metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-azido-κ2N1:N1)bis­­{(acetato-κ2O,O′)[2,4,6-tris­­(2-pyrid­yl)-1,3,5-triazine-κ3N2,N1,N6]lead(II)}

aYoung Researchers Club, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 17 September 2011; accepted 18 September 2011; online 30 September 2011)

The complete dinuclear title complex, [Pb2(C2H3O2)2(N3)2(C18H12N6)2], is generated by the application of a crystallographic centre of inversion. The PbII atom is coordinated by three N atoms of the tridentate ligand, two O atoms derived from an asymmetrically coordinating acetate ligand, and two azido-N atoms derived from two asymmetrically bridging azido ligands. The metal coordination geometry can be described as a square anti-prism with one position occupied by an unseen lone pair of electrons. In the ligand, the two coordinating pyridine rings are almost co-planar with the central pyrazine ring [dihedral angles = 0.47 (17) and 0.83 (18)°], but the terminal ring is twisted [dihedral angle = 19.76 (18)°]. In the crystal, the presence of ππ inter­actions [ring centroid distance between pyridyl rings = 3.581 (2) Å] leads to supra­molecular chains along the a-axis direction.

Related literature

For related lead(II) complexes with the 2,4,6-tris­(2-pyrid­yl)-1,3,5-triazine ligand, see: Harrowfield et al. (1996a[Harrowfield, J. M., Kepert, D. L., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996a). Aust. J. Chem. 49, 1147-1156.],b[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996b). Aust. J. Chem. 49, 1157-1164.], 2002[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (2002). Aust. J. Chem. 55, 661-666.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C2H3O2)2(N3)2(C18H12N6)2]

  • Mr = 1241.22

  • Triclinic, [P \overline 1]

  • a = 8.5529 (4) Å

  • b = 11.0080 (5) Å

  • c = 11.8617 (5) Å

  • α = 86.739 (4)°

  • β = 70.928 (4)°

  • γ = 70.100 (4)°

  • V = 990.60 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.56 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.279, Tmax = 0.482

  • 7814 measured reflections

  • 4358 independent reflections

  • 4046 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.049

  • S = 0.97

  • 4358 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 2.01 e Å−3

  • Δρmin = −2.14 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O1 2.349 (3)
Pb—O2 2.550 (3)
Pb—N1 2.684 (3)
Pb—N2 2.698 (3)
Pb—N6 2.702 (3)
Pb—N7 2.586 (3)
Pb—N7i 2.874 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Lead(II) complexes of the 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand (tptz) have been reported in the literature (Harrowfield et al. 1996a; Harrowfield et al. 1996b; Harrowfield et al. 2002). In each of the nine known structures, the tptz ligand has been shown to function as a tridentate ligand as observed in the dinuclear structure of the title compound, (I).

The complete dinuclear molecule of (I) is generated by the application of a centre of inversion. The PbII atom is seven coordinate within a N5O2 donor set defined by three N atoms of the tptz ligand, two atoms derived from two µ-azido anions, and two O atoms derived from an asymmetrically chelating acetate, Table 1. The coordination geometry is based on a square anti-prism with one face defined by the O1, O2, N2 and N6 atoms, and the other by the N1, N7, N7i and the lone pair of electrons; symmetry operation i: 1 - x, 1 - y, -z. The µ-azido bridge is non-symmetric, Table 1, leading the Pb2N2 central ring to have the shape of a trapezium. Within the tptz ligand, the two coordinating pyridine rings are co-planar with the central pyrazine ring (r.m.s. deviation = 0.016 Å), forming dihedral angles of 0.47 (17) (N1-pyridine) and 0.83 (18)° (N6-pyridine) but, the N4-pyridine ring is twisted out of the plane of the central triazine [dihedral angle = 19.76 (18)°].

The most prominent feature of the crystal packing is the formation of π···π interactions. These occur between the translationally related N1- and N4-pyridine rings with the separation between the ring centroids being 3.581 (2) Å for symmetry operation x - 1, y, z. These lead to the formation of supramolecular chains along the a axis. Chains assemble into layers that stack along the b-direction Fig. 3.

Related literature top

For related lead(II) complexes with the 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand, see: Harrowfield et al. (1996a,b, 2002).

Experimental top

The title complex was synthesized by the addition of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz; 0.312 g, 1 mmol) to a solution of lead(II) acetate trihydrate (0.378 g, 1 mmol) in 10 ml of DMF, followed by the drop wise addition of sodium azide (0.065 g, 1 mmol) dissolved in a minimum volume of water. After stirring for 2 h, the reaction solution was filtered. The resulting clear yellow solution left to stand in air. After 4 days, yellow prisms were obtained; Yield: 70%; M.pt. 540–542 K.

Refinement top

The H-atoms were placed in calculated positions (C—H 0.95 to 0.981164 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The maximum and minimum residual electron density peaks of 2.01 and 2.14 e Å-3, respectively, were located 0.93 Å and 0.55 Å from the Pb atom.

Structure description top

Lead(II) complexes of the 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand (tptz) have been reported in the literature (Harrowfield et al. 1996a; Harrowfield et al. 1996b; Harrowfield et al. 2002). In each of the nine known structures, the tptz ligand has been shown to function as a tridentate ligand as observed in the dinuclear structure of the title compound, (I).

The complete dinuclear molecule of (I) is generated by the application of a centre of inversion. The PbII atom is seven coordinate within a N5O2 donor set defined by three N atoms of the tptz ligand, two atoms derived from two µ-azido anions, and two O atoms derived from an asymmetrically chelating acetate, Table 1. The coordination geometry is based on a square anti-prism with one face defined by the O1, O2, N2 and N6 atoms, and the other by the N1, N7, N7i and the lone pair of electrons; symmetry operation i: 1 - x, 1 - y, -z. The µ-azido bridge is non-symmetric, Table 1, leading the Pb2N2 central ring to have the shape of a trapezium. Within the tptz ligand, the two coordinating pyridine rings are co-planar with the central pyrazine ring (r.m.s. deviation = 0.016 Å), forming dihedral angles of 0.47 (17) (N1-pyridine) and 0.83 (18)° (N6-pyridine) but, the N4-pyridine ring is twisted out of the plane of the central triazine [dihedral angle = 19.76 (18)°].

The most prominent feature of the crystal packing is the formation of π···π interactions. These occur between the translationally related N1- and N4-pyridine rings with the separation between the ring centroids being 3.581 (2) Å for symmetry operation x - 1, y, z. These lead to the formation of supramolecular chains along the a axis. Chains assemble into layers that stack along the b-direction Fig. 3.

For related lead(II) complexes with the 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand, see: Harrowfield et al. (1996a,b, 2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are generated by the symmetry operation 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Supramolecular chains in (I) mediated by π···π interactions shown as purple dashed lines.
[Figure 3] Fig. 3. A view of the unit-cell contents of (I) in projection down the a axis. The π···π interactions are shown as purple dashed lines.
Bis(µ-azido-κ2N1:N1)bis{(acetato- κ2O,O')[2,4,6-tris(2-pyridyl)-1,3,5-triazine- κ3N2,N1,N6]lead(II)} top
Crystal data top
[Pb2(C2H3O2)2(N3)2(C18H12N6)2]Z = 1
Mr = 1241.22F(000) = 592
Triclinic, P1Dx = 2.081 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5529 (4) ÅCell parameters from 5891 reflections
b = 11.0080 (5) Åθ = 2.6–29.2°
c = 11.8617 (5) ŵ = 8.56 mm1
α = 86.739 (4)°T = 100 K
β = 70.928 (4)°Prism, yellow
γ = 70.100 (4)°0.20 × 0.15 × 0.10 mm
V = 990.60 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4358 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4046 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scanh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1310
Tmin = 0.279, Tmax = 0.482l = 1314
7814 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0106P)2]
where P = (Fo2 + 2Fc2)/3
4358 reflections(Δ/σ)max = 0.002
290 parametersΔρmax = 2.01 e Å3
0 restraintsΔρmin = 2.14 e Å3
Crystal data top
[Pb2(C2H3O2)2(N3)2(C18H12N6)2]γ = 70.100 (4)°
Mr = 1241.22V = 990.60 (8) Å3
Triclinic, P1Z = 1
a = 8.5529 (4) ÅMo Kα radiation
b = 11.0080 (5) ŵ = 8.56 mm1
c = 11.8617 (5) ÅT = 100 K
α = 86.739 (4)°0.20 × 0.15 × 0.10 mm
β = 70.928 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4358 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4046 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.482Rint = 0.059
7814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 0.97Δρmax = 2.01 e Å3
4358 reflectionsΔρmin = 2.14 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.612101 (15)0.416726 (12)0.347893 (11)0.01042 (5)
O10.5120 (3)0.5621 (2)0.2132 (2)0.0151 (6)
O20.5432 (3)0.6610 (2)0.3570 (2)0.0167 (6)
N10.4835 (3)0.2650 (3)0.2624 (3)0.0128 (7)
N20.7962 (3)0.2875 (3)0.1327 (3)0.0103 (6)
N30.8279 (4)0.1391 (3)0.0182 (3)0.0119 (6)
N41.0363 (4)0.0059 (3)0.2293 (3)0.0149 (7)
N51.0514 (4)0.2285 (3)0.0385 (3)0.0129 (7)
N60.9239 (3)0.4423 (3)0.2205 (3)0.0111 (6)
N70.2803 (4)0.5086 (3)0.4691 (3)0.0162 (7)
N80.1867 (4)0.6149 (3)0.4603 (3)0.0153 (7)
N90.0947 (4)0.7192 (4)0.4520 (3)0.0276 (9)
C10.3281 (5)0.2554 (4)0.3282 (3)0.0159 (8)
H10.26760.30310.40320.019*
C20.2523 (4)0.1794 (4)0.2918 (3)0.0156 (8)
H20.14210.17500.34140.019*
C30.3376 (4)0.1098 (4)0.1829 (3)0.0157 (8)
H30.28600.05860.15540.019*
C40.5005 (4)0.1162 (4)0.1146 (3)0.0132 (8)
H40.56420.06780.04010.016*
C50.5687 (4)0.1949 (3)0.1572 (3)0.0103 (7)
C60.7406 (4)0.2074 (3)0.0872 (3)0.0104 (7)
C70.9812 (4)0.1554 (3)0.0777 (3)0.0105 (7)
C80.9539 (4)0.2935 (3)0.0672 (3)0.0106 (7)
C91.1213 (4)0.0594 (4)0.3404 (4)0.0200 (9)
H91.09500.12990.36250.024*
C101.2461 (5)0.0187 (4)0.4259 (3)0.0211 (9)
H101.30090.05910.50430.025*
C111.2887 (5)0.0824 (4)0.3942 (3)0.0199 (9)
H111.37340.11280.45020.024*
C121.2045 (4)0.1380 (4)0.2787 (3)0.0148 (8)
H121.23200.20620.25330.018*
C131.0793 (4)0.0921 (4)0.2008 (3)0.0135 (8)
C141.0237 (4)0.3786 (3)0.1128 (3)0.0108 (7)
C151.1825 (4)0.3928 (4)0.0472 (3)0.0127 (8)
H151.24900.34800.02870.015*
C161.2428 (5)0.4728 (4)0.0937 (3)0.0154 (8)
H161.35150.48400.05020.018*
C171.1433 (4)0.5364 (4)0.2043 (3)0.0152 (8)
H171.18320.59100.23870.018*
C180.9848 (4)0.5194 (4)0.2640 (3)0.0138 (8)
H180.91580.56460.33940.017*
C190.4957 (4)0.6651 (4)0.2671 (3)0.0145 (8)
C200.4162 (5)0.7942 (4)0.2216 (4)0.0216 (9)
H20A0.39240.78070.14880.032*
H20B0.49850.84210.20380.032*
H20C0.30590.84390.28270.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.00968 (8)0.01033 (8)0.01004 (8)0.00308 (5)0.00182 (5)0.00064 (6)
O10.0109 (12)0.0159 (15)0.0157 (14)0.0040 (10)0.0009 (10)0.0023 (11)
O20.0180 (13)0.0141 (15)0.0211 (15)0.0073 (11)0.0089 (11)0.0025 (12)
N10.0102 (14)0.0105 (17)0.0141 (16)0.0015 (12)0.0011 (12)0.0009 (13)
N20.0092 (14)0.0108 (16)0.0097 (15)0.0031 (12)0.0019 (12)0.0003 (13)
N30.0117 (15)0.0092 (16)0.0134 (16)0.0021 (12)0.0036 (12)0.0010 (13)
N40.0108 (15)0.0140 (18)0.0178 (17)0.0007 (12)0.0048 (13)0.0039 (14)
N50.0117 (15)0.0122 (17)0.0123 (16)0.0030 (12)0.0019 (12)0.0003 (13)
N60.0089 (14)0.0087 (16)0.0123 (16)0.0008 (12)0.0013 (12)0.0013 (13)
N70.0136 (15)0.0168 (19)0.0169 (17)0.0053 (13)0.0032 (13)0.0007 (14)
N80.0118 (15)0.023 (2)0.0099 (16)0.0070 (14)0.0002 (12)0.0050 (14)
N90.0220 (18)0.024 (2)0.026 (2)0.0037 (15)0.0051 (15)0.0040 (17)
C10.0147 (18)0.016 (2)0.0143 (19)0.0052 (15)0.0012 (15)0.0007 (16)
C20.0100 (17)0.012 (2)0.022 (2)0.0060 (14)0.0004 (15)0.0020 (16)
C30.0136 (18)0.014 (2)0.021 (2)0.0081 (15)0.0048 (15)0.0011 (17)
C40.0141 (18)0.012 (2)0.0122 (19)0.0044 (14)0.0033 (15)0.0001 (15)
C50.0090 (16)0.0063 (18)0.0130 (18)0.0001 (13)0.0027 (14)0.0002 (15)
C60.0075 (16)0.0062 (18)0.0148 (19)0.0004 (13)0.0024 (14)0.0024 (15)
C70.0057 (16)0.0087 (19)0.0138 (19)0.0017 (13)0.0033 (14)0.0009 (15)
C80.0100 (17)0.0076 (19)0.0124 (18)0.0001 (13)0.0044 (14)0.0013 (15)
C90.0124 (18)0.023 (2)0.023 (2)0.0042 (16)0.0041 (16)0.0084 (18)
C100.0152 (19)0.029 (3)0.012 (2)0.0018 (17)0.0005 (15)0.0078 (18)
C110.0139 (18)0.026 (2)0.014 (2)0.0057 (16)0.0010 (15)0.0007 (18)
C120.0119 (17)0.012 (2)0.016 (2)0.0013 (14)0.0021 (15)0.0034 (16)
C130.0089 (17)0.012 (2)0.0154 (19)0.0011 (14)0.0024 (14)0.0025 (16)
C140.0104 (16)0.0072 (18)0.0120 (18)0.0010 (13)0.0045 (14)0.0010 (15)
C150.0098 (17)0.014 (2)0.0107 (18)0.0008 (14)0.0015 (14)0.0012 (15)
C160.0128 (18)0.015 (2)0.019 (2)0.0075 (15)0.0051 (15)0.0063 (17)
C170.0136 (18)0.016 (2)0.020 (2)0.0092 (15)0.0069 (15)0.0014 (16)
C180.0157 (18)0.012 (2)0.0123 (19)0.0037 (15)0.0041 (15)0.0003 (15)
C190.0066 (16)0.013 (2)0.021 (2)0.0048 (14)0.0007 (15)0.0016 (16)
C200.019 (2)0.018 (2)0.028 (2)0.0049 (16)0.0121 (17)0.0085 (18)
Geometric parameters (Å, º) top
Pb—O12.349 (3)C3—C41.388 (5)
Pb—O22.550 (3)C3—H30.9500
Pb—N12.684 (3)C4—C51.390 (5)
Pb—N22.698 (3)C4—H40.9500
Pb—N62.702 (3)C5—C61.483 (5)
Pb—N72.586 (3)C7—C131.495 (5)
Pb—N7i2.874 (3)C8—C141.475 (5)
O1—C191.277 (4)C9—C101.391 (5)
O2—C191.252 (4)C9—H90.9500
N1—C11.339 (4)C10—C111.388 (6)
N1—C51.347 (4)C10—H100.9500
N2—C81.341 (4)C11—C121.386 (5)
N2—C61.342 (5)C11—H110.9500
N3—C71.338 (4)C12—C131.387 (5)
N3—C61.341 (4)C12—H120.9500
N4—C91.335 (5)C14—C151.384 (5)
N4—C131.345 (5)C15—C161.377 (5)
N5—C71.334 (5)C15—H150.9500
N5—C81.339 (4)C16—C171.380 (5)
N6—C181.335 (5)C16—H160.9500
N6—C141.354 (4)C17—C181.381 (5)
N7—N81.193 (4)C17—H170.9500
N8—N91.170 (5)C18—H180.9500
C1—C21.379 (5)C19—C201.506 (5)
C1—H10.9500C20—H20A0.9800
C2—C31.380 (5)C20—H20B0.9800
C2—H20.9500C20—H20C0.9800
O1—Pb—O253.37 (9)N3—C6—N2124.8 (3)
O1—Pb—N780.25 (9)N3—C6—C5117.3 (3)
O2—Pb—N776.00 (9)N2—C6—C5117.8 (3)
O1—Pb—N183.67 (9)N5—C7—N3125.3 (3)
O2—Pb—N1132.61 (8)N5—C7—C13116.6 (3)
N7—Pb—N178.04 (9)N3—C7—C13118.1 (3)
O1—Pb—N276.16 (9)N2—C8—N5124.0 (3)
O2—Pb—N2117.28 (9)N2—C8—C14118.3 (3)
N7—Pb—N2133.65 (9)N5—C8—C14117.7 (3)
N1—Pb—N260.27 (8)N4—C9—C10124.2 (4)
O1—Pb—N682.58 (8)N4—C9—H9117.9
O2—Pb—N676.90 (8)C10—C9—H9117.9
N7—Pb—N6152.86 (10)C11—C10—C9118.5 (3)
N1—Pb—N6120.73 (8)C11—C10—H10120.7
N2—Pb—N660.46 (9)C9—C10—H10120.7
O1—Pb—C1926.90 (10)C12—C11—C10118.3 (4)
O2—Pb—C1926.52 (9)C12—C11—H11120.9
N7—Pb—C1975.47 (10)C10—C11—H11120.9
N1—Pb—C19108.20 (10)C11—C12—C13118.8 (4)
N2—Pb—C1997.94 (10)C11—C12—H12120.6
N6—Pb—C1979.70 (9)C13—C12—H12120.6
C19—O1—Pb96.8 (2)N4—C13—C12124.0 (3)
C19—O2—Pb88.1 (2)N4—C13—C7116.6 (3)
C1—N1—C5117.7 (3)C12—C13—C7119.4 (3)
C1—N1—Pb118.8 (2)N6—C14—C15122.3 (3)
C5—N1—Pb123.5 (2)N6—C14—C8116.7 (3)
C8—N2—C6115.6 (3)C15—C14—C8121.0 (3)
C8—N2—Pb122.1 (2)C16—C15—C14119.0 (3)
C6—N2—Pb122.2 (2)C16—C15—H15120.5
C7—N3—C6114.6 (3)C14—C15—H15120.5
C9—N4—C13116.2 (3)C17—C16—C15119.1 (3)
C7—N5—C8115.6 (3)C17—C16—H16120.4
C18—N6—C14117.7 (3)C15—C16—H16120.4
C18—N6—Pb119.9 (2)C16—C17—C18118.8 (3)
C14—N6—Pb122.4 (2)C16—C17—H17120.6
N8—N7—Pb123.7 (2)C18—C17—H17120.6
N9—N8—N7179.9 (5)N6—C18—C17123.0 (3)
N1—C1—C2122.9 (3)N6—C18—H18118.5
N1—C1—H1118.6C17—C18—H18118.5
C2—C1—H1118.6O2—C19—O1121.5 (3)
C1—C2—C3119.6 (3)O2—C19—C20119.5 (3)
C1—C2—H2120.2O1—C19—C20119.0 (3)
C3—C2—H2120.2O2—C19—Pb65.4 (2)
C2—C3—C4118.4 (3)O1—C19—Pb56.31 (19)
C2—C3—H3120.8C20—C19—Pb173.3 (3)
C4—C3—H3120.8C19—C20—H20A109.5
C3—C4—C5118.7 (3)C19—C20—H20B109.5
C3—C4—H4120.6H20A—C20—H20B109.5
C5—C4—H4120.6C19—C20—H20C109.5
N1—C5—C4122.8 (3)H20A—C20—H20C109.5
N1—C5—C6116.1 (3)H20B—C20—H20C109.5
C4—C5—C6121.1 (3)
O2—Pb—O1—C192.67 (18)C3—C4—C5—C6178.9 (3)
N7—Pb—O1—C1977.06 (19)C7—N3—C6—N20.5 (5)
N1—Pb—O1—C19155.96 (19)C7—N3—C6—C5179.3 (3)
N2—Pb—O1—C19143.2 (2)C8—N2—C6—N32.4 (5)
N6—Pb—O1—C1981.84 (19)Pb—N2—C6—N3178.8 (3)
O1—Pb—O2—C192.71 (18)C8—N2—C6—C5178.8 (3)
N7—Pb—O2—C1985.5 (2)Pb—N2—C6—C52.3 (4)
N1—Pb—O2—C1926.8 (2)N1—C5—C6—N3179.7 (3)
N2—Pb—O2—C1946.8 (2)C4—C5—C6—N30.5 (5)
N6—Pb—O2—C1993.2 (2)N1—C5—C6—N20.7 (5)
O1—Pb—N1—C1102.3 (3)C4—C5—C6—N2178.5 (3)
O2—Pb—N1—C178.9 (3)C8—N5—C7—N32.8 (5)
N7—Pb—N1—C120.9 (3)C8—N5—C7—C13174.2 (3)
N2—Pb—N1—C1179.9 (3)C6—N3—C7—N52.3 (5)
N6—Pb—N1—C1179.7 (2)C6—N3—C7—C13174.7 (3)
C19—Pb—N1—C191.1 (3)C6—N2—C8—N51.8 (5)
O1—Pb—N1—C579.2 (3)Pb—N2—C8—N5178.3 (3)
O2—Pb—N1—C5102.6 (3)C6—N2—C8—C14179.3 (3)
N7—Pb—N1—C5160.6 (3)Pb—N2—C8—C142.8 (4)
N2—Pb—N1—C51.6 (3)C7—N5—C8—N20.6 (5)
N6—Pb—N1—C51.8 (3)C7—N5—C8—C14178.3 (3)
C19—Pb—N1—C590.4 (3)C13—N4—C9—C101.1 (6)
O1—Pb—N2—C891.2 (3)N4—C9—C10—C111.3 (6)
O2—Pb—N2—C856.1 (3)C9—C10—C11—C120.1 (6)
N7—Pb—N2—C8152.8 (2)C10—C11—C12—C131.2 (6)
N1—Pb—N2—C8178.2 (3)C9—N4—C13—C120.3 (5)
N6—Pb—N2—C82.0 (2)C9—N4—C13—C7178.3 (3)
C19—Pb—N2—C875.3 (3)C11—C12—C13—N41.5 (6)
O1—Pb—N2—C692.5 (3)C11—C12—C13—C7177.0 (3)
O2—Pb—N2—C6127.6 (3)N5—C7—C13—N4163.6 (3)
N7—Pb—N2—C631.0 (3)N3—C7—C13—N419.2 (5)
N1—Pb—N2—C62.0 (3)N5—C7—C13—C1217.7 (5)
N6—Pb—N2—C6178.2 (3)N3—C7—C13—C12159.5 (3)
C19—Pb—N2—C6108.4 (3)C18—N6—C14—C151.0 (5)
O1—Pb—N6—C18101.2 (3)Pb—N6—C14—C15179.4 (3)
O2—Pb—N6—C1847.2 (3)C18—N6—C14—C8179.7 (3)
N7—Pb—N6—C1850.1 (4)Pb—N6—C14—C80.1 (4)
N1—Pb—N6—C18179.2 (2)N2—C8—C14—N61.8 (5)
N2—Pb—N6—C18179.4 (3)N5—C8—C14—N6179.2 (3)
C19—Pb—N6—C1874.1 (3)N2—C8—C14—C15177.5 (3)
O1—Pb—N6—C1479.2 (3)N5—C8—C14—C151.4 (5)
O2—Pb—N6—C14133.2 (3)N6—C14—C15—C161.0 (5)
N7—Pb—N6—C14130.3 (3)C8—C14—C15—C16179.7 (3)
N1—Pb—N6—C141.2 (3)C14—C15—C16—C170.0 (6)
N2—Pb—N6—C141.0 (2)C15—C16—C17—C181.0 (6)
C19—Pb—N6—C14106.3 (3)C14—N6—C18—C170.1 (5)
O1—Pb—N7—N828.8 (3)Pb—N6—C18—C17179.6 (3)
O2—Pb—N7—N825.6 (3)C16—C17—C18—N61.1 (6)
N1—Pb—N7—N8114.4 (3)Pb—O2—C19—O14.7 (3)
N2—Pb—N7—N888.9 (3)Pb—O2—C19—C20174.9 (3)
N6—Pb—N7—N822.7 (4)Pb—O1—C19—O25.1 (3)
C19—Pb—N7—N81.7 (3)Pb—O1—C19—C20174.4 (3)
C5—N1—C1—C21.1 (5)O1—Pb—C19—O2175.2 (3)
Pb—N1—C1—C2179.7 (3)N7—Pb—C19—O287.7 (2)
N1—C1—C2—C30.3 (6)N1—Pb—C19—O2159.58 (18)
C1—C2—C3—C41.6 (6)N2—Pb—C19—O2139.18 (19)
C2—C3—C4—C51.6 (5)N6—Pb—C19—O281.28 (19)
C1—N1—C5—C41.1 (5)O2—Pb—C19—O1175.2 (3)
Pb—N1—C5—C4179.6 (3)N7—Pb—C19—O197.13 (19)
C1—N1—C5—C6179.7 (3)N1—Pb—C19—O125.2 (2)
Pb—N1—C5—C61.2 (4)N2—Pb—C19—O136.01 (19)
C3—C4—C5—N10.2 (6)N6—Pb—C19—O193.91 (19)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C2H3O2)2(N3)2(C18H12N6)2]
Mr1241.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5529 (4), 11.0080 (5), 11.8617 (5)
α, β, γ (°)86.739 (4), 70.928 (4), 70.100 (4)
V3)990.60 (8)
Z1
Radiation typeMo Kα
µ (mm1)8.56
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.279, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
7814, 4358, 4046
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.049, 0.97
No. of reflections4358
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.01, 2.14

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb—O12.349 (3)Pb—N62.702 (3)
Pb—O22.550 (3)Pb—N72.586 (3)
Pb—N12.684 (3)Pb—N7i2.874 (3)
Pb—N22.698 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

We acknowledge financial support of this work by the Islamic Azad University, Saveh Branch, and thank the University of Malaya for supporting the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Kepert, D. L., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996a). Aust. J. Chem. 49, 1147–1156.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996b). Aust. J. Chem. 49, 1157–1164.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (2002). Aust. J. Chem. 55, 661–666.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds