092 Å) with the dihedral angle being 34.98 (10) °. The amide group is even more twisted out of the plane through the central ring forming a dihedral angle of 62.80 (12) °. Each of the cyclohexyl rings adopts a chair conformation.

Hydrogen bonding of the type O—H···O and N—H···O lead to the formation of supramolecular chains along the b axis, Table 1. The amide groups self-associate to form linear chains. Pairs of chains are linked by hydrogen bonding interactions involving the water molecules. Thus, the carbonyl-O2 atom is linked to the water molecule, and the remaining water-H atoms (each with site occupancy factor = 1/2) link water molecules into a helical chain, Fig. 2. The chains are linked into layers via C—H···O interactions, Table 1, which stack along the a direction.

Related literature top

For the preparation of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Kaiser et al. (2008); Neves Filho et al. (2007); Schotman (1991). For crystal structures of related N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Chérioux et al. (2002); Cai et al. (2009); Dhinaa et al. (2010); Orea Flores et al. (2006); Gallagher et al. (1999); Wang & Zhou (2008); Wu et al. (2006).

Experimental top

To a stirred solution of the pyridin-2-carboxylic acid (1 mmol) in anhydrous CH2Cl2 (25 ml) were added DCC (0.8 mmol, 1 equiv.) and HOBt (ca 10 mg). After leaving at room temperature for 2 h, the precipitate of N,N'-dicyclohexylurea was removed and the filtrate was poured into saturated aqueous NaHCO3 solution (20 ml). The organic material was extracted into EtOAc (3 x 20 ml), the combined layers dried over MgSO4, and rotary evaporated. The residue was chromatographed (10% to 50% EtOAc/hexanes) to give N-(pyridin-2-carbonyl)-N,N'-dicyclohexylurea. Yield: 60%, as a white solid. Recrystallization from moist EtOH gave the monohydrate as colourless laths.

1H NMR (400 MHz, CDCl3) δ: 8.57 (d, J = 3.6, 1H, H6), 7.78 (m, 1H, H4), 7.68 (d, J = 7.6, 1H, H3), 7.37 (m, 1H, H5), 6.09 (s, 1H, NH), 4.20 (m, 1H, NCH), 3.51 (m, 1H, NHCH), 0.8–2 (m, 20 H, cyclohexyl) p.p.m.. 13C NMR (100 MHz, CDCl3) δ: 168.1 (CON), 154.0 (CONH), 153.9 (C2), 148.5 (C6), 137.0 (C4), 125.1, 122.9 (C3 and C5), 56.4 (NCH), 49.8 (NHCH), 33.9, 32.4, 30.7, 26.2, 25.6, 25.4, 25.3, 24.9, 24.6 (cyclohexyl) p.p.m.. M.pt.: 415 K. IR (cm-1; KBr): 1710 (CONH) and 1680 (CON).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The O– and N-bound H atom were refined with the distance restraints 0.84±0.01 and 0.88±0.01 Å, respectively, and with Uiso(H) = yUeq(parent atom) for y = 1.2 for N and y = 1.5 for O. One of the water-bound H atoms was found to be disordered over two positions and each was assigned a site occupancy factor = 0.50.

Structure description top

Reactions of arenecarboxylic acids with dicyclohexylcarbodiimide (DCC) in the presence of a catalyst, such as 1-hydroxybenzotriazole, HOBt, produce N-(arenecarbonyl)-N,N'-dicyclohexylureas (Kaiser et al., 2008; Neves Filho et al., 2007; Schotman, 1991). Several crystal structures of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives have been reported (Chérioux et al., 2002; Cai et al., 2009; Dhinaa et al., 2010; Orea Flores et al., 2006; Gallagher et al., 1999; Wang et al., 2008; Wu et al., 2006). Herein, we now report the crystal structure of the monohydrate of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea, (I).

A molecule of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea and a water molecule of solvation comprise the asymmetric unit of (I). Two of the water bound H atoms are disordered and have been assigned site occupancy factors of 0.50. The disorder is accounted for in terms of the dictates of hydrogen bonding in the crystal structure, see below. The pyridine ring is twisted out of the central C3N plane (r.m.s. deviation = 0.0092 Å) with the dihedral angle being 34.98 (10) °. The amide group is even more twisted out of the plane through the central ring forming a dihedral angle of 62.80 (12) °. Each of the cyclohexyl rings adopts a chair conformation.

