organic compounds
1,3-Dicyclohexyl-3-[(pyridin-2-yl)carbonyl]urea monohydrate from synchrotron radiation
aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title urea derivative crystallizes as a monohydrate, C19H27N3O2·H2O. The central C3N grouping is almost planar (r.m.s. deviation = 0.0092 Å), and the amide and pyridine groups are substantially twisted out this plane [dihedral angles = 62.80 (12) and 34.98 (10)°, respectively]. Supramolecular double chains propagating along the b-axis direction feature in the crystal packing whereby linear chains sustained by N—H⋯O hydrogen bonds formed between the amide groups are linked by helical chains of water molecules (linked by O—H⋯O hydrogen bonds). The H atom that participates in these water chains is disordered over two positions of equal occupancy. The double chains are connected into a two-dimensional array by C—H⋯O contacts and the layers stack along the a axis.
Related literature
For the preparation of N-(arenecarbonyl)-N,N′-dicyclohexylurea derivatives, see: Kaiser et al. (2008); Neves Filho et al. (2007); Schotman (1991). For the crystal structures of related N-(arenecarbonyl)-N,N′-dicyclohexylurea derivatives, see: Chérioux et al. (2002); Cai et al. (2009); Dhinaa et al. (2010); Orea Flores et al. (2006); Gallagher et al. (1999); Wang & Zhou (2008); Wu et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811037512/hb6408sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037512/hb6408Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811037512/hb6408Isup3.cml
To a stirred solution of the pyridin-2-carboxylic acid (1 mmol) in anhydrous CH2Cl2 (25 ml) were added DCC (0.8 mmol, 1 equiv.) and HOBt (ca 10 mg). After leaving at room temperature for 2 h, the precipitate of N,N'-dicyclohexylurea was removed and the filtrate was poured into saturated aqueous NaHCO3 solution (20 ml). The organic material was extracted into EtOAc (3 x 20 ml), the combined layers dried over MgSO4, and rotary evaporated. The residue was chromatographed (10% to 50% EtOAc/hexanes) to give N-(pyridin-2-carbonyl)-N,N'-dicyclohexylurea. Yield: 60%, as a white solid. Recrystallization from moist EtOH gave the monohydrate as colourless laths.
1H NMR (400 MHz, CDCl3) δ: 8.57 (d, J = 3.6, 1H, H6), 7.78 (m, 1H, H4), 7.68 (d, J = 7.6, 1H, H3), 7.37 (m, 1H, H5), 6.09 (s, 1H, NH), 4.20 (m, 1H, NCH), 3.51 (m, 1H, NHCH), 0.8–2 (m, 20 H, cyclohexyl) p.p.m.. 13C NMR (100 MHz, CDCl3) δ: 168.1 (CON), 154.0 (CONH), 153.9 (C2), 148.5 (C6), 137.0 (C4), 125.1, 122.9 (C3 and C5), 56.4 (NCH), 49.8 (NHCH), 33.9, 32.4, 30.7, 26.2, 25.6, 25.4, 25.3, 24.9, 24.6 (cyclohexyl) p.p.m.. M.pt.: 415 K. IR (cm-1; KBr): 1710 (CONH) and 1680 (CON).
The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The O– and N-bound H atom were refined with the distance restraints 0.84±0.01 and 0.88±0.01 Å, respectively, and with Uiso(H) = yUeq(parent atom) for y = 1.2 for N and y = 1.5 for O. One of the water-bound H atoms was found to be disordered over two positions and each was assigned a site occupancy factor = 0.50.
Reactions of arenecarboxylic acids with dicyclohexylcarbodiimide (DCC) in the presence of a catalyst, such as 1-hydroxybenzotriazole, HOBt, produce N-(arenecarbonyl)-N,N'-dicyclohexylureas (Kaiser et al., 2008; Neves Filho et al., 2007; Schotman, 1991). Several crystal structures of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives have been reported (Chérioux et al., 2002; Cai et al., 2009; Dhinaa et al., 2010; Orea Flores et al., 2006; Gallagher et al., 1999; Wang et al., 2008; Wu et al., 2006). Herein, we now report the
of the monohydrate of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea, (I).A molecule of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea and a water molecule of solvation comprise the
of (I). Two of the water bound H atoms are disordered and have been assigned site occupancy factors of 0.50. The disorder is accounted for in terms of the dictates of hydrogen bonding in the see below. The pyridine ring is twisted out of the central C3N plane (r.m.s. deviation = 0.0092 Å) with the dihedral angle being 34.98 (10) °. The amide group is even more twisted out of the plane through the central ring forming a dihedral angle of 62.80 (12) °. Each of the cyclohexyl rings adopts a chair conformation.Hydrogen bonding of the type O—H···O and N—H···O lead to the formation of supramolecular chains along the b axis, Table 1. The amide groups self-associate to form linear chains. Pairs of chains are linked by hydrogen bonding interactions involving the water molecules. Thus, the carbonyl-O2 atom is linked to the water molecule, and the remaining water-H atoms (each with site occupancy factor = 1/2) link water molecules into a helical chain, Fig. 2. The chains are linked into layers via C—H···O interactions, Table 1, which stack along the a direction.
For the preparation of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Kaiser et al. (2008); Neves Filho et al. (2007); Schotman (1991). For crystal structures of related N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Chérioux et al. (2002); Cai et al. (2009); Dhinaa et al. (2010); Orea Flores et al. (2006); Gallagher et al. (1999); Wang & Zhou (2008); Wu et al. (2006).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. | |
Fig. 2. The supramolecular double-chain aligned along the b axis in the crystal structure of (I) formed through the agency of intermolecular O—H···O and N—H···O hydrogen bonding interactions shown as orange and blue dashed lines, respectively. Only one of the disordered water-H atoms is represented. | |
Fig. 3. A view of the unit-cell contents in (I) shown in projection down the b axis [the direction of the supramolecular chains illustrated in Fig. 2] and highlighting the stacking of layers along the a direction. The O—H···O hydrogen bonds and C—H···O interactions are shown as orange and green dashed lines, respectively |
C19H27N3O2·H2O | F(000) = 752 |
Mr = 347.46 | Dx = 1.223 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.6905 Å |
Hall symbol: -P 2ybc | Cell parameters from 908 reflections |
a = 18.639 (19) Å | θ = 4.6–25.5° |
b = 5.035 (5) Å | µ = 0.05 mm−1 |
c = 21.59 (2) Å | T = 120 K |
β = 111.395 (9)° | Lath, colourless |
V = 1887 (3) Å3 | 0.25 × 0.08 × 0.02 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 3810 independent reflections |
Radiation source: Daresbury SRS station 9.8 | 3200 reflections with I > 2σ(I) |
Silicon 111 monochromator | Rint = 0.043 |
fine–slice ω scans | θmax = 25.6°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −22→23 |
Tmin = 0.743, Tmax = 1.000 | k = −6→6 |
13440 measured reflections | l = −25→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0475P)2 + 0.9558P] where P = (Fo2 + 2Fc2)/3 |
3810 reflections | (Δ/σ)max < 0.001 |
238 parameters | Δρmax = 0.36 e Å−3 |
7 restraints | Δρmin = −0.20 e Å−3 |
C19H27N3O2·H2O | V = 1887 (3) Å3 |
Mr = 347.46 | Z = 4 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.6905 Å |
a = 18.639 (19) Å | µ = 0.05 mm−1 |
b = 5.035 (5) Å | T = 120 K |
c = 21.59 (2) Å | 0.25 × 0.08 × 0.02 mm |
β = 111.395 (9)° |
Bruker SMART APEXII CCD diffractometer | 3810 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 3200 reflections with I > 2σ(I) |
Tmin = 0.743, Tmax = 1.000 | Rint = 0.043 |
13440 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 7 restraints |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.36 e Å−3 |
3810 reflections | Δρmin = −0.20 e Å−3 |
238 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.70258 (7) | −0.1731 (2) | 0.59067 (6) | 0.0303 (3) | |
O2 | 0.91282 (6) | 0.2990 (2) | 0.60869 (5) | 0.0301 (3) | |
N1 | 0.69415 (7) | 0.2624 (3) | 0.61576 (7) | 0.0243 (3) | |
H1N | 0.7086 (10) | 0.425 (2) | 0.6115 (9) | 0.029* | |
N2 | 0.79274 (7) | 0.1277 (3) | 0.58142 (6) | 0.0234 (3) | |
N3 | 0.83745 (8) | 0.0413 (3) | 0.72128 (7) | 0.0337 (3) | |
C1 | 0.72692 (9) | 0.0548 (3) | 0.59806 (7) | 0.0240 (3) | |
C2 | 0.62543 (9) | 0.2342 (3) | 0.63269 (8) | 0.0258 (3) | |
H2 | 0.6196 | 0.0428 | 0.6423 | 0.031* | |
C3 | 0.55414 (10) | 0.3205 (4) | 0.57442 (8) | 0.0338 (4) | |
H3A | 0.5482 | 0.2074 | 0.5354 | 0.041* | |
H3B | 0.5606 | 0.5065 | 0.5625 | 0.041* | |
C4 | 0.48146 (10) | 0.2991 (4) | 0.59151 (9) | 0.0377 (4) | |
H4A | 0.4366 | 0.3659 | 0.5537 | 0.045* | |
H4B | 0.4719 | 0.1105 | 0.5988 | 0.045* | |
C5 | 0.49011 (10) | 0.4583 (4) | 0.65350 (9) | 0.0396 (4) | |
H5A | 0.4935 | 0.6496 | 0.6443 | 0.048* | |
H5B | 0.4440 | 0.4314 | 0.6653 | 0.048* | |
C6 | 0.56154 (11) | 0.3759 (5) | 0.71165 (9) | 0.0468 (5) | |
H6A | 0.5553 | 0.1908 | 0.7243 | 0.056* | |
H6B | 0.5673 | 0.4914 | 0.7503 | 0.056* | |
C7 | 0.63413 (10) | 0.3957 (4) | 0.69461 (8) | 0.0354 (4) | |
H7A | 0.6438 | 0.5840 | 0.6870 | 0.043* | |
H7B | 0.6790 | 0.3294 | 0.7325 | 0.043* | |
C8 | 0.78688 (9) | 0.0807 (3) | 0.51160 (7) | 0.0245 (3) | |
H8 | 0.8211 | 0.2131 | 0.5015 | 0.029* | |
C9 | 0.81573 (9) | −0.1941 (3) | 0.50312 (8) | 0.0276 (3) | |
H9A | 0.7841 | −0.3306 | 0.5141 | 0.033* | |
H9B | 0.8697 | −0.2155 | 0.5341 | 0.033* | |
C10 | 0.81124 (10) | −0.2337 (3) | 0.43150 (8) | 0.0308 (4) | |
H10A | 0.8470 | −0.1091 | 0.4221 | 0.037* | |
H10B | 0.8274 | −0.4169 | 0.4261 | 0.037* | |
C11 | 0.72974 (10) | −0.1862 (4) | 0.38230 (8) | 0.0333 (4) | |
H11A | 0.6947 | −0.3211 | 0.3891 | 0.040* | |
H11B | 0.7287 | −0.2052 | 0.3363 | 0.040* | |
C12 | 0.70189 (10) | 0.0901 (4) | 0.39131 (8) | 0.0331 (4) | |
H12A | 0.6483 | 0.1150 | 0.3599 | 0.040* | |
H12B | 0.7346 | 0.2253 | 0.3812 | 0.040* | |
C13 | 0.70517 (9) | 0.1285 (3) | 0.46261 (8) | 0.0285 (3) | |
H13A | 0.6889 | 0.3113 | 0.4681 | 0.034* | |
H13B | 0.6694 | 0.0028 | 0.4717 | 0.034* | |
C14 | 0.85976 (9) | 0.2239 (3) | 0.62575 (7) | 0.0241 (3) | |
C15 | 0.87147 (9) | 0.2303 (3) | 0.69852 (7) | 0.0250 (3) | |
C16 | 0.85324 (11) | 0.0380 (4) | 0.78661 (9) | 0.0406 (4) | |
H16 | 0.8300 | −0.0960 | 0.8039 | 0.049* | |
C17 | 0.90154 (11) | 0.2181 (4) | 0.83078 (8) | 0.0396 (4) | |
H17 | 0.9112 | 0.2064 | 0.8770 | 0.048* | |
C18 | 0.93532 (11) | 0.4146 (4) | 0.80637 (9) | 0.0408 (4) | |
H18 | 0.9679 | 0.5435 | 0.8352 | 0.049* | |
C19 | 0.92055 (10) | 0.4198 (4) | 0.73843 (8) | 0.0342 (4) | |
H19 | 0.9436 | 0.5503 | 0.7199 | 0.041* | |
O1W | 0.97088 (8) | 0.2514 (3) | 0.50550 (6) | 0.0385 (3) | |
H1W | 0.9509 (12) | 0.257 (5) | 0.5347 (9) | 0.058* | |
H2W | 0.998 (2) | 0.385 (5) | 0.507 (2) | 0.058* | 0.50 |
H3W | 0.994 (2) | 0.107 (5) | 0.508 (2) | 0.058* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0384 (6) | 0.0207 (6) | 0.0363 (6) | −0.0051 (5) | 0.0192 (5) | −0.0030 (5) |
O2 | 0.0307 (6) | 0.0385 (7) | 0.0230 (5) | −0.0049 (5) | 0.0121 (5) | 0.0002 (5) |
N1 | 0.0300 (7) | 0.0190 (6) | 0.0281 (7) | −0.0023 (5) | 0.0155 (6) | −0.0002 (5) |
N2 | 0.0295 (7) | 0.0234 (6) | 0.0195 (6) | −0.0012 (5) | 0.0116 (5) | −0.0010 (5) |
N3 | 0.0417 (8) | 0.0361 (8) | 0.0248 (7) | −0.0032 (6) | 0.0138 (6) | 0.0041 (6) |
C1 | 0.0287 (8) | 0.0223 (8) | 0.0220 (7) | −0.0013 (6) | 0.0104 (6) | 0.0004 (6) |
C2 | 0.0305 (8) | 0.0239 (8) | 0.0284 (8) | −0.0001 (6) | 0.0172 (7) | 0.0030 (6) |
C3 | 0.0312 (9) | 0.0483 (10) | 0.0232 (8) | −0.0035 (7) | 0.0114 (7) | −0.0021 (7) |
C4 | 0.0293 (9) | 0.0512 (11) | 0.0327 (9) | −0.0017 (8) | 0.0115 (7) | 0.0044 (8) |
C5 | 0.0344 (9) | 0.0495 (11) | 0.0410 (10) | 0.0074 (8) | 0.0208 (8) | 0.0028 (8) |
C6 | 0.0408 (10) | 0.0770 (15) | 0.0279 (9) | 0.0091 (10) | 0.0190 (8) | 0.0026 (9) |
C7 | 0.0320 (9) | 0.0524 (11) | 0.0225 (8) | 0.0037 (8) | 0.0106 (7) | −0.0017 (8) |
C8 | 0.0313 (8) | 0.0277 (8) | 0.0169 (7) | −0.0018 (6) | 0.0116 (6) | −0.0017 (6) |
C9 | 0.0322 (8) | 0.0265 (8) | 0.0229 (8) | 0.0026 (6) | 0.0087 (6) | −0.0008 (6) |
C10 | 0.0396 (9) | 0.0294 (9) | 0.0261 (8) | 0.0027 (7) | 0.0152 (7) | −0.0037 (7) |
C11 | 0.0419 (10) | 0.0359 (9) | 0.0199 (8) | −0.0003 (7) | 0.0085 (7) | −0.0042 (7) |
C12 | 0.0367 (9) | 0.0354 (9) | 0.0228 (8) | 0.0031 (7) | 0.0058 (7) | −0.0014 (7) |
C13 | 0.0320 (8) | 0.0275 (8) | 0.0266 (8) | 0.0016 (7) | 0.0113 (7) | −0.0013 (6) |
C14 | 0.0307 (8) | 0.0217 (7) | 0.0210 (7) | 0.0015 (6) | 0.0107 (6) | 0.0015 (6) |
C15 | 0.0292 (8) | 0.0277 (8) | 0.0195 (7) | 0.0029 (6) | 0.0105 (6) | 0.0009 (6) |
C16 | 0.0501 (11) | 0.0479 (11) | 0.0275 (9) | −0.0006 (9) | 0.0187 (8) | 0.0071 (8) |
C17 | 0.0428 (10) | 0.0571 (12) | 0.0188 (8) | 0.0073 (9) | 0.0111 (7) | 0.0022 (8) |
C18 | 0.0412 (10) | 0.0490 (11) | 0.0269 (9) | −0.0013 (8) | 0.0061 (8) | −0.0112 (8) |
C19 | 0.0417 (10) | 0.0357 (10) | 0.0274 (8) | −0.0052 (7) | 0.0152 (7) | −0.0043 (7) |
O1W | 0.0490 (8) | 0.0421 (7) | 0.0340 (7) | −0.0052 (6) | 0.0263 (6) | −0.0011 (6) |
O1—C1 | 1.223 (2) | C8—C13 | 1.523 (2) |
O2—C14 | 1.234 (2) | C8—H8 | 1.0000 |
N1—C1 | 1.335 (2) | C9—C10 | 1.531 (3) |
N1—C2 | 1.461 (2) | C9—H9A | 0.9900 |
N1—H1N | 0.875 (9) | C9—H9B | 0.9900 |
N2—C14 | 1.356 (2) | C10—C11 | 1.522 (3) |
N2—C1 | 1.446 (2) | C10—H10A | 0.9900 |
N2—C8 | 1.490 (2) | C10—H10B | 0.9900 |
N3—C16 | 1.332 (3) | C11—C12 | 1.522 (3) |
N3—C15 | 1.333 (2) | C11—H11A | 0.9900 |
C2—C7 | 1.522 (3) | C11—H11B | 0.9900 |
C2—C3 | 1.522 (3) | C12—C13 | 1.530 (3) |
C2—H2 | 1.0000 | C12—H12A | 0.9900 |
C3—C4 | 1.532 (3) | C12—H12B | 0.9900 |
C3—H3A | 0.9900 | C13—H13A | 0.9900 |
C3—H3B | 0.9900 | C13—H13B | 0.9900 |
C4—C5 | 1.517 (3) | C14—C15 | 1.506 (2) |
C4—H4A | 0.9900 | C15—C19 | 1.384 (2) |
C4—H4B | 0.9900 | C16—C17 | 1.384 (3) |
C5—C6 | 1.517 (3) | C16—H16 | 0.9500 |
C5—H5A | 0.9900 | C17—C18 | 1.377 (3) |
C5—H5B | 0.9900 | C17—H17 | 0.9500 |
C6—C7 | 1.529 (3) | C18—C19 | 1.391 (3) |
C6—H6A | 0.9900 | C18—H18 | 0.9500 |
C6—H6B | 0.9900 | C19—H19 | 0.9500 |
C7—H7A | 0.9900 | O1W—H1W | 0.842 (10) |
C7—H7B | 0.9900 | O1W—H2W | 0.839 (10) |
C8—C9 | 1.520 (3) | O1W—H3W | 0.838 (10) |
C1—N1—C2 | 121.98 (13) | C8—C9—C10 | 110.41 (13) |
C1—N1—H1N | 120.7 (12) | C8—C9—H9A | 109.6 |
C2—N1—H1N | 116.7 (12) | C10—C9—H9A | 109.6 |
C14—N2—C1 | 124.18 (14) | C8—C9—H9B | 109.6 |
C14—N2—C8 | 118.65 (13) | C10—C9—H9B | 109.6 |
C1—N2—C8 | 117.10 (12) | H9A—C9—H9B | 108.1 |
C16—N3—C15 | 116.63 (16) | C11—C10—C9 | 110.95 (14) |
O1—C1—N1 | 125.83 (15) | C11—C10—H10A | 109.5 |
O1—C1—N2 | 120.91 (13) | C9—C10—H10A | 109.4 |
N1—C1—N2 | 113.01 (14) | C11—C10—H10B | 109.4 |
N1—C2—C7 | 110.20 (13) | C9—C10—H10B | 109.5 |
N1—C2—C3 | 110.25 (14) | H10A—C10—H10B | 108.0 |
C7—C2—C3 | 110.76 (14) | C10—C11—C12 | 110.77 (14) |
N1—C2—H2 | 108.5 | C10—C11—H11A | 109.5 |
C7—C2—H2 | 108.5 | C12—C11—H11A | 109.5 |
C3—C2—H2 | 108.5 | C10—C11—H11B | 109.5 |
C2—C3—C4 | 111.27 (15) | C12—C11—H11B | 109.5 |
C2—C3—H3A | 109.4 | H11A—C11—H11B | 108.1 |
C4—C3—H3A | 109.4 | C11—C12—C13 | 110.71 (14) |
C2—C3—H3B | 109.4 | C11—C12—H12A | 109.5 |
C4—C3—H3B | 109.4 | C13—C12—H12A | 109.5 |
H3A—C3—H3B | 108.0 | C11—C12—H12B | 109.5 |
C5—C4—C3 | 110.89 (15) | C13—C12—H12B | 109.5 |
C5—C4—H4A | 109.5 | H12A—C12—H12B | 108.1 |
C3—C4—H4A | 109.5 | C8—C13—C12 | 109.96 (14) |
C5—C4—H4B | 109.5 | C8—C13—H13A | 109.7 |
C3—C4—H4B | 109.5 | C12—C13—H13A | 109.7 |
H4A—C4—H4B | 108.1 | C8—C13—H13B | 109.7 |
C6—C5—C4 | 111.37 (16) | C12—C13—H13B | 109.7 |
C6—C5—H5A | 109.4 | H13A—C13—H13B | 108.2 |
C4—C5—H5A | 109.4 | O2—C14—N2 | 122.07 (15) |
C6—C5—H5B | 109.4 | O2—C14—C15 | 118.57 (14) |
C4—C5—H5B | 109.4 | N2—C14—C15 | 119.32 (14) |
H5A—C5—H5B | 108.0 | N3—C15—C19 | 123.94 (15) |
C5—C6—C7 | 111.68 (16) | N3—C15—C14 | 117.52 (14) |
C5—C6—H6A | 109.3 | C19—C15—C14 | 118.40 (14) |
C7—C6—H6A | 109.3 | N3—C16—C17 | 123.96 (18) |
C5—C6—H6B | 109.3 | N3—C16—H16 | 118.0 |
C7—C6—H6B | 109.3 | C17—C16—H16 | 118.0 |
H6A—C6—H6B | 107.9 | C18—C17—C16 | 118.71 (17) |
C2—C7—C6 | 110.88 (15) | C18—C17—H17 | 120.6 |
C2—C7—H7A | 109.5 | C16—C17—H17 | 120.6 |
C6—C7—H7A | 109.5 | C17—C18—C19 | 118.37 (17) |
C2—C7—H7B | 109.5 | C17—C18—H18 | 120.8 |
C6—C7—H7B | 109.5 | C19—C18—H18 | 120.8 |
H7A—C7—H7B | 108.1 | C15—C19—C18 | 118.38 (17) |
N2—C8—C9 | 111.57 (12) | C15—C19—H19 | 120.8 |
N2—C8—C13 | 111.29 (13) | C18—C19—H19 | 120.8 |
C9—C8—C13 | 111.61 (13) | H1W—O1W—H2W | 112 (3) |
N2—C8—H8 | 107.4 | H1W—O1W—H3W | 109 (3) |
C9—C8—H8 | 107.4 | H2W—O1W—H3W | 114 (4) |
C13—C8—H8 | 107.4 | ||
C2—N1—C1—O1 | 3.9 (2) | C8—C9—C10—C11 | −55.90 (18) |
C2—N1—C1—N2 | 178.19 (12) | C9—C10—C11—C12 | 56.71 (19) |
C14—N2—C1—O1 | −118.72 (17) | C10—C11—C12—C13 | −57.41 (19) |
C8—N2—C1—O1 | 58.28 (19) | N2—C8—C13—C12 | 177.61 (13) |
C14—N2—C1—N1 | 66.67 (19) | C9—C8—C13—C12 | −57.02 (17) |
C8—N2—C1—N1 | −116.33 (15) | C11—C12—C13—C8 | 57.10 (19) |
C1—N1—C2—C7 | 136.11 (15) | C1—N2—C14—O2 | −175.44 (14) |
C1—N1—C2—C3 | −101.33 (17) | C8—N2—C14—O2 | 7.6 (2) |
N1—C2—C3—C4 | −178.62 (14) | C1—N2—C14—C15 | 6.9 (2) |
C7—C2—C3—C4 | −56.4 (2) | C8—N2—C14—C15 | −170.02 (13) |
C2—C3—C4—C5 | 56.0 (2) | C16—N3—C15—C19 | −0.6 (3) |
C3—C4—C5—C6 | −55.1 (2) | C16—N3—C15—C14 | 174.98 (15) |
C4—C5—C6—C7 | 55.2 (2) | O2—C14—C15—N3 | −146.42 (16) |
N1—C2—C7—C6 | 178.06 (15) | N2—C14—C15—N3 | 31.3 (2) |
C3—C2—C7—C6 | 55.8 (2) | O2—C14—C15—C19 | 29.4 (2) |
C5—C6—C7—C2 | −55.4 (2) | N2—C14—C15—C19 | −152.84 (15) |
C14—N2—C8—C9 | 87.09 (17) | C15—N3—C16—C17 | 0.5 (3) |
C1—N2—C8—C9 | −90.08 (17) | N3—C16—C17—C18 | 0.4 (3) |
C14—N2—C8—C13 | −147.52 (15) | C16—C17—C18—C19 | −1.3 (3) |
C1—N2—C8—C13 | 35.31 (19) | N3—C15—C19—C18 | −0.2 (3) |
N2—C8—C9—C10 | −178.34 (13) | C14—C15—C19—C18 | −175.81 (15) |
C13—C8—C9—C10 | 56.45 (17) | C17—C18—C19—C15 | 1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O1i | 0.88 (1) | 2.07 (1) | 2.908 (3) | 160 (2) |
O1w—H1w···O2 | 0.84 (2) | 1.98 (2) | 2.820 (3) | 174 (2) |
O1w—H2w···O1wii | 0.84 (3) | 1.97 (3) | 2.773 (4) | 162 (4) |
O1w—H3w···O1wiii | 0.84 (3) | 1.98 (3) | 2.799 (4) | 167 (4) |
C17—H17···O1wiv | 0.95 | 2.59 | 3.517 (4) | 164 |
C18—H18···O2v | 0.95 | 2.47 | 3.367 (4) | 157 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) −x+2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C19H27N3O2·H2O |
Mr | 347.46 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 18.639 (19), 5.035 (5), 21.59 (2) |
β (°) | 111.395 (9) |
V (Å3) | 1887 (3) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.6905 Å |
µ (mm−1) | 0.05 |
Crystal size (mm) | 0.25 × 0.08 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.743, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13440, 3810, 3200 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.126, 1.06 |
No. of reflections | 3810 |
No. of parameters | 238 |
No. of restraints | 7 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.20 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O1i | 0.877 (12) | 2.067 (11) | 2.908 (3) | 160.4 (18) |
O1w—H1w···O2 | 0.84 (2) | 1.98 (2) | 2.820 (3) | 173.7 (19) |
O1w—H2w···O1wii | 0.84 (3) | 1.97 (3) | 2.773 (4) | 162 (4) |
O1w—H3w···O1wiii | 0.84 (3) | 1.98 (3) | 2.799 (4) | 167 (4) |
C17—H17···O1wiv | 0.95 | 2.59 | 3.517 (4) | 164 |
C18—H18···O2v | 0.95 | 2.47 | 3.367 (4) | 157 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) −x+2, y+1/2, −z+3/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
We thank Professor W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. JLW acknowledges support from CAPES and FAPEMIG (Brazil).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211–212. CAS Google Scholar
Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27–o29. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607–1610. CSD CrossRef CAS IUCr Journals Google Scholar
Kaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. pp. 468–472. Web of Science CrossRef Google Scholar
Neves Filho, R. A. W., de Oliveira, R. N. & Srivastava, R. M. (2007). J. Braz. Chem. Soc. 18, 1410–1414. Web of Science CrossRef CAS Google Scholar
Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922–o2923. CSD CrossRef IUCr Journals Google Scholar
Schotman, A. K. (1991). Rec. Trav. Chim. Pays-Bas, 110, 319–325. CrossRef CAS Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, C.-K. & Zhou, F.-Y. (2008). Acta Cryst. E64, o1451. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435–o437. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Reactions of arenecarboxylic acids with dicyclohexylcarbodiimide (DCC) in the presence of a catalyst, such as 1-hydroxybenzotriazole, HOBt, produce N-(arenecarbonyl)-N,N'-dicyclohexylureas (Kaiser et al., 2008; Neves Filho et al., 2007; Schotman, 1991). Several crystal structures of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives have been reported (Chérioux et al., 2002; Cai et al., 2009; Dhinaa et al., 2010; Orea Flores et al., 2006; Gallagher et al., 1999; Wang et al., 2008; Wu et al., 2006). Herein, we now report the crystal structure of the monohydrate of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea, (I).
A molecule of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea and a water molecule of solvation comprise the asymmetric unit of (I). Two of the water bound H atoms are disordered and have been assigned site occupancy factors of 0.50. The disorder is accounted for in terms of the dictates of hydrogen bonding in the crystal structure, see below. The pyridine ring is twisted out of the central C3N plane (r.m.s. deviation = 0.0092 Å) with the dihedral angle being 34.98 (10) °. The amide group is even more twisted out of the plane through the central ring forming a dihedral angle of 62.80 (12) °. Each of the cyclohexyl rings adopts a chair conformation.
Hydrogen bonding of the type O—H···O and N—H···O lead to the formation of supramolecular chains along the b axis, Table 1. The amide groups self-associate to form linear chains. Pairs of chains are linked by hydrogen bonding interactions involving the water molecules. Thus, the carbonyl-O2 atom is linked to the water molecule, and the remaining water-H atoms (each with site occupancy factor = 1/2) link water molecules into a helical chain, Fig. 2. The chains are linked into layers via C—H···O interactions, Table 1, which stack along the a direction.