Hydrogen bonding of the type O—H···O and N—H···O lead to the formation of supramolecular chains along the b axis, Table 1. The amide groups self-associate to form linear chains. Pairs of chains are linked by hydrogen bonding interactions involving the water molecules. Thus, the carbonyl-O2 atom is linked to the water molecule, and the remaining water-H atoms (each with site occupancy factor = 1/2) link water molecules into a helical chain, Fig. 2. The chains are linked into layers via C—H···O interactions, Table 1, which stack along the a direction.

For the preparation of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Kaiser et al. (2008); Neves Filho et al. (2007); Schotman (1991). For crystal structures of related N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Chérioux et al. (2002); Cai et al. (2009); Dhinaa et al. (2010); Orea Flores et al. (2006); Gallagher et al. (1999); Wang & Zhou (2008); Wu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The supramolecular double-chain aligned along the b axis in the crystal structure of (I) formed through the agency of intermolecular O—H···O and N—H···O hydrogen bonding interactions shown as orange and blue dashed lines, respectively. Only one of the disordered water-H atoms is represented.
[Figure 3] Fig. 3. A view of the unit-cell contents in (I) shown in projection down the b axis [the direction of the supramolecular chains illustrated in Fig. 2] and highlighting the stacking of layers along the a direction. The O—H···O hydrogen bonds and C—H···O interactions are shown as orange and green dashed lines, respectively
1,3-Dicyclohexyl-3-[(pyridin-2-yl)carbonyl]urea monohydrate top
Crystal data top
C19H27N3O2·H2OF(000) = 752
Mr = 347.46Dx = 1.223 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.6905 Å
Hall symbol: -P 2ybcCell parameters from 908 reflections
a = 18.639 (19) Åθ = 4.6–25.5°
b = 5.035 (5) ŵ = 0.05 mm1
c = 21.59 (2) ÅT = 120 K
β = 111.395 (9)°Lath, colourless
V = 1887 (3) Å30.25 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3810 independent reflections
Radiation source: Daresbury SRS station 9.83200 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.043
fine–slice ω scansθmax = 25.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 2223
Tmin = 0.743, Tmax = 1.000k = 66
13440 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.9558P]
where P = (Fo2 + 2Fc2)/3
3810 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.36 e Å3
7 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H27N3O2·H2OV = 1887 (3) Å3
Mr = 347.46Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.6905 Å
a = 18.639 (19) ŵ = 0.05 mm1
b = 5.035 (5) ÅT = 120 K
c = 21.59 (2) Å0.25 × 0.08 × 0.02 mm
β = 111.395 (9)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3810 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3200 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 1.000Rint = 0.043
13440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0487 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3810 reflectionsΔρmin = 0.20 e Å3
238 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.70258 (7)0.1731 (2)0.59067 (6)0.0303 (3)
O20.91282 (6)0.2990 (2)0.60869 (5)0.0301 (3)
N10.69415 (7)0.2624 (3)0.61576 (7)0.0243 (3)
H1N0.7086 (10)0.425 (2)0.6115 (9)0.029*
N20.79274 (7)0.1277 (3)0.58142 (6)0.0234 (3)
N30.83745 (8)0.0413 (3)0.72128 (7)0.0337 (3)
C10.72692 (9)0.0548 (3)0.59806 (7)0.0240 (3)
C20.62543 (9)0.2342 (3)0.63269 (8)0.0258 (3)
H20.61960.04280.64230.031*
C30.55414 (10)0.3205 (4)0.57442 (8)0.0338 (4)
H3A0.54820.20740.53540.041*
H3B0.56060.50650.56250.041*
C40.48146 (10)0.2991 (4)0.59151 (9)0.0377 (4)
H4A0.43660.36590.55370.045*
H4B0.47190.11050.59880.045*
C50.49011 (10)0.4583 (4)0.65350 (9)0.0396 (4)
H5A0.49350.64960.64430.048*
H5B0.44400.43140.66530.048*
C60.56154 (11)0.3759 (5)0.71165 (9)0.0468 (5)
H6A0.55530.19080.72430.056*
H6B0.56730.49140.75030.056*
C70.63413 (10)0.3957 (4)0.69461 (8)0.0354 (4)
H7A0.64380.58400.68700.043*
H7B0.67900.32940.73250.043*
C80.78688 (9)0.0807 (3)0.51160 (7)0.0245 (3)
H80.82110.21310.50150.029*
C90.81573 (9)0.1941 (3)0.50312 (8)0.0276 (3)
H9A0.78410.33060.51410.033*
H9B0.86970.21550.53410.033*
C100.81124 (10)0.2337 (3)0.43150 (8)0.0308 (4)
H10A0.84700.10910.42210.037*
H10B0.82740.41690.42610.037*
C110.72974 (10)0.1862 (4)0.38230 (8)0.0333 (4)
H11A0.69470.32110.38910.040*
H11B0.72870.20520.33630.040*
C120.70189 (10)0.0901 (4)0.39131 (8)0.0331 (4)
H12A0.64830.11500.35990.040*
H12B0.73460.22530.38120.040*
C130.70517 (9)0.1285 (3)0.46261 (8)0.0285 (3)
H13A0.68890.31130.46810.034*
H13B0.66940.00280.47170.034*
C140.85976 (9)0.2239 (3)0.62575 (7)0.0241 (3)
C150.87147 (9)0.2303 (3)0.69852 (7)0.0250 (3)
C160.85324 (11)0.0380 (4)0.78661 (9)0.0406 (4)
H160.83000.09600.80390.049*
C170.90154 (11)0.2181 (4)0.83078 (8)0.0396 (4)
H170.91120.20640.87700.048*
C180.93532 (11)0.4146 (4)0.80637 (9)0.0408 (4)
H180.96790.54350.83520.049*
C190.92055 (10)0.4198 (4)0.73843 (8)0.0342 (4)
H190.94360.55030.71990.041*
O1W0.97088 (8)0.2514 (3)0.50550 (6)0.0385 (3)
H1W0.9509 (12)0.257 (5)0.5347 (9)0.058*
H2W0.998 (2)0.385 (5)0.507 (2)0.058*0.50
H3W0.994 (2)0.107 (5)0.508 (2)0.058*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (6)0.0207 (6)0.0363 (6)0.0051 (5)0.0192 (5)0.0030 (5)
O20.0307 (6)0.0385 (7)0.0230 (5)0.0049 (5)0.0121 (5)0.0002 (5)
N10.0300 (7)0.0190 (6)0.0281 (7)0.0023 (5)0.0155 (6)0.0002 (5)
N20.0295 (7)0.0234 (6)0.0195 (6)0.0012 (5)0.0116 (5)0.0010 (5)
N30.0417 (8)0.0361 (8)0.0248 (7)0.0032 (6)0.0138 (6)0.0041 (6)
C10.0287 (8)0.0223 (8)0.0220 (7)0.0013 (6)0.0104 (6)0.0004 (6)
C20.0305 (8)0.0239 (8)0.0284 (8)0.0001 (6)0.0172 (7)0.0030 (6)
C30.0312 (9)0.0483 (10)0.0232 (8)0.0035 (7)0.0114 (7)0.0021 (7)
C40.0293 (9)0.0512 (11)0.0327 (9)0.0017 (8)0.0115 (7)0.0044 (8)
C50.0344 (9)0.0495 (11)0.0410 (10)0.0074 (8)0.0208 (8)0.0028 (8)
C60.0408 (10)0.0770 (15)0.0279 (9)0.0091 (10)0.0190 (8)0.0026 (9)
C70.0320 (9)0.0524 (11)0.0225 (8)0.0037 (8)0.0106 (7)0.0017 (8)
C80.0313 (8)0.0277 (8)0.0169 (7)0.0018 (6)0.0116 (6)0.0017 (6)
C90.0322 (8)0.0265 (8)0.0229 (8)0.0026 (6)0.0087 (6)0.0008 (6)
C100.0396 (9)0.0294 (9)0.0261 (8)0.0027 (7)0.0152 (7)0.0037 (7)
C110.0419 (10)0.0359 (9)0.0199 (8)0.0003 (7)0.0085 (7)0.0042 (7)
C120.0367 (9)0.0354 (9)0.0228 (8)0.0031 (7)0.0058 (7)0.0014 (7)
C130.0320 (8)0.0275 (8)0.0266 (8)0.0016 (7)0.0113 (7)0.0013 (6)
C140.0307 (8)0.0217 (7)0.0210 (7)0.0015 (6)0.0107 (6)0.0015 (6)
C150.0292 (8)0.0277 (8)0.0195 (7)0.0029 (6)0.0105 (6)0.0009 (6)
C160.0501 (11)0.0479 (11)0.0275 (9)0.0006 (9)0.0187 (8)0.0071 (8)
C170.0428 (10)0.0571 (12)0.0188 (8)0.0073 (9)0.0111 (7)0.0022 (8)
C180.0412 (10)0.0490 (11)0.0269 (9)0.0013 (8)0.0061 (8)0.0112 (8)
C190.0417 (10)0.0357 (10)0.0274 (8)0.0052 (7)0.0152 (7)0.0043 (7)
O1W0.0490 (8)0.0421 (7)0.0340 (7)0.0052 (6)0.0263 (6)0.0011 (6)
Geometric parameters (Å, º) top
O1—C11.223 (2)C8—C131.523 (2)
O2—C141.234 (2)C8—H81.0000
N1—C11.335 (2)C9—C101.531 (3)
N1—C21.461 (2)C9—H9A0.9900
N1—H1N0.875 (9)C9—H9B0.9900
N2—C141.356 (2)C10—C111.522 (3)
N2—C11.446 (2)C10—H10A0.9900
N2—C81.490 (2)C10—H10B0.9900
N3—C161.332 (3)C11—C121.522 (3)
N3—C151.333 (2)C11—H11A0.9900
C2—C71.522 (3)C11—H11B0.9900
C2—C31.522 (3)C12—C131.530 (3)
C2—H21.0000C12—H12A0.9900
C3—C41.532 (3)C12—H12B0.9900
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C4—C51.517 (3)C14—C151.506 (2)
C4—H4A0.9900C15—C191.384 (2)
C4—H4B0.9900C16—C171.384 (3)
C5—C61.517 (3)C16—H160.9500
C5—H5A0.9900C17—C181.377 (3)
C5—H5B0.9900C17—H170.9500
C6—C71.529 (3)C18—C191.391 (3)
C6—H6A0.9900C18—H180.9500
C6—H6B0.9900C19—H190.9500
C7—H7A0.9900O1W—H1W0.842 (10)
C7—H7B0.9900O1W—H2W0.839 (10)
C8—C91.520 (3)O1W—H3W0.838 (10)
C1—N1—C2121.98 (13)C8—C9—C10110.41 (13)
C1—N1—H1N120.7 (12)C8—C9—H9A109.6
C2—N1—H1N116.7 (12)C10—C9—H9A109.6
C14—N2—C1124.18 (14)C8—C9—H9B109.6
C14—N2—C8118.65 (13)C10—C9—H9B109.6
C1—N2—C8117.10 (12)H9A—C9—H9B108.1
C16—N3—C15116.63 (16)C11—C10—C9110.95 (14)
O1—C1—N1125.83 (15)C11—C10—H10A109.5
O1—C1—N2120.91 (13)C9—C10—H10A109.4
N1—C1—N2113.01 (14)C11—C10—H10B109.4
N1—C2—C7110.20 (13)C9—C10—H10B109.5
N1—C2—C3110.25 (14)H10A—C10—H10B108.0
C7—C2—C3110.76 (14)C10—C11—C12110.77 (14)
N1—C2—H2108.5C10—C11—H11A109.5
C7—C2—H2108.5C12—C11—H11A109.5
C3—C2—H2108.5C10—C11—H11B109.5
C2—C3—C4111.27 (15)C12—C11—H11B109.5
C2—C3—H3A109.4H11A—C11—H11B108.1
C4—C3—H3A109.4C11—C12—C13110.71 (14)
C2—C3—H3B109.4C11—C12—H12A109.5
C4—C3—H3B109.4C13—C12—H12A109.5
H3A—C3—H3B108.0C11—C12—H12B109.5
C5—C4—C3110.89 (15)C13—C12—H12B109.5
C5—C4—H4A109.5H12A—C12—H12B108.1
C3—C4—H4A109.5C8—C13—C12109.96 (14)
C5—C4—H4B109.5C8—C13—H13A109.7
C3—C4—H4B109.5C12—C13—H13A109.7
H4A—C4—H4B108.1C8—C13—H13B109.7
C6—C5—C4111.37 (16)C12—C13—H13B109.7
C6—C5—H5A109.4H13A—C13—H13B108.2
C4—C5—H5A109.4O2—C14—N2122.07 (15)
C6—C5—H5B109.4O2—C14—C15118.57 (14)
C4—C5—H5B109.4N2—C14—C15119.32 (14)
H5A—C5—H5B108.0N3—C15—C19123.94 (15)
C5—C6—C7111.68 (16)N3—C15—C14117.52 (14)
C5—C6—H6A109.3C19—C15—C14118.40 (14)
C7—C6—H6A109.3N3—C16—C17123.96 (18)
C5—C6—H6B109.3N3—C16—H16118.0
C7—C6—H6B109.3C17—C16—H16118.0
H6A—C6—H6B107.9C18—C17—C16118.71 (17)
C2—C7—C6110.88 (15)C18—C17—H17120.6
C2—C7—H7A109.5C16—C17—H17120.6
C6—C7—H7A109.5C17—C18—C19118.37 (17)
C2—C7—H7B109.5C17—C18—H18120.8
C6—C7—H7B109.5C19—C18—H18120.8
H7A—C7—H7B108.1C15—C19—C18118.38 (17)
N2—C8—C9111.57 (12)C15—C19—H19120.8
N2—C8—C13111.29 (13)C18—C19—H19120.8
C9—C8—C13111.61 (13)H1W—O1W—H2W112 (3)
N2—C8—H8107.4H1W—O1W—H3W109 (3)
C9—C8—H8107.4H2W—O1W—H3W114 (4)
C13—C8—H8107.4
C2—N1—C1—O13.9 (2)C8—C9—C10—C1155.90 (18)
C2—N1—C1—N2178.19 (12)C9—C10—C11—C1256.71 (19)
C14—N2—C1—O1118.72 (17)C10—C11—C12—C1357.41 (19)
C8—N2—C1—O158.28 (19)N2—C8—C13—C12177.61 (13)
C14—N2—C1—N166.67 (19)C9—C8—C13—C1257.02 (17)
C8—N2—C1—N1116.33 (15)C11—C12—C13—C857.10 (19)
C1—N1—C2—C7136.11 (15)C1—N2—C14—O2175.44 (14)
C1—N1—C2—C3101.33 (17)C8—N2—C14—O27.6 (2)
N1—C2—C3—C4178.62 (14)C1—N2—C14—C156.9 (2)
C7—C2—C3—C456.4 (2)C8—N2—C14—C15170.02 (13)
C2—C3—C4—C556.0 (2)C16—N3—C15—C190.6 (3)
C3—C4—C5—C655.1 (2)C16—N3—C15—C14174.98 (15)
C4—C5—C6—C755.2 (2)O2—C14—C15—N3146.42 (16)
N1—C2—C7—C6178.06 (15)N2—C14—C15—N331.3 (2)
C3—C2—C7—C655.8 (2)O2—C14—C15—C1929.4 (2)
C5—C6—C7—C255.4 (2)N2—C14—C15—C19152.84 (15)
C14—N2—C8—C987.09 (17)C15—N3—C16—C170.5 (3)
C1—N2—C8—C990.08 (17)N3—C16—C17—C180.4 (3)
C14—N2—C8—C13147.52 (15)C16—C17—C18—C191.3 (3)
C1—N2—C8—C1335.31 (19)N3—C15—C19—C180.2 (3)
N2—C8—C9—C10178.34 (13)C14—C15—C19—C18175.81 (15)
C13—C8—C9—C1056.45 (17)C17—C18—C19—C151.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (1)2.07 (1)2.908 (3)160 (2)
O1w—H1w···O20.84 (2)1.98 (2)2.820 (3)174 (2)
O1w—H2w···O1wii0.84 (3)1.97 (3)2.773 (4)162 (4)
O1w—H3w···O1wiii0.84 (3)1.98 (3)2.799 (4)167 (4)
C17—H17···O1wiv0.952.593.517 (4)164
C18—H18···O2v0.952.473.367 (4)157
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H27N3O2·H2O
Mr347.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)18.639 (19), 5.035 (5), 21.59 (2)
β (°) 111.395 (9)
V3)1887 (3)
Z4
Radiation typeSynchrotron, λ = 0.6905 Å
µ (mm1)0.05
Crystal size (mm)0.25 × 0.08 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.743, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13440, 3810, 3200
Rint0.043
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.06
No. of reflections3810
No. of parameters238
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.877 (12)2.067 (11)2.908 (3)160.4 (18)
O1w—H1w···O20.84 (2)1.98 (2)2.820 (3)173.7 (19)
O1w—H2w···O1wii0.84 (3)1.97 (3)2.773 (4)162 (4)
O1w—H3w···O1wiii0.84 (3)1.98 (3)2.799 (4)167 (4)
C17—H17···O1wiv0.952.593.517 (4)164
C18—H18···O2v0.952.473.367 (4)157
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

We thank Professor W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211–212.  CAS Google Scholar
First citationChérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27–o29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607–1610.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. pp. 468–472.  Web of Science CrossRef Google Scholar
First citationNeves Filho, R. A. W., de Oliveira, R. N. & Srivastava, R. M. (2007). J. Braz. Chem. Soc. 18, 1410–1414.  Web of Science CrossRef CAS Google Scholar
First citationOrea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922–o2923.  CSD CrossRef IUCr Journals Google Scholar
First citationSchotman, A. K. (1991). Rec. Trav. Chim. Pays-Bas, 110, 319–325.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-K. & Zhou, F.-Y. (2008). Acta Cryst. E64, o1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435–o437.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